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MAXIMUM ENTROPY APPROACH FOR MODELING RANDOM

UNCERTAINTIES IN TRANSIENT ELASTODYNAMICS

Christian Soize

Structural Dynamics and Coupled Systems Department, ONERA, BP 72, 92322 Chatillon Cedex,

France

ABSTRACT

A new approach is presented for analyzing random uncertainties in dynamical systems. This

approach consists in modeling random uncertainties by a nonparametric model allowing transient

responses of mechanical systems submitted to impulsive loads to be predicted in the context of

linear structural dynamics. The information used does not require the description of the local

parameters of the mechanical model. The probability model is deduced from the use of the entropy

optimization principle whose available information is constituted of the algebraic properties related

to the generalizedmass, damping and stiffnessmatriceswhich have to be positive-definite symmetric

matrices, and the knowledge of these matrices for the mean reduced matrix model. An explicit

construction and representation of the probabilitymodel have been obtained and are very well suited

to algebraic calculus and to Monte Carlo numerical simulation in order to compute the transient

responses of structures submitted to impulsive loads. The fundamental properties related to the

convergence of the stochastic solution with respect to the dimension of the random reduced matrix

model is analyzed. Finally, an example is presented.

PACS numbers: 43.40

Keywords: Random uncertainties; dynamical systems, structural dynamics; structural acoustics;

transient response; impulsive load; entropy optimization principle

INTRODUCTION

This paper deals with predicting the transient responses of structures submitted to impulsive loads in

linear structural dynamics. The theory presented below can be extended without any difficulties to

structural-acoustic problems such as a structure coupled with an internal acoustic cavity. In general,

this kind of prediction is relatively difficult because the structural models have to be adapted to
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large, medium and small vibrational wavelengths which correspond to the low-, medium- and

high-frequency ranges.

Here, we are interested in the case where the impulsive load under consideration has an energy

which is almost entirely distributed over a broad low-frequency band and for which prediction of

the impulsive load response can be obtained with a reduced matrix model constructed using the

generalized coordinates of the mode-superposition method associated with the structural modes

corresponding to the n lowest eigenfrequencies of the structure. It should be noted that, for a

complex structure, only a numerical approximation of the first structural modes can be calculated

using a large finite element model of the structure. The low-frequency case considered in this paper

is important for many applications, and details concerning such a case can be found in the literature

on structural dynamics and vibrations (see Refs. 1 to 8).

Under the above assumptions and for a complex structure, dimension n of the reduced matrix model

generally has to be high (several dozen or hundred structural modes may be necessary to predict

transient responses). However, it is known that the higher the eigenfrequency of a structural mode,

the lower its accuracy because the uncertainties in the model increase (in linear structural dynamics

and vibrations, the effects of uncertainties on the model increase with the frequency and it should

be kept in mind that the mechanical model and the finite element model of a complex structure tend

to be less reliable in predicting the higher structural modes). This is why random uncertainties in

the mechanical model have to be taken into account. This is a fundamental problem in structural

dynamics and in structural acoustics when the mechanical model has to be adapted to predict a

transient response for which not only the low-frequency band is mainly concerned, but also the

upper part of this low-frequency band and maybe the medium-frequency-band have to be taken into

account.

Random uncertainties in linear structural dynamics and structural acoustics are usually modeled

using parametric models. This means that 1) the uncertain parameters (scalars, vectors or fields)

occurring in the boundary value problem (geometrical parameters; boundary conditions; mass

density; mechanical parameters of constitutive equations; structural complexity, interface and

junction modeling, etc.) have to be identified; 2) appropriate probabilistic models of these uncertain

parameters have to be constructed, and 3) functions mapping the domains of uncertain parameters

into the mass, damping and stiffness operators have to be constructed. Concerning details related

to such a parametric approach, we refer the reader to Refs. 9 to 15 for general developments, to
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Refs. 16 to 21 for general aspects related to stochastic finite elements and to Refs. 22 to 27 for

other aspects related to this kind of parametric models of random uncertainties in the context of

developments written in stochastic dynamics and parametric stochastic excitations.

In this paper we present a new approach, that wewill call a nonparametric approach, for constructing

a model of random uncertainties in linear structural dynamics in order to predict the transient

response of complex structures submitted to impulsive loads (as indicated above, this approach

can be directly extended to structural-acoustic problems). This nonparametric model of random

uncertainties does not require identifying the uncertain parameters in the boundary value problem as

described above for the parametric approach but is based on the use of recent research (see Refs. 28

and 29) in which the construction of a probabilitymodel for symmetric positive-definite real random

matrices using the entropy optimization principle has been introduced and developed. These results

will allow the direct construction of a probabilistic model of the reduced matrix model deduced

from the variational formulation of the boundary value problem to be obtained, for which the only

information used in this construction is the available information constituted of the mean reduced

matrix model, the existence of second-order moments of inverses of the random matrices and some

algebraic properties relative to the positive-definiteness of these random matrices. It should be

noted that these properties have to be taken into account in order to obtain a mechanical systemwith

random uncertainties, which models a dynamical system. For instance if there are uncertainties on

the generalized mass matrix, the probability distribution has to be such that this random matrix be

positive definite. If not, the probability model would be wrong because the generalized mass matrix

of any dynamical system has to be positive definite.

In Refs. 28 and 29, we presented the calculation of the matrix-valued frequency response functions

for discretized linear dynamical systems with random uncertainties. Unfortunately, convergence

results were not obtained yet and consequently, a parameter of the probability model were not

clearly defined for a designer. In this paper, an explicit construction of the probabilistic reduced

matrix model of finite dimension n is given and its convergence is studied as n approaches infinity.

In such a probabilistic theory, it seems absolutely fundamental to prove the convergence. It is not

self-evident that convergence properties exist in such a construction. In addition, it should be noted

that Eqs. (65)-(68) have been deduced from the convergence analysis carried out. Thanks to this new

analysis presented in this paper, we have obtained a new consistent and coherent theory in which all

the parameters are clearly defined. In Section I, the mean boundary value problem is introduced and
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its variational formulation is given in order to construct the mean reduced matrix model, which is

carried out in Section II, using themode-superpositionmethod. Section III is devoted to construction

of the nonparametric model of random uncertainties for the reduced matrix model. In this section,

we introduce the available information which is directly used for constructing the probabilistic

model of random uncertainties. In Section IV, we give a summary of the main results established

in Refs. 28 and 29 concerning the probability model for symmetric positive-definite real random

matrices and we complete this construction in order to obtain a consistent probabilistic model useful

for studying convergence as dimension n approaches infinity. The nonparametric model of random

uncertainties for the reduced matrix model constructed using Sections III and IV, is presented in

Section V. The convergence properties of this nonparametric model of random uncertainties as

dimension n approaches infinity are given in Section VI. The convergence properties prove that the

construction proposed is consistent. Finally, an example is presented in Section VII.

I. MEAN BOUNDARY VALUE PROBLEM FORMEAN TRANSIENT RESPONSE AND

ITS VARIATIONAL FORMULATION

A. Definition of the mean boundary value problem

We consider the linear transient response of a three-dimensional damped fixed structure around

a static equilibrium configuration considered as a natural state without prestresses, submitted to

an impulsive load. The mean mechanical model is described by the following mean boundary

value problem. Let Ω be the bounded open domain of  3 occupied by the mean structure at

static equilibrium and made of viscoelastic material without memory. Let ∂Ω = Γ0 ∪ Γ be the

boundary such that Γ0 ∩ Γ = ∅ and let n be its outward unit normal. Let u = (u1, u2, u3) be

the displacement field at each point x = (x1, x2, x3) in Cartesian coordinates. On part Γ0 of the

boundary, the structure is fixed (u = 0) while on part Γ it is free. There are external prescribed

impulsive volumetric and surface force fields applied to Ω and Γ, written as {gvol(x, t), t ≥ 0} and
{gsurf(x, t), t ≥ 0} respectively. Let T be a positive real number. The mean transient response

{u(x, t), x ∈ Ω, t ∈ [0, T ]} is the solution of the following mean boundary value problem:

ρ üi −
∂σij

∂xj
= gvol,i in Ω , t ∈ [0, T ] , (1)

σijnj = gsurf,i on Γ , t ∈ [0, T ] , (2)

ui = 0 on Γ0 , t ∈ [0, T ] , (3)
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for i = 1, 2, 3, with zero initial conditions at time t = 0,

u(x, 0) = 0 , u̇(x, 0) = 0 , ∀x ∈ Ω , (4)

in which u̇ and ü mean ∂u/∂t and ∂2u/∂t2 respectively, where the index summation convention is

used and where ρ(x) > 0 is the mass density of the mean model (which is assumed to be a bounded

function on Ω). For a viscoelastic material without memory, stress tensor σij of the mean model is

written as

σij = aijkh(x) εkh(u) + bijkh(x) εkh(u̇) , (5)

in which εkh(u) = (∂uk/∂xh + ∂uh/∂xk)/2 is the linearized strain tensor. The mechanical

coefficients of the mean model aijkh(x) and bijkh(x) are real, depend on x and verify the usual

properties of symmetry and positiveness30−32,8.

B. Variational formulation of the mean boundary value problem

The variational formulation of themean boundary value problem is absolutely necessary to construct

the mean reduced matrix model in the general case. In addition, in order to prove the convergence

properties of the stochastic transient response of the dynamical system with random uncertainties

as the dimension of the reduction approaches infinity, we need to introduce the set  of admissible

displacement fields. For the mathematical notations used in this section, we refer the reader to Refs.

33-35, and for the general methodology for constructing a variational formulation of a boundary

value problem, we refer the reader to Refs. 8,33,36-37.

Set of admissible displacement fields

We introduce the real Hilbert space! = { u = (u1, u2, u3) , uj ∈ L2(Ω) } equipped with the inner
product

(u , v) =

∫

Ω

u(x) · v(x) dx , (6)

and the associated norm

‖u‖ = (u , u)
1/2 , (7)

in which u · v =
∑3

j=1 ujvj and where L2(Ω) denotes the set of all the square integrable functions

from Ω into ". Let  ⊂ ! be the Hilbert space representing the set of admissible displacement

fields with values in "3 such that = {u ∈ ! , ∂u/∂xj ∈ ! , u = 0 on Γ0} , (8)
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equipped with the inner product

(u , v) = (u , v)! +
3∑

j=1

(
∂u

∂xj
,

∂v

∂xj

)! , (9)

and the associated norm

‖u‖ = (u , u)
1/2 . (10)

Linear form representing the prescribed external forces

For all fixed t, it is assumed that prescribed external forces x 7→ gvol(x, t) and x 7→ gsurf(x, t) are

square integrable functions on Ω and Γ respectively. For all fixed t, we introduce the linear form

v 7→ g(v ; t) on  representing the prescribed external forces and defined by

g(v ; t) =

∫

Γ

gsurf(x, t) · v(x) ds(x) +

∫

Ω

gvol(x, t) · v(x) dx , (11)

in which ds is the surface element.

Variational formulation

Below, for t fixed in [0, T ], the mapping x 7→ u(x, t)is denoted u(t). The variational formulation of

the mean boundary value problem defined by Eqs. (1)-(3) consists in finding a function t 7→ u(t)

with values in  such that

m(ü, v) + d(u̇, v) + k(u, v) = g(v ; t) , ∀v ∈  , ∀t ∈ [0, T ] , (12)

with the initial conditions defined by Eq. (4). Bilinear form m(u, v) (mass term) is defined by

m(u, v) =

∫

Ω

ρ(x) u(x)·v(x) dx , (13)

and is symmetric, positive definite, continuous on !×! and such that

m(u, u) ≥ cm‖u‖2! , (14)

in which cm is a positive real constant. The properties of mechanical coefficients bijkh(x) and

aijkh(x) are such that bilinear forms d(u, v) (damping term) and k(u, v) (stiffness term) which are

defined by

d(u, v) =

∫

Ω

bijkh(x) εkh(u) εij(v) dx , (15)
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k(u, v) =

∫

Ω

aijkh(x) εkh(u) εij(v) dx , (16)

are symmetric, positive definite, continuous on  × and are such that

d(u, u) ≥ cd‖u‖2 , k(u, u) ≥ ck‖u‖2 , (17)

in which cd and ck are positive real constants. Below, Eqs. (14) and (17) will be used to prove the

convergence properties of the stochastic transient response. From the usual reference books (see

for instance Ref. 33), we deduce that the problem defined by Eq. (12) with Eq. (4) has a unique

solution t 7→ u(t) with values in  , that we refer to as the transient response of the mean model
of the structure submitted to impulsive loads. Note that underlined quantities refer to the mean

mechanical model.

Response ratio and dynamic magnification factor of the mean model

The complete history of the transient response and its Fourier transform are of most interest to ana-

lyze structural-dynamic and structural-acoustic systems subjected to impulsive loads. Nevertheless,

the main objective of this paper being to present a new theory for modeling random uncertainties

in such systems, the presentation is limited to the calculation of the maximum response produced

by the impulsive load rather than the complete history. Consequently, we introduce the usual dy-

namic magnification factor which is also of interest to the designer and which allows the random

uncertainties modeling to be easily analyzed. It should be noted that this choice for presenting the

results of the example does not suppress the generality of the theory presented.

The elastic energy at time t, associated with the transient response u(t) of the mean model is equal

to 1
2
k(u(t), u(t)). The quasi-static response {x 7→ ustat(x, t)} at time t of the mean model, also

denoted ustat(t) and associated with Eq. (12), is the unique solution of the following quasi-static

problem

k(ustat(t), v) = g(v ; t) , ∀v ∈  , ∀t ∈ [0, T ] , (18)

and its maximum uS(x) is such that

uS(x) = max
t≥0

ustat(x, t) . (19)

The maximum of the elastic energy associated with the maximum of the quasi-static response of

the mean model is then equal to 1
2k(uS , uS). Finally, the response ratio r(t) at time t, associated
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with the elastic energy of transient response u(t) of the mean model, is defined by

r(t) =

√
1
2k(u(t), u(t))

1
2k(uS , uS)

, (20)

and the dynamic magnification factor b of the mean model (associated with the elastic energy) can

then be defined by

b = max
t∈[0,T ]

r(t) . (21)

II. MEAN REDUCED MATRIX MODEL

A. Spectral problem associated with the mean model

We consider the following spectral problem associatedwith Eq. (12), corresponding to the construc-

tion of the structural modes of the associated conservative mean structural model and consisting in

finding λ and  in  such that

k( , v) = λ m( , v) , ∀v ∈  . (22)

Taking into account the properties of bilinear forms m and k, there exists an increasing sequence

of positive eigenvalues with finite multiplicity 0 < λ1 ≤ λ2 . . . ≤ λα ≤ . . .. Let  
α
be the eigen-

function associated with eigenvalue λα. Then, eigenfunctions { α
, α ≥ 1} form a complete set in which means that an arbitrary function u belonging to  can be expanded as u =

∑+∞
α=1 qα α

, in

which {qα}α is a sequence of real numbers. The eigenfunctions satisfy the following orthogonality

conditions

m( 
α
, 

β
) = µ

α
δαβ , k( 

α
, 

β
) = µ

α
ω2

αδαβ , (23)

in which ωα =
√

λα is the eigenfrequency of the mean model associated with structural mode  
α

whose normalization µ
α

> 0 is the mean generalized mass and where δαα = 1 and δαβ = 0 for

α 6= β. Consequently, the eigenfrequencies of the associated conservative mean structural model

are such that

0 < ω1 ≤ ω2 . . . ≤ ωα ≤ . . . . (24)
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B. Mean reduced matrix model

The mean reduced matrix model is obtained using the Ritz-Galerkin projection of the variational

formulation of the mean boundary value problem on the subspace  n of  spanned by the structural
modes { 

1
, . . . , 

n
} of the mean structural model, which correspond to the n lowest eigenfrequen-

cies {ω1, . . . , ωn}. Let t 7→ u(t) from !+ into  be the unique solution of Eq. (12) with the initial

conditions defined by Eq. (4) and let un(t) be the projection of u(t) on  n (in structural dynamics,

this corresponds to the usual mode-superposition method). Consequently, the mean reduced matrix

model related to structural modes { 
1
, . . . , 

n
} of the mean structural model is then written as

un(x, t) =

n∑

α=1

qn
α(t) 

α
(x) , (25)

in which the !n-valued vector qn(t) = (qn
1 (t), . . . , qn

n(t)) of the generalized coordinates is the

solution of the time reduced problem,

[ Mn] q̈n(t) + [ Dn] q̇n(t) + [ Kn] qn(t) = Fn(t) , t ∈ [0, T ] , (26)

with the initial conditions,

qn(0) = 0 , q̇n(0) = 0 , (27)

in which the generalized force Fn(t) is the n real vector (F1(t), . . . , Fn(t)) such that

Fn
α (t) = g( 

α
; t) , α = 1, . . . , n . (28)

The mean generalized mass, damping and stiffness matrices [ Mn], [ Dn] and [ Kn] are positive-

definite symmetric (n× n) real matrices such that

[ Mn]αβ = µ
α

δαβ , [ Dn]αβ = d( 
β
, 

α
) , [ Kn]αβ = µ

α
ω2

α δαβ . (29)

C. Response ratio and dynamic magnification factor of the mean reduced matrix model

From Eqs. (23), (25) and (29), we deduce that the elastic energy 1
2k(un(t), un(t)) at time t,

associated with transient response un(t) of the mean model, is equal to 1
2

< [ Kn]qn(t), qn(t) >

in which <y , x>= y1 x1 + . . . + yn xn is the Euclidean inner product of !n. Consequently, the

response ratio rn(t) at time t, associated with the elastic energy of transient response un(t) (with

values in  n) of the mean model and defined by Eq. (20), is such that

rn(t) =

√
1
2

< [ Kn]qn(t), qn(t)>
1
2k(uS , uS)

, (30)
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and the dynamic magnification factor bn of the mean model (associated with the elastic energy) and

defined by Eq. (21), is such that

bn = max
t∈[0,T ]

rn(t) . (31)

We have limn→+∞ rn(t) = r(t) and limn→+∞ bn = b in which r(t) and b are defined by Eqs.

(20) and (21) respectively.

III. PRINCIPLE OF CONSTRUCTIONOF A NONPARAMETRICMODELOF RANDOM

UNCERTAINTIES FOR THE REDUCED MATRIX MODEL

In this section, we introduce the principle of construction of a nonparametric model of random

uncertainties and we define the available information for the construction of the nonparametric

model.

A. Principle of construction

It should be noted that if the boundary value problem defined by Eqs. (1)-(3) corresponds to

an exact mechanical model of the structure under consideration, there are no uncertainties in the

model which is then sure. However, in continuum mechanics, the exact boundary value problem

cannot be written for a given complex structure due to uncertainties in the data (geometry, boundary

conditions, constitutive equation, structural complexity, etc.) and the most advanced deterministic

model which it is possible to construct can only be considered as a mean mechanical model leading

to the notion of the mean boundary value problem introduced above. In addition, Eq. (12),

which corresponds to the variational formulation of this mean boundary value problem, does not

constitute available information for predicting the transient response {u(x, t), x ∈ Ω, t ∈ [0, T ]}
of the mean structure subjected to any impulsive loads for the following reason. For a complex

structure, such a mean boundary value problem defined by Eqs. (1)-(3) is not able to predict the

transient response due to impulsive loads whose energy is distributed over a very broad frequency

band, i.e. over the low-, medium- and high-frequency ranges (for instance, if there is energy in

the medium-frequency range, more advanced probabilistic mechanical models such as the fuzzy

structure theory have to be used to take into account the role played by the structural complexity8);

the most that this kind of deterministic mean boundary value problem is able to predict is the

transient response due to impulsive loads whose energy is mainly distributed over a broad low-

frequency range for which the mean reduced matrix model defined by Eqs. (25)-(27) is suitable and
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allows the transient response to be predicted with good accuracy. This means that the variational

formulation of the mean boundary value problem does not constitute available information for

constructing the nonparametric model of random uncertainties. However, the mean reduced matrix

model defined by Eqs. (25)-(27) (with n not too large) does constitute the available information for

constructing the transient response of the mean model, then constructing the probability model of

random uncertainties. This probabilistic model is a nonparametric model of random uncertainties

because the sources of random uncertainties in the mechanical model which are due to uncertain

mechanical parameters such as geometrical parameters, boundary conditions, junction stiffness,

mass density, Young’s modulus, etc., are not directly modeled by random variables or stochastic

fields. These random uncertain geometrical and mechanical parameters mean that the generalized

mass, damping and stiffness matrices of the reduced matrix model are randommatrices. In addition,

it should be noted that such a nonparametric approach also allows the model uncertainties to be

taken into account whereas parametric approaches do not allow it.

Consequently, the main idea for this nonparametric construction is that not only all the parametric

random uncertainties of the mechanical model are taken into account but also the model uncertain-

ties, which lead to a random set of coupled generalized linear oscillators in the space of generalized

coordinates, represented by the system of random generalized matrices of the random reduced

matrix model. The problem is then to construct the probability distribution of this set of generalized

oscillators, i.e. the probability distribution of the random generalized matrices of the random re-

duced matrix model, using only the available information. The available information is constituted

of the mean generalized matrices of the mean reduced matrix model, the positive-definiteness of

the random generalized matrices and the existence of second-order moments of inverses of these

random generalized matrices. The nonparametric model of random uncertainties which is proposed

consists in introducing a direct construction of a probabilistic model of these random generalized

matrices.

B. Random reduced matrix model

In this paper,  n(!),  S
n(!) and  +

n (!) are the set of all the (n×n) real matrices, the set of all

the symmetric (n×n) real matrices and the set of all the positive-definite symmetric (n×n) real

matrices, respectively; we have  +
n (!) ⊂  S

n(!) ⊂  n(!); all the random variables are defined on

a probability space (A, T , P ).

Using the construction principle presented in Section III.A, the random reduced matrix model
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associated with the mean reduced matrix model introduced in Section II.B is written as

Un(x, t) =

n∑

α=1

Qn
α(t) 

α
(x) , (32)

in which Qn(t) = (Qn
1 (t), . . . , Qn

n(t)) is the  n-valued random variable such that

[Mn] Q̈n(t) + [Dn] Q̇n(t) + [Kn]Qn(t) = Fn(t) , t ≥ 0 , (33)

with the initial conditions:

Qn(0) = 0 , Q̇n(0) = 0 a.s. , (34)

in which generalized force Fn(t) is the  n-valued vector defined by Eq. (28) and where [Mn],

[Dn] and [Kn] are the random generalized mass, damping and stiffness matrices with values in!+
n ( ). It should be noted that the mathematical property related to the positiveness of the random

matrices is absolutely fundamental and is required so that the second-order differential equation in

time corresponds effectively to a dynamical system.

C. Random response ratio and random dynamic magnification factor

For the elastic energy of the model with random uncertainties and due to Eqs. (30)-(32), the random

response ratio Rn(t) at time t, associated with stochastic transient response Un(t) with values in"n, is written as

Rn(t) =

√
1
2 < [ Kn]Qn(t),Qn(t)>

1
2k(uS , uS)

. (35)

The random dynamic magnification factor Bn is then defined by

Bn = max
t∈[0,T ]

Rn(t) . (36)

D. Available information for the construction of the nonparametric model

We have to define the available information which is useful for constructing the probabilistic model.

The basic available informations are the mean reduced matrix model, the positive-definiteness of

the random generalized matrices and the existence of second-order moments of inverses of these

random generalized matrices. The mean reduced matrix model is constituted of mean generalized

mass, damping and stiffness matrices [ Mn], [ Dn] and [ Kn] defined in Section II.B and which

belong to !+
n ( ). Random generalized mass, damping and stiffness matrices [Mn], [Dn] and
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[Kn] are second-order random variables with values in  +
n (!) (the fundamental algebraic property

relative to the positive-definiteness of the random generalized matrices) such that

E{[Mn]} = [ Mn] , E{[Dn]} = [ Dn] , E{[Kn]} = [ Kn] . (37)

In addition, in order to obtain a consistent probabilistic model and in particular, to obtain conver-

gence properties of stochastic transient response {Un(x, t), x ∈ Ω, t ∈ [0, T ]} when dimension

n approaches infinity, we need to introduce information relative to the existence of moments of

random variables [Mn]−1, [Dn]−1 and [Kn]−1 (such as second-order moments). It should be noted

that since random matrices [Mn], [Dn] and [Kn] are almost surely positive definite, the inverse

matrices exist almost surely, but the existence of moments does not follow. We therefore introduce

the following constraints,

E
{
‖[Mn]−1‖γ

F

}
< +∞ , E

{
‖[Dn]−1‖γ

F

}
< +∞ , E

{
‖[Kn]−1‖γ

F

}
< +∞ , (38)

in which γ ≥ 1 is a positive integer and

‖ [A ] ‖F =
(
tr{[A ] [A ]T}

)1/2
, (39)

is the Frobenius norm of matrix [A ] ∈  n(!) where tr is the trace of the matrices and [A ]T is the

transpose of matrix [A ]. We then have to construct a probability model for symmetric positive-

definite real random matrices [Mn], [Dn] and [Kn] with the available information defined by Eqs.

(37) and (38). This construction is presented in Section IV.

IV. PROBABILITY MODEL FOR SYMMETRIC POSITIVE-DEFINITE REAL RANDOM

MATRICES

In a part of this section, we recall the main results established in Refs. 28 and 29 concerning the

construction of a probability model for random matrices with values in  +
n (!) using the entropy

optimization principle which allows only the available information to be used. It should be noted

that the results obtained and presented below differ from the known results concerning Gaussian

and circular ensembles for random matrices (orthogonal, symplectic, unitary and antisymmetric

Hermitian ensembles) which have been extensively studied in the literature (see for instance Refs

38 to 43). In another part of this section, we complete the construction given in Refs. 28 and

29 in order to obtain a consistent probabilistic model which allows the convergence properties to
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be studied when dimension n approaches infinity. In particular, we give an explicit expression of

parameter λAn
as a function of scalar parameter δA which is independent of dimension n of random

matrix [An] and which allows the dispersion of random matrix [An] to be given.

A. Probability density function on the space of positive-definite symmetric real matrices and

characteristic function

Let [An] be a random matrix with values in  +
n (!), defined on probability space (A, T , P ), whose

probability distribution

P[An] = p[An]([An]) d̃An (40)

is defined by a probability density function [An] 7→ p[An]([An]) from  +
n (!) into !+ with respect

to the measure (volume element) d̃An on  S
n(!) defined by28,29

d̃An = 2n(n−1)/4 Π1≤i≤j≤n d[An]ij . (41)

This probability density function is such that

∫ +
n (!)

p[An]([An]) d̃An = 1 . (42)

For all [Θn] in  S
n(!), the characteristic function of random matrix [An] with values in  +

n (!) ⊂ S
n(!) is defined by Φ[An]([Θn]) = E

{
exp(i ≪ [Θn] , [An] ≫)

}
in which ≪ [Θn],[An] ≫=

tr{[Θn] [An]T }= tr{[Θn] [An]}. We then have

Φ[An]([Θn]) =

∫ +
n (!)

exp( i tr{[Θn] [An]}) p[An]([An]) d̃An . (43)

B. Available information for construction of the probability model

We are interested in constructing the probability distribution of a second-order random variable

[An] with values in  +
n (!) for which the available information is the mean value [An] of random

matrix [An],

E{[An]} =

∫ +
n (!)

[An] p[An]([An]) d̃An = [An] , (44)

in which E denotes the mathematical expectation and where mean value [An] is given in  +
n (!).

In addition, we assume that random matrix [An] is such that

E{ln(det[An])} = v with |v| < +∞ . (45)
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Below, we prove that the constraint defined by Eq. (45) allows us to demonstrate the existence of

moments related to the inverse random matrix [An]−1,

E
{
‖[An]−1‖γ

F

}
< +∞ , (46)

in which γ ≥ 1 is a positive integer. Consequently, from Eqs. (42), (44) and (45), we deduce that

the constraints imposed for the construction of the probability model of random matrix [An] with

values in  +
n (!) are ∫ +

n (!)

p[An]([An]) d̃An = 1 , (47)

∫ +
n (!)

[An] p[An]([An]) d̃An = [An] ∈  +
n (!) , (48)

∫ +
n (!)

ln(det[An]) p[An]([An]) d̃An = v with |v| < +∞ . (49)

C. Probability model using the maximum entropy principle

By introducing the measure of entropy44 (uncertainty) and the maximum entropy principle45,46

to construct the probability model of random matrix [An] with values in  +
n (!) based only on

the use of the available information defined by Eqs. (47)-(49), we proved that, for λAn
> 0 and

[Θn] ∈  S
n(!), probability density function p[An]([An]) and characteristic function Φ[An]([Θn]) of

positive-definite random matrix [An] are written as28,29

p[An]([An]) = " +
n (!)([An])×cAn

×
(
det[An]

)λAn−1 × exp
(
− (n−1+2λAn )

2
tr{[An]−1[An]}

)
,

(50)

Φ[An]([Θn])=
{
det

(
[ In] − 2i

(n − 1 + 2λAn
)

[An] [Θn]
)}−(n−1+2λAn )/2

, (51)

in which det is the determinant of the matrices, [ In] is the (n×n) identity matrix and where" +
n (!)([An]) is equal to 1 if [An] ∈  +

n (!) and is equal to zero if [An] /∈  +
n (!). When λAn

is

an integer, the probability distribution defined by Eq. (50) or (51) is a Wishart distribution47,48.

If λAn
is not an integer, the probability distribution defined by Eq. (50) or (51) is not a Wishart

distribution. In Eq. (50), positive constant cAn
is written as

cAn
=

(2π)−n(n−1)/4
(

n−1+2λAn

2

)n(n−1+2λAn )/2

{
Πn

j=1Γ
(n−j+2λAn

2

)}
(det[An])(n−1+2λAn )/2

, (52)
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where Γ(z) is the gamma function defined for ℜe z > 0 by Γ(z) =
∫ +∞

0
tz−1 e−t dt. The range of

parameter λAn
satisfying Eq. (46) in which γ ≥ 1 is a positive integer has to be determined. It is

proved (see Appendix A) that

λAn
> γ + 1 =⇒ E

{
‖[An]−1‖γ

F

}
< +∞ , γ ≥ 1 . (53)

In addition, it can easily be proved that

λAn
> 0 =⇒ E

{
‖[An]‖η

F

}
< +∞ , η > 0 . (54)

Equation (54)means that forλAn
> 0, all themoments of randommatrix [An] exist (η is any positive

integer). The covarianceCAn

jk,j′k′ = E
{
([An]jk−[An]jk)([An]j′k′−[An]j′k′)

}
of randomvariables

[An]jk and [An]j′k′ is written as

CAn

jk,j′k′ = (n − 1 + 2λAn
)−1

{
[An]j′k[An]jk′ + [An]jj′ [An]kk′

}
, (55)

and the variance V An

jk = CAn

jk,jk of random variable [An]jk is such that V
An

jk = (n − 1 + 2λAn
)−1

×
{
[An]2jk + [An]jj [An]kk

}
.

D. Dispersion parameter δA of random matrix [An]

Since [An] is a positive-definite real matrix, there is an upper triangular matrix [LAn
] in n(!) such

that

[An] = [LAn
]T [LAn

] , (56)

which corresponds to the Cholesky factorization of matrix [An]. Considering Eq. (56), random

matrix [An] can be written as

[An] = [LAn
]T [GAn

] [LAn
] , (57)

in which matrix [GAn
] is a random variable with values in  +

n (!). From Eqs. (44) and (57), we

deduce that the mean value [GAn
] of random matrix [GAn

] is such that

[GAn
] = E{[GAn

]} = [ In] . (58)

The probability density function p[GAn ]([Gn]) with respect to measure d̃Gn on  S
n(!) of random

matrix [GAn
] with values in  +

n (!) is given by Eqs. (50) and (52) in which [An] has to be replaced

by [ In]. We then have

p[GAn ]([Gn]) = " +
n (!)([Gn])×CGAn

×
(
det[Gn]

)λAn−1 × exp

(
−(n−1+2λAn

)

2
tr[Gn]

)
,

(59)
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in which positive constant CGAn
is such that

CGAn
=

(2π)−n(n−1)/4
(

n−1+2λAn

2

)n(n−1+2λAn )/2

{
Πn

j=1Γ
(n−j+2λAn

2

)} . (60)

From Eqs. (55) and (57), we deduce that the covariance CGn

jk,j′k′ of random variables [GAn
]jk and

[GAn
]j′k′ , defined by CGn

jk,j′k′ = E
{
([GAn

]jk − [GAn
]jk)([GAn

]j′k′ − [GAn
]j′k′)

}
, is written as

CGn

jk,j′k′ = (n − 1 + 2λAn
)−1

{
[GAn

]j′k[GAn
]jk′ + [GAn

]jj′ [GAn
]kk′

}
. (61)

Since [GAn
] = [ In], the variance V Gn

jk = CGn

jk,jk of random variable [GAn
]jk is such that

V Gn

jk = (n − 1 + 2λAn
)−1(1 + δjk) , (62)

in which δjk = 0 if j 6= k and δjj = 1. Let δA > 0 be defined by

δA =

{
E{‖ [GAn

] − [GAn
] ‖2

F}
‖ [GAn

] ‖2
F

}1/2

. (63)

Equation (62) yields E{‖ [GAn
] − [GAn

] ‖2
F} =

∑
j

∑
k V Gn

jk = n(n + 1)(n − 1 + 2λAn
)−1 and

since ‖ [GAn
] ‖2

F = ‖ [ In] ‖2
F = n, we deduce that

δA =

{
n + 1

n − 1 + 2λAn

}1/2

, (64)

and consequently,

λAn
= ℓA(n) , (65)

in which n 7→ ℓA(n) is the mapping defined on the set  ∗ of all positive integers such that

ℓA(n) =
1 − δ2

A

2δ2
A

n +
1 + δ2

A

2δ2
A

. (66)

From Eqs. (53) and (64), we deduce that parameter δA has to be such that

0 < δA <

√
n + 1

n + 1 + 2γ
< 1 , γ ≥ 1 , ∀n ≥ 1 . (67)

Equation (67) shows that γ has to be chosen as small as possible in order to increase the domain

of possible values for δA. From convergence considerations when n → +∞ (see Section VI) and
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from Eq. (67), we deduce that γ = 2 is the optimal value. Let n0 ≥ 1 be a fixed integer. Taking

the value γ = 2, we then deduce that, if parameter δA satisfies

0 < δA <

√
n0 + 1

n0 + 5
, (68)

then, ∀n ≥ n0, we have λAn
= ℓA(n) > γ + 1 = 3 and consequently, Eq. (53) holds. These

equations will be used as follows. The lower bound n0 of positive integer n is fixed. Then, the

dispersion of the probability model is fixed by giving parameter δA, independent of n, a value such

that Eq. (68) is satisfied. For each value of integer n ≥ n0, parameter λAn
= ℓA(n) is then

calculated by using Eq. (66). Consequently, λAn
= ℓA(n) appears as a function of n.

E. Algebraic representation of random matrix [An] when λAn
is an integer

When λAn
= ℓA(n) is a positive integer, we introduce the positive integer mA such that

mA(n) = n − 1 + 2ℓA(n) . (69)

Substituting Eq. (66) in the right-hand side of Eq. (69) yields

mA(n) = (n + 1)/δ2
A . (70)

Since mA(n) is a positive integer, it can be verified that the probability distribution defined by Eq.

(50) or (51) is a Wishart distribution47,48 and that random matrix [An] can be written as28,29

[An] =
1

mA(n)

mA(n)∑

j=1

(
[LAn

]T Xj

) (
[LAn

]T Xj

)T
, (71)

in which [LAn
] is the upper triangular matrix defined by Eq. (56) and where X1, . . . ,XmA(n) are

independent random vectors, each vector Xj being an  n-valued second-order Gaussian random

variable, centered and whose covariance matrix is [CXj
] = E{XjX

T
j } = [ In]. Consequently,

Eq. (71) gives an efficient procedure for algebraic calculations and the Monte Carlo numerical

simulation of random matrix [An].

F. Algebraic representation of random matrix [An] when λAn
is not an integer

Let us now assume that λAn
= ℓA(n), given by Eq. (65), is a positive real number (the particular

case for which λAn
is a positive integer is presented above in Section IV.E). Since [GAn

] defined by

Eq. (57), is a random matrix with values in !+
n ( ), the Cholesky factorization allows us to write

[GAn
] = [LAn

]T [LAn
] a.s. , (72)
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in which [LAn
] is an upper triangular random matrix with values in  n(!). The following results,

which allow a procedure for the Monte Carlo simulation of random matrix [An] to be defined, are

proved28,29:

(1) Random variables {[LAn
]jj′ , j ≤ j′} are independent.

(2) For j < j′, real-valued random variable [LAn
]jj′ can be written as [LAn

]jj′ = 2−1/2 [L̃An
]jj′

in which [L̃An
]jj′ is a real-valued Gaussian random variable with zero mean and variance given by

v = 2 (n − 1 + 2ℓA(n))−1 . (73)

(3) For j = j′, positive-valued random variable [LAn
]jj can be written as [LAn

]jj =
√

vYj in

which v is given by Eq. (73) and where Yj is a positive-valued gamma random variable whose

probability density function with respect to dy is given by

Γj(y) =
"[0,+∞[(y)

Γ
(

n−j+2ℓA(n)
2

) y
(n−j+2ℓA(n))

2 −1 e−y . (74)

(4) We have [GAn
] = [LAn

]T [LAn
] and [An] = [LAn

]T [GAn
] [LAn

].

G. Probability model of a set of positive-definite symmetric real random matrices

Let us consider ν random matrices [A1
n], . . . , [Aν

n] with values in  +
n (!) such that for each j

in {1, . . . , ν}, the probability density function of random matrix [Aj
n] satisfies Eqs. (47)-(49).

This means that only the mean values of the random matrices are known. Applying the maxi-

mum entropy principle, it can be proved that the probability density function ([A1
n], . . . , [Aν

n]) 7→
p[A1

n],...,[Aν
n]([A

1
n], . . . , [Aν

n]) from  +
n (!) × . . . ×  +

n (!) into !+ with respect to the measure

(volume element) d̃A1
n × . . .× d̃Aν

n on  S
n(!) × . . .×  S

n(!) is written as

p[A1
n],...,[Aν

n]([A
1
n], . . . , [Aν

n]) = p[A1
n]([A

1
n]) × . . .× p[Aν

n]([A
ν
n]) , (75)

which means that [A1
n], . . . , [Aν

n] are independent random matrices.

V. NONPARAMETRIC MODEL OF RANDOM UNCERTAINTIES

In this section we complete the construction of the probability model introduced in Section III using

the developments of Section IV.
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A. Probability model of the reduced matrix model

Let n0 ≥ 1 be a fixed integer and n ≥ n0. We apply the results of Section IV to the set of positive-

definite symmetric real random matrices {[Mn], [Dn], [Kn]} defined in Section III, for which the
available information is described by Eqs. (37)-(38). As indicated in Section IV.D, we take γ = 2

and the levels of dispersion of random matrices [Mn], [Dn] and [Kn] are controlled by parameters

δM , δD and δK respectively, which are independent of n and are chosen such that (see Eq. (68)),

0 < δM , δD , δK <

√
n0 + 1

n0 + 5
. (76)

Parameters λM , λD and λK are defined by Eq. (65),

λM = ℓM (n) , λD = ℓD(n) , λK = ℓK(n) , (77)

in which ℓM (n), ℓD(n) and ℓK(n) are given by Eq. (66),

ℓM(n) =
1 − δ2

M

2δ2
M

n +
1 + δ2

M

2δ2
M

, (78)

ℓD(n) =
1 − δ2

D

2δ2
D

n +
1 + δ2

D

2δ2
D

, (79)

ℓK(n) =
1 − δ2

K

2δ2
K

n +
1 + δ2

K

2δ2
K

. (80)

From Section IV.G, we deduce that random matrices [Mn], [Dn] and [Kn] are independent random

variables with values in  +
n (!) and their probability density functions p[Mn]([Mn]), p[Dn]([Dn])

and p[Kn]([Kn]) with respect to the measures (volume elements) d̃Mn, d̃Dn and d̃Kn on  S
n(!)

are given by Eqs. (50) and (52), and their characteristic functions by Eq. (51).

B. Construction of the stochastic transient response

For fixed positive integer n ≥ n0, we have to construct stochastic processes {Un(x, t), x ∈ Ω, t ∈
[0, T ]} defined by Eqs. (32)-(34) and {Rn(t), t ≥ 0} defined by Eq. (35), and random variableBn

defined by Eq. (36). Below, we present a formulation which is adapted to Monte Carlo numerical

simulation.

For given matrices [Mn], [Dn], [Kn] in  +
n (!), let t 7→ qn

F (t; [Mn], [Dn], [Kn]) be the solution

from !+ into !n of the deterministic second-order differential equation

[Mn] q̈n
F(t) + [Dn] q̇n

F(t) + [Kn] qn
F(t) = Fn(t) , t ≥ 0 , (81)
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with the initial conditions

qn
F(0) = 0 , q̇n

F(0) = 0 . (82)

We deduce that stochastic process {Qn(t), t ≥ 0} which is the solution of the stochastic dynamical
problem defined by Eqs. (33)-(34), can be written as

Qn(t) = qn
F(t; [Mn], [Dn], [Kn]) . (83)

It should be noted that Qn(t) can be usually written as

Qn(t) =

∫ t

0

[hn(t−τ)]Fn(τ) dτ , (84)

in which t 7→ [hn(t)] is the matrix-valued impulse response function of the linear filter associated

with second-order differential Eq. (81). If q 7→ [θn(q)] is a mapping from  n into the set!ν1,ν2
( )

of all the (ν1×ν2) real matrices, we have

E{[θn(Qn(t))]} =

∫ +
n (!)

∫ +
n (!)

∫ +
n (!)

[θn(qn
F (t; [Mn], [Dn], [Kn]) )]

× p[Mn]([Mn]) × p[Dn]([Dn]) × p[Kn]([Kn]) d̃Mn d̃Dn d̃Kn . (85)

For instance, Rn(t) defined by Eq. (35) can be written as Rn(t) = [θn(Qn(t))] with ν1 = ν2 = 1.

Calculation of the stochastic transient response of the dynamical system with random uncertainties

requires the numerical construction of mapping t 7→ qn
F(t; [Mn], [Dn], [Kn]) as the solution of

the deterministic Eqs. (81)-(82). Since matrices [Mn], [Dn] and [Kn] are full matrices (not

diagonal) as samplings of random matrices [Mn], [Dn] and [Kn], Eq. (84) is not used but second-

order differential Eq. (81) is solved directly using an unconditionally stable implicit step-by-step

integration method (such as the Newmark integration scheme2) with initial conditions defined by

Eq. (82). In addition, we have to calculate multiple integrals in a higher dimension (see Eq. (85))

for which a well suited method consists in using a Monte Carlo calculation with or without variance

reduction procedures49−55. This method is very efficient if there is a Monte Carlo simulation

procedure for random matrices [Mn], [Dn] and [Kn] which is the case of the method presented in

Sections IV.E and IV.F. It should be noted that for many applications, integer n is sufficiently high

that λM , λD and λK can be considered as positive integers without introducing any significant

limitation in the model. Applying Eqs. (70)-(71) to random matrices [Mn], [Dn] and [Kn] yields

[Mn] =
1

mM (n)

mM (n)∑

j=1

(
[LMn

]T Xj

) (
[LMn

]T Xj

)T
, (86)
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[Dn] =
1

mD(n)

mD(n)∑

j=1

(
[LDn

]T Yj

) (
[LDn

]T Yj

)T
, (87)

[Kn] =
1

mK(n)

mK(n)∑

j=1

(
[LKn

]T Zj

) (
[LKn

]T Zj

)T
, (88)

in which

mM (n) = Fix

(
n + 1

δ2
M

)
, mD(n) = Fix

(
n + 1

δ2
D

)
, mK(n) = Fix

(
n + 1

δ2
K

)
, (89)

where Fix(x) is equal to x when x is an integer and Fix(x) rounds down x+1 to the nearest integer

when x is not an integer. In Eqs. (86)-(88), [LMn
], [LDn

] and [LKn
] are upper triangular matrices in n(!) corresponding to the Cholesky factorization of symmetric positive-definite matrices [Mn],

[Dn] and [Kn]:

[Mn] = [LMn
]T [LMn

] , [Dn] = [LDn
]T [LDn

] , [Kn] = [LKn
]T [LKn

] . (90)

The set of all the components of vectors X1, . . . ,XmM(n), Y1, . . . ,YmD(n) and Z1, . . . ,ZmK(n)

with values in !n is constituted of mM (n)×n + mD(n)×n + mK(n)×n independent random

variables, each of which is a real-valued second-order normalized Gaussian random variable (zero

mean value and unit variance).

VI. CONVERGENCE PROPERTIES AS THE DIMENSION APPROACHES INFINITY

For each n ≥ n0 fixed, stochastic transient response {Un(x, t), x ∈ Ω, t ∈ [0, T ]} of the dynamical
system with random uncertainties can be constructed using Sections III to V. A major problem

concerns the convergence properties of stochastic transient response {Un(x, t), x ∈ Ω, t ∈ [0, T ]}
and related quantities as n → +∞ for the nonparametric probabilistic model proposed in Sections

III to V. This problem is studied below.

A. Introduction of norms useful for the convergence properties

As above, all the random variables are defined on probability space (A, T , P ). Let Q =

(Q1, . . . , Qn) be an !n-valued random variable. The norm |||Q||| of Q is defined by

|||Q||| =
√

E{‖Q‖2} , (91)

in which ‖Q‖ = (
∑n

α=1 Q2
α)1/2 is the Euclidean norm of !n and where E is the mathematical

expectation. It should be noted that vectorQ is a second-order random variable if |||Q||| < +∞. Let
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U be an  -valued random variable (see Section I.B). Its norm in  is ‖U‖ and is a positive-valued
random variable defined (see Eq. (6)) by

‖U‖ =

(∫

Ω

U(x)·U(x) dx

)1/2

.

The norm |||U||| of U is defined by

|||U||| =
√

E{‖U‖2 } . (92)

Similarly, if U is a !-valued random variable (see Section I.B), its norm ‖U‖! is the positive-valued
random variable defined (see Eq. (7)) by

‖U‖! =



‖U‖2 +

3∑

j=1

∥∥∥∥
∂U

∂xj

∥∥∥∥
2 1/2

,

and the norm |||U|||! of U is defined by

|||U|||! =
√

E{‖U‖2!} . (93)

B. Prerequisite to the construction of basic inequalities

Below, the "+
n (#)-valued random matrix [An] denotes "+

n (#)-valued random matrices [Mn], [Dn]

or [Kn] defined on probability space (A, T , P ) and introduced in Sections III and V. Let [GAn
]

be the "+
n (#)-valued random matrix on probability space (A, T , P ) defined by Eq. (57), whose

probability density function p[GAn ]([Gn]) is given by Eq. (59). For ω fixed inA, the norm of matrix

[GAn
(ω)]−1 induced by the Euclidean norm of #n is defined by

‖[GAn
(ω)]−1‖ = sup

q∈"n,‖q‖=1

‖[GAn
(ω)]−1q‖ , (94)

and can be written as

‖[GAn
(ω)]−1‖ =

1

Σ̃1(ω)
, (95)

in which Σ̃1(ω) > 0 is the smallest eigenvalue of matrix [GAn
(ω)] ∈ "+

n (#) whose eigenvalues

are such that 0 < Σ̃1(ω) ≤ Σ̃2(ω) ≤ . . . ≤ Σ̃n(ω). It should be noted that ‖[GAn
(ω)]−1‖ ≤

‖[GAn
(ω)]−1‖F ≤ √

n ‖[GAn
(ω)]−1‖ in which the Frobenius norm is defined by Eq. (39). We

then have

E{‖[GAn
]−1‖2} = E{Σ̃−2

1 } . (96)
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In Appendix B, the following inequality is proved:

∀n ≥ n0 , E{‖[GAn
]−1‖2} ≤ CδA

< +∞ , (97)

in which n0 ≥ 1 is the fixed integer defined in Section V.A and where CδA
is a positive finite

constant which is independent of n but which depends on δA defined by Eq. (76). Equation

(97) means that n 7→ E{‖[GAn
]−1‖2} is a bounded function from {n ≥ n0} into  +. We have

numerically verified Eq. (97) using a Monte Carlo numerical simulation based on Eqs. (95)-(96),

Section IV.E and the usual estimator of the second-order moment of random variable 1/Σ̃1. Figure

1 shows the graph of function n 7→ E{‖[GAn
]−1‖2} for n ≥ n0 = 2, δA = 0.1, 0.3 and 0.5,

and corresponds to 100 samples in the Monte Carlo numerical simulation. These numerical results

confirm Eq. (97) which is mathematically proved.

C. Basic inequalities derived from the random energy equation

Let us assume that prescribed external forces (x, t) 7→ gvol(x, t) and (x, t) 7→ gsurf(x, t) are such

that ∫ T

0

‖f(τ)‖2 ′ dτ < +∞ , (98)

in which f(τ) and ‖f(τ)‖ ′ are defined by Eqs. (D.3) and (D.2) in Appendix D. From Appendix E,

we deduce that

∀n ≥ n0 , ∀ t ∈ [0, T ] , |||Un(t)|||2 ≤ C1 < +∞ , (99)

∀n ≥ n0 , ∀ t ∈ [0, T ] , |||U̇n(t)|||2! ≤ C2 < +∞ , (100)

in which C1 and C2 are positive constants which are independent of n and t but which depend on

the prescribed external forces, parameters T , δM , δD , δK (see Eq. (76)), and which are written (see

Eqs. (E.22) and (E.21)) as

C1 =

(
CδK

c2
k

+
CδD

c2
d

)∫ T

0

‖f(τ)‖2 ′ dτ , (101)

C2 =

(
CδM

c2
m

+
CδD

c2
d

)∫ T

0

‖f(τ)‖2 ′ dτ , (102)

where positive finite constants cm, cd and ck are defined by Eqs. (14) and (17) and where positive

finite constants CδM
, CδD

and CδK
are defined by Eq. (97).
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Let   and  ! be the vector spaces of all the second-order random variables defined on probability

space (A, T , P ) with values in ! and " respectively. If random variables U = {U(x), x ∈ Ω} and
W = {W(x), x ∈ Ω} belong to   and  ! respectively, then |||U|||2 = E{‖U‖2 } < +∞ and

|||W|||2! = E{‖W‖2!} < +∞. Denoting {Un(x, t), x ∈ Ω} by Un(t) and since [0, T ] is a bounded

interval, the inequality defined by Eq. (99) means that, for all fixed n ≥ n0, function t 7→ Un(t)

belongs to the set L2([0, T ],  ) of all the square integrable functions from [0, T ] into   and that
the sequence of functions {t 7→ Un(t)}n≥n0

belongs to a bounded set of L2([0, T ],  ). Similarly,
denoting {U̇n(x, t), x ∈ Ω} as U̇n(t), the inequality defined by Eq. (100) means that for all fixed

n ≥ n0, function t 7→ U̇n(t) belongs to the set L2([0, T ], !) of all the square integrable functions

from [0, T ] into  ! and that the sequence of functions {t 7→ U̇n(t)}n≥n0
belongs to a bounded

set of L2([0, T ], !). It should be noted that the above results hold if spaces L2([0, T ],  ) and
L2([0, T ], !) are replaced by the sets of all the bounded functions from [0, T ] into   and  !
respectively.

D. Convergence as dimension n approaches infinity

Since {t 7→Un(t)}n and {t 7→ U̇n(t)}n are bounded sequences inL2([0, T ],  ) andL2([0, T ], !)

respectively (see Section VI.C), from sequences {t 7→ Un(t)}n and {t 7→ U̇n(t)}n can be

extracted33 subsequences {t 7→ Unk
(t)}k and {t 7→ U̇nk

(t)}k respectively, which are weakly

convergent in L2([0, T ],  ) and L2([0, T ], !) respectively, as k approaches infinity.

VII. EXAMPLE

A. Definition of the mean model

The mean structure is constituted of a rectangular homogeneous and isotropic plate located in the

plane (Ox1, Ox2) of a Cartesian coordinate system (Ox1x2x3), in bending mode (the outplane

displacement is x3), with constant thickness 4×10−4 m, width 0.40 m, length 0.50 m, mass density

7800 kg/m3, Young’s modulus 2.1 × 1011 N/m2 and Poisson ratio 0.29 . This plate is simply

supported on 3 edges and free on the fourth edge corresponding to x2 = 0 (see Figure 2). The

spectral problem related to the mean reduced matrix model is analyzed using the finite element

method. The mean finite element model is constituted of a regular rectangular mesh with a constant

step size of 0.01 m in x1 and x2 (41 nodes in the width, 51 nodes in the length). Consequently,

all the finite elements are the same and each one is a 4-node square plate element. There are 2000
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finite elements and m = 6009 degrees of freedom (x3-translations and x1- and x2-rotations). The

eigenfrequencies ωα = 2πνα of the mean model (see Section II.A) are ν1 = 1.94, ν2 = 10.28,

ν3 = 15.47, . . ., ν23 = 150.89, ν24 = 155.82, ν25 = 167.44, . . ., ν37 = 247.89, ν38 = 253.01, . . .,

ν80 = 527.29, . . ., ν120 = 817.65 Hz. The finite element discretization of the prescribed external

forces yields an impulsive load vector denoted F(t) ∈  m which is written as F(t) = e(t)Z.

Spatial part Z = (Z1, . . . , Zm) ∈  m is independent of time t and is such that Zj = 0 for all j

in {1, . . . , m} except for the nine DOFs corresponding to the nodes whose (x1, x2) coordinates

are (0.30, 0.25), (0.30, 0.26), (0.30, 0.27), (0.31, 0.25), (0.31, 0.26), (0.31, 0.27), (0.32, 0.25),

(0.32, 0.26) and (0.32, 0.27), for which Zj = 1. Let t1 be defined by t1 = 2π/∆ω in which

∆ω = 2π × 60 rad/s and let Ωc = 2π × 200 rad/s. The impulse function t 7→ e(t) is a wave-type

impulse function such that, for t < 0 and t > t1, e(t) = 0, and for 0 ≤ t ≤ t1,

e(t) =
1

∆ω (t − t1)
{sin{(Ωc + ∆ω/2)(t − t1)} − sin{(Ωc − ∆ω/2)(t − t1)}} . (103)

Figure 3 shows the graph of function t 7→ e(t) and Figure 4 shows the graph of the modulus of its

Fourier transform. It can be seen in Figure 4 that the main part of the energy of impulse function

e is distributed over the [150 , 250] Hz frequency band in which there are 15 structural modes of

the mean model (one has ν23 = 150.89 Hz and ν37 = 247.89 Hz). It is assumed that the damping

rate ξ of the mean model is 0.001 for frequencies around 200 Hz. The generalized damping matrix

[ Dn] of the mean reduced matrix model, defined by Eq. (29), is written as [ Dn] = 2 ξ Ωref[ Mn]

in which [ Mn] is the generalized mass matrix of the mean reduced matrix model, defined by Eq.

(29), and where Ωref = 2 π × 200 rad/s.

B. Transient response of the mean model

The transient response of the mean model is calculated by solving the evolution problem defined by

Eqs. (26)-(27) using an unconditionally stable implicit step-by-step integration method (Newmark

integration scheme) with a time step size ∆t = 1/4000 s. This time-step corresponds to 10 time-

steps per period for the structural mode of the mean model whose eigenfrequency is ν61 = 402.24

Hz. The finite element approximation of the maximum 0.5k(uS , uS) of the quasi-static response

of the mean model (see Section I.B) is equal to 2.5384. Figure 5 shows the convergence of the

dynamic magnification factor bn of the mean model, defined by Eq. (31), as dimension n of the

mean reduced matrix model increases. From Figure 5, it can be deduced that the transient response

of the mean model is reasonably converged when n ≥ 40. Figure 6 shows the graph of function
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t 7→ rn(t) for n = 40 in which rn(t) is the response ratio for the elastic energy calculated with the

mean reduced matrix model and defined by Eq. (30). For n = 40, the corresponding value of the

dynamic magnification factor is bn = 1.85.

C. Transient response of the model with random uncertainties

Let us choose n0 = 4. Therefore, for the convergence analysis with respect to dimension n of the

reduced matrix model with random uncertainties, we have to consider n ≥ n0 = 4. The dispersions

of the generalized mass, damping and stiffness random matrices of the reduced matrix model with

random uncertainties, are controlled by parameters δM , δD and δK introduced in Section V.A,

which have to verify the constraints defined by Eq. (76),

0 < δM , δD, δK < 0.7453 . (104)

The numerical simulations presented below correspond to the values

δM = 0.3 , δD = 0.3 , δK = 0.3 , (105)

which verify Eq. (104). We are interested in the random response ratio Rn(t) defined by Eq. (35)

and the random dynamic magnification factor Bn = maxt≥0 Rn(t) defined by Eq. (36). The

transient response of the structure with random uncertainties is calculated using the Monte Carlo

numerical simulation method. For given generalized mass, damping and stiffness matrices, the

evolution problem defined by Eqs. (81)-(82) is solved with the same Newmark integration scheme

and with the same time step size ∆t = 1/4000 s.

The Monte Carlo numerical simulation is carried out with nS samples, denoted θ1, . . . , θnS
, for

which the samples t 7→ Rn(t ; θ1), . . . , t 7→ Rn(t ; θnS
) are numerically calculated. For t fixed, the

mean value of random variable Rn(t) is estimated by

E{Rn(t)} ≃ 1

nS

nS∑

j=1

Rn(t ; θj) . (106)

The samples of random variable Bn are such that

Bn(θj) = max
t≥0

Rn(t ; θj) . (107)

The mean value of random variable Bn is estimated by

E{Bn} ≃ 1

nS

nS∑

j=1

Bn(θj) . (108)
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Finally, we introduce the function t 7→ Rn,max(t ;  (nS)) and the real numberBn,max( (nS)) defined

by

Rn,max(t ;  (nS)) = max
j=1,...,nS

Rn(t ; θj) , (109)

Bn,max( (nS)) = max
j=1,...,nS

Bn(θj) , (110)

inwhich  (nS) = (θ1, . . . , θnS
). Figure 7 shows the functionsn 7→ E{Bn} calculated byEq. (108)

and Figure 8 shows the function n 7→ Bn,max( (nS)) calculated by Eq. (110) for nS = 50, 300, 600

and 900. For nS sufficiently high (nS ≥ 300) the Monte Carlo numerical method is reasonably

converged and it can be seen that the nonparametric model proposed is convergent with respect to

dimension n of the random reduced matrix model (see Section VI.D). For n = 120 and nS = 900,

the value of Bn,max( (nS)) is 3.45. This value has to be compared to the value for the mean model

which is 1.85. Finally, Figure 9 is relative to n = 120 and nS = 900 and shows three curves:

the lower thin solid line corresponds to the graph of function t 7→ rn(t), the thick solid line to

the graph of function t 7→ E{Rn(t)} calculated by Eq. (106) and the upper thin solid line to the
graph of function t 7→ Rn,max(t ;  (nS)) defined by Eq. (109). This figure shows the sensitivity of

the maximum transient response due to random uncertainties. The dynamic magnification factor

increases when the random uncertainties increase, and is greater than the deterministic dynamic

amplification factor of the mean model.

VIII. CONCLUSIONS

We have presented a new approach allowing the random uncertainties to be modeled by a nonpara-

metric model for prediction of transient responses to impulsive loads in linear structural dynamics.

This approach has been presented in the context of structural dynamics but can be extended without

any difficulty to structural-acoustic problems such as a structure coupled with an internal acous-

tic cavity. The parametric approaches existing in literature are very useful when the number of

uncertain parameters is small and when the probabilistic model can be constructed for the set of

parameters considered. The nonparametric approach presented is useful when the number of un-

certain parameters is high or when the probabilistic model is difficult to construct for the set of

parameters considered. In addition, the parametric approaches do not allow the model uncertainties

to be taken into account (because a parametric approach is associated with a fixed model exhibiting

some parameters), whereas the nonparametric approach proposed allows to take into account the

model uncertainties. For this nonparametric approach, the information used does not require the
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description of the local parameters of the mechanical model. The probability model is deduced

from the use of the entropy optimization principle whose available information is constituted of the

fundamental algebraic properties related to the generalized mass, damping and stiffness matrices

which have to be positive-definite symmetric matrices for which the second-order moments of their

inverse have to exist, and the knowledge of these matrices for the mean reduced matrix model.

An explicit construction and representation of the probability model have been obtained and are

very well suited to algebraic calculus and to Monte Carlo numerical simulation. The fundamental

properties related to the convergence of the stochastic solution with respect to the dimension of

the random reduced matrix model has been analyzed. This convergence analysis carried out has

allowed the consistency of the theory proposed to be proved and the parameters of the probabil-

ity distribution of the random generalized matrices to be clearly defined. With this nonparametric

model, the probability distribution of each random generalized matrix of the random reduced matrix

model depends only on two parameters : the mean generalized matrix associated with the mean

mechanical model and corresponding to the design model, and a scalar parameter δ whose values

has to be fixed by the designer in the interval [0 , 1[ in order to give the dispersion level attached

to the random generalized matrix. It seems clear that parameter δ should be a global parameter

resulting from expertise, because the model uncertainties which can be taken into account with

the nonparametric model, cannot be quantified in terms of correlation between random variables.

For instance, if there is no uncertainty for the stiffness model, then δK = 0. On the other hand,

if it is assumed that the global uncertainty for the stiffness model is 10%, then δK has to be 0.1.

Nevertheless, experiments are in progress to study the correlation which could exist between the

dispersion of the random responses and parameters δM , δD and δK associated with the random

generalized matrices.

APPENDIX A: PROOF OF EQ. (53)

In this Appendix, we prove Eq. (53), i.e.,

λAn
> γ + 1 =⇒ E

{
‖[An]−1‖γ

F

}
< +∞ , γ ≥ 1 , (A.1)

in which γ ≥ 1 is a positive integer. Since [An] is a positive-definite randommatrix, it can be written

as [An] = [Rn] [ n] [Rn]T in which [Rn] is an orthogonal random matrix and [ n] is a diagonal

positive-definite random matrix whose diagonal elements are the random eigenvalues Σ1, . . . , Σn.
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We then have

‖ [An]−1 ‖2
F =

1

Σ2
1

+ . . . +
1

Σ2
n

. (A.2)

Using the probability density function of random vector Σ1, . . . , Σn constructed in Ref. 29 and

reusing the proof given in Section 3.6 of this reference, it can be proved thatE
{
‖[An]−1‖γ

F

}
< +∞

if and only if

Iε =

∫

‖ ‖<ε

(σ1×. . .×σn)λA−1

(
1

σ2
1

+ . . . +
1

σ2
n

)γ/2

×
{
Πj<k|σk − σj |

}
d < +∞ , (A.3)

in which 0 < ε ≪ 1,  = (σ1, . . . , σn) and d = (dσ1, . . . , dσn). We introduce polar coordinates

r and ! = (θ1, . . . , θn−1) in  n such that σ1 = r sin θ1, σ2 = r cos θ1 sin θ2, . . . , σn−1 =

r cos θ1 cos θ2 . . . cos θn−2 sin θn−1 and σn = r cos θ1 cos θ2 . . . cos θn−2 cos θn−1, in which

−π/2 < θj ≤ π/2 for j = 1, . . . , n−2 and −π < θn−1 ≤ π. We have d = rn−1 h1(!) dr d!
in which h1(!) = | cosn−2 θ1 cosn−3 θ3 . . . cos θn−2|. If we assume that λAn

> γ + 1 with

γ > 0, then Eq. (A.3) holds if λAn
> γ/n + (1 − n)/2 and consequently, λAn

has to be such that

λAn
> max{γ + 1 , γ/n + (1 − n)/2}. Since n ≥ 1 and γ > 0, we deduce Eq. (A.1).

APPENDIX B: PROOF OF EQ. (97)

In this Appendix, we prove Eq. (97). Let Σ1, . . . , Σn be the positive-valued random eigenvalues

of random matrix [GAn
] with values in !+

n ( ). It is proved in Refs. 28 and 29 that the probability

density function p!( ) with respect to d = σ1 . . . σn of the random vector " = (Σ1, . . . , Σn)

with values in Dn = (]0 , +∞[)n ⊂  n is written as

p!( ) = "Dn
( )×cΣ×(σ1×. . .×σn)λAn−1 {Πα<β|σβ − σα|} e−

1
2 (n−1+2λAn )(σ1+...+σn) ,

(B.1)

in which cΣ is a constant of normalization defined by the equation
∫
Dn

p!( ) d = 1 and where

λAn
= ℓA(n) is given by Eq. (66). Let "̃ = (Σ̃1, . . . , Σ̃n) be the order statistics of " =

(Σ1, . . . , Σn) such that 0 ≤ Σ̃1 ≤ Σ̃2 ≤ . . . ≤ Σ̃n. Let Pn be the group of all the permutations τ

of the first n positive integers {1, 2, . . . , n}. Since p! is a symmetric function in all the variables

σ1, . . . , σn, that is to say, for any permutation τ in Pn,

p!(στ(1), . . . , στ(n)) = p!(σ1, . . . , σn) , (B.2)

then the probability density function p!̃( ) of order statistics "̃ with respect to d = dσ1 . . . dσn

is written as52

p!̃( ) =
"Sn

( ) p!( )∫
Sn

p!( ) d , (B.3)
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in which Sn is the simplex defined by

Sn = { = (σ1, . . . , σn) ∈  n ; 0 < σ1 < . . . < σn < +∞} . (B.4)

Consequently, using Eqs. (96), (B.3), (B.1) and (65), (66) yields

E{‖[GAn
]−1‖2} =

∫
Sn

σ−2
1 h( ) d 

∫
Sn

h( ) d , (B.5)

in which

h( ) = (σ1×. . .×σn)a(n+1) {Πα<β |σβ − σα|} e−b(n+1)(σ1+...+σn) , (B.6)

where

a =
1 − δ2

A

2δ2
A

> 0 , b =
1

2δ2
A

.

Let ε > 0 be a positive real number independent of n. Since h( ) > 0 for  ∈ Sn, we have∫ +∞

ε

dσ1

∫ +∞

σ1

dσ2 . . .

∫ +∞

σn−1

dσn σ−2
1 h( ) ≤ 1

ε2

∫

Sn

h( ) d , (B.7)

and consequently, from Eqs. (B.5) and (B.7), we deduce that

E{‖[GAn
]−1‖2} ≤ 1

ε2
+

∫ ε

0
dσ1

∫ +∞

σ1
dσ2 . . .

∫ +∞

σn−1
dσnσ−2

1 h( )
∫ +∞

0
dσ1

∫ +∞

σ1
dσ2 . . .

∫ +∞

σn−1
dσnσ−2

1 h( )
. (B.8)

Since function  7→ σ−2
1 h( ) is symmetric in the variables σ2, . . . , σn, we have

∫ ε

0

dσ1

∫ +∞

σ1

dσ2 . . .

∫ +∞

σn−1

dσn σ−2
1 h( ) =

1

(n − 1)!

∫ ε

0

dσ1

∫ +∞

σ1

dσ2 . . .

∫ +∞

σ1

dσn σ−2
1 h( )

≤ 1

(n − 1)!

∫ ε

0

dσ1

∫ +∞

0

dσ2 . . .

∫ +∞

0

dσn σ−2
1 h( ) , (B.9)

and since function  7→ h( ) is symmetric in the variables σ1, . . . , σn, we have∫ +∞

0

dσ1

∫ +∞

σ1

dσ2 . . .

∫ +∞

σn−1

dσn h( ) =
1

n!

∫ +∞

0

dσ1

∫ +∞

0

dσ2 . . .

∫ +∞

0

dσn h( ) . (B.10)

We then deduce that

E{‖[GAn
]−1‖2} ≤ 1

ε2
+ Hn(ε) , (B.11)

with

Hn(ε) =
n
∫ ε

0
dσ1

∫ +∞

0
dσ2 . . .

∫ +∞

0
dσn σ−2

1 h( )
∫ +∞

0
dσ1

∫ +∞

0
dσ2 . . .

∫ +∞

0
dσn h( )

. (B.12)

Using a similar proof to the proof of Lemma 4.4, page 196 of Ref. 56, it can be proved that, for

ε > 0 taken sufficiently small and independent of n, we have

lim
n→+∞

Hn(ε) = 0 . (B.13)

From Eqs. (B.11) and (B.13), we deduce that n 7→ E{‖[GAn
]−1‖2} is a bounded function and

consequently, Eq. (97) is proved.
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APPENDIX C: INEQUALITIES FOR THE RANDOM INSTANTANEOUS KINETIC EN-

ERGY, POTENTIAL ENERGY AND DISSIPATED POWER

In this Appendix, we construct inequalities for the random instantaneous kinetic energy de-

fined by 1
2

< [Mn]Q̇n(t), Q̇n(t) >, the random instantaneous potential energy defined by 1
2

<

[Kn]Qn(t),Qn(t)> and the random instantaneous dissipated power < [Dn]Q̇n(τ), Q̇n(τ)>.

Let [An] be random matrix [Mn], [Dn] or [Kn] defined on probability space (A, T , P ) which is

written (see Eq. (57)) as [An] = [LAn
]T [GAn

] [LAn
]. Let Qn be an  n-valued random vector

defined on the same probability space (A, T , P ) and which is not independent of random matrix

[GAn
]. Let [An] = E{[An]} = [LAn

]T [LAn
] ∈ !+

n ( ). We then have

< [An]Qn,Qn > ≤ ‖ [GAn
]−1‖ < [An]Qn,Qn > . (C.1)

To prove Eq. (C.1), we write < [An]Qn,Qn >=<Sn, Sn > in which Sn = [LAn
]Qn. Since [GAn

]

is a random matrix with values in !+
n ( ), we can write

< [An]Qn,Qn > =< [GAn
]−1[GAn

]1/2Sn, [GAn
]1/2Sn >

≤ ‖ [GAn
]−1‖ × ‖ [GAn

]1/2Sn‖2

= ‖ [GAn
]−1‖ < [GAn

]Sn, Sn >

= ‖ [GAn
]−1‖ < [LAn

]T [GAn
] [LAn

]Qn,Qn >

= ‖ [GAn
]−1‖ < [An]Qn,Qn >

which is the inequality defined by Eq. (C.1).

Let t and τ be two fixed times in [0, T ]. Let Un(t) be the mapping {x 7→ Un(x, t)} and U̇n(t) =

∂Un(t)/∂t. From Eqs. (32),(13),(15),(16) and using Eqs. (23) and (29), we deduce that

m(U̇n(t), U̇n(t)) = < [Mn]Q̇n(t), Q̇n(t)> , (C.2)

k(Un(t),Un(t)) = < [Kn]Qn(t),Qn(t)> , (C.3)

d(U̇n(τ), U̇n(τ)) = < [Dn]Q̇n(τ), Q̇n(τ)> . (C.4)

Equations (14),(17) and Eqs. (C.2)-(C.4) yield

cm‖U̇n(t)‖2 ≤ < [Mn]Q̇n(t), Q̇n(t)> , (C.5)
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ck‖Un(t)‖2 ≤ < [Kn]Qn(t),Qn(t)> , (C.6)

cd‖U̇n(τ)‖2 ≤ < [Dn]Q̇n(τ), Q̇n(τ)> , (C.7)

in which cm, ck and cd are positive finite constants independent of n. Applying Eq. (C.1) to Eqs.

(C.5)-(C.7), we deduce the following inequalities of positive-valued random variables,

cm

‖ [GMn
]−1‖ ‖U̇n(t)‖2! ≤ < [Mn]Q̇n(t), Q̇n(t)> , (C.8)

ck

‖ [GKn
]−1‖ ‖Un(t)‖2 ≤ < [Kn]Qn(t),Qn(t)> , (C.9)

cd

‖ [GDn
]−1‖ ‖U̇n(τ)‖2 ≤ < [Dn]Q̇n(τ), Q̇n(τ)> . (C.10)

APPENDIX D: INEQUALITY FOR THE RANDOM INSTANTANEOUS INPUT POWER

In this Appendix, we introduce a mapping f(t) representing the prescribed external forces and we

deduce an inequality for the random instantaneous input power which is absolutely necessary to

construct the energy inequality. It should be noted that this kind of inequality cannot be constructed

without introducing the continuous dual space of  and we give the reason below.

Let  ′ be the continuous dual space of  (i.e. the set of all the continuous linear forms on vector

space  defined in Section I.B) and < f , v> ′, be the duality bracket between f ∈  ′ and v ∈  
which is linear with respect to f and v. For all f in  ′ and v in  , we have

| < f , v> ′, | ≤ ‖f‖ ′ ‖v‖ , (D.1)

in which

‖f‖ ′ = sup
v∈ ,v 6=0

{| < f , v> ′, | / ‖v‖ } , (D.2)

is the norm on  ′. Since Hilbert space ! (defined in Section I.B) is identified to its continuous dual

space !′, we have  ⊂ ! ⊂  ′ and, if f is in !, we have < f , v> ′, = (f , v)! .
Since g(v ; t) defined by Eq. (11) is continuous on  , there exists a unique element f(t) in  ′ such

that

g(v ; t) =< f(t) , v> ′, , ∀v ∈  , (D.3)

and Eq. (D.1) holds. It should be noted that if gsurf = 0, then f coincides with gvol and consequently

f(t) is in !; in general, gsurf 6= 0 and then f(t) is not in ! but is in  ′. This is why we need vector
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space  ′ (it is wrong to consider a nonzero prescribed surface force field (gsurf 6= 0) and to assume

that f(t) is a square integrable function on domain Ω, i.e. that it belongs to !).
Let Un(t) be the mapping {x 7→ Un(x, t)} and U̇n(t) = ∂Un(t)/∂t. From Eqs. (D.3), (28) and

(32), we deduce the expression of the random instantaneous input power,

<Fn(τ) , Q̇n(τ)>=< f(τ) , U̇n(τ)> ′, . (D.4)

Using Eqs. (D.1) and (D.4) yields

| <Fn(τ) , Q̇n(τ)> | ≤ ‖f(τ)‖ ′ ‖U̇n(τ)‖ . (D.5)

APPENDIX E: BASIC INEQUALITIES DERIVED FROM THE RANDOM ENERGY

EQUATION

In this Appendix, for any t fixed in [0, T ] and for any n ≥ n0, using the energy inequality, we prove

basic inequalites relative to |||U̇n(t)|||2! and |||Un(t)|||2 .
Taking the inner product of the two members of Eq. (33) with Q̇n(t) yields

< [Mn]Q̈n(t) , Q̇n(t)> + < [Dn]Q̇n(t) , Q̇n(t)>

+ < [Kn]Qn(t) , Q̇n(t)>=<Fn(t) , Q̇n(t)> . (E.1)

Using the symmetry properties of random matrices [Mn], [Dn] and [Kn], Eq. (E.1) is rewritten as

1

2

d

dt

{
< [Mn]Q̇n(t) , Q̇n(t)> + < [Kn]Qn(t) ,Qn(t)>

}

+ < [Dn]Q̇n(t) , Q̇n(t)>=<Fn(t) , Q̇n(t)> . (E.2)

Integrating the two members of Eq. (E.2) with respect to t over [0, t] with 0 ≤ t ≤ T and taking

into account Eq. (34) yields the energy random equation

< [Mn]Q̇n(t) , Q̇n(t)> + < [Kn]Qn(t) ,Qn(t)>

+ 2

∫ t

0

< [Dn]Q̇n(τ) , Q̇n(τ)> dτ = 2

∫ t

0

<Fn(τ) , Q̇n(τ)> dτ . (E.3)

which is an equality of randomvariables. Since [Mn], [Dn] and [Kn] are randommatriceswith values

in"+
n (#), for anyfixed t in [0, T ], we have< [Mn]Q̇n(t) , Q̇n(t)> ≥ 0,< [Kn]Qn(t) ,Qn(t)> ≥ 0

and
∫ t

0
< [Dn]Q̇n(τ) , Q̇n(τ)> dτ ≥ 0. From Eq. (E.3), we then deduce that

< [Mn]Q̇n(t) , Q̇n(t)> ≤ 2

∫ t

0

|<Fn(τ) , Q̇n(τ)>| dτ , (E.4)
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< [Kn]Qn(t) ,Qn(t)> ≤ 2

∫ t

0

|<Fn(τ) , Q̇n(τ)>| dτ , (E.5)

∫ t

0

< [Dn]Q̇n(τ) , Q̇n(τ)> dτ ≤
∫ t

0

|<Fn(τ) , Q̇n(τ)>| dτ . (E.6)

Using the inequalities defined by Eqs. (C.8)-(C.10) and (D.5), Eqs. (E.4)-(E.6) yield

cm‖U̇n(t)‖2 ≤ 2

∫ t

0

‖f(τ)‖!′ ‖ [GMn
]−1‖ ‖U̇n(τ)‖! dτ , (E.7)

ck‖U̇n(t)‖2! ≤ 2

∫ t

0

‖f(τ)‖!′ ‖ [GKn
]−1‖ ‖U̇n(τ)‖! dτ , (E.8)

cd

∫ t

0

‖U̇n(τ)‖2! dτ ≤
∫ t

0

‖f(τ)‖!′ ‖ [GDn
]−1‖ ‖U̇n(τ)‖! dτ . (E.9)

Since the left-hand sides and the right-hand sides of Eqs. (E.7)-(E.9) are positive-valued random

variables, taking the mathematical expectation of the two members of inequalities (E.7)-(E.9) and

using Eqs. (92) and (93) yield

cm|||U̇n(t)|||2 ≤ 2

∫ t

0

‖f(τ)‖!′ E{‖ [GMn
]−1‖ ‖U̇n(τ)‖!} dτ , (E.10)

ck|||U̇n(t)|||2! ≤ 2

∫ t

0

‖f(τ)‖!′ E{‖ [GKn
]−1‖ ‖U̇n(τ)‖!} dτ , (E.11)

cd

∫ t

0

|||U̇n(τ)|||2! dτ ≤
∫ t

0

‖f(τ)‖!′ E{‖ [GDn
]−1‖ ‖U̇n(τ)‖!} dτ . (E.12)

Let [GAn
] be [GMn

], [GKn
] or [GDn

]. Using the Holder inequality, we can write

E{‖ [GAn
]−1‖ ‖U̇n(τ)‖!} ≤

√
E{‖ [GAn

]−1‖2} |||U̇n(τ)|||! . (E.13)

For n ≥ n0, Eqs. (97) and (E.13) yield

E{‖ [GAn
]−1‖ ‖U̇n(τ)‖!} ≤ C

1/2
δA

|||U̇n(τ)|||! , (E.14)

in which CδA
is a finite real constant which is independent of n. Substituting the left-hand side of

Eq. (E.14) into the right-hand side of Eqs. (E.10)-(E.12) yields

|||U̇n(t)|||2 ≤
2 C

1/2
δM

cm

∫ t

0

‖f(τ)‖!′ |||U̇n(τ)|||!} dτ , (E.15)

|||U̇n(t)|||2! ≤
2 C

1/2
δK

ck

∫ t

0

‖f(τ)‖!′ |||U̇n(τ)|||!} dτ , (E.16)
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∫ t

0

|||U̇n(τ)|||2 dτ ≤
C

1/2
δD

cd

∫ t

0

‖f(τ)‖ ′ |||U̇n(τ)||| } dτ . (E.17)

If a, b and η are three positive real numbers, we have

a b ≤ a2

4η
+ η b2 .

Applying this inequality to the right-hand sides of Eqs. (E.15)-(E.17) with η = 0.5 cm C
−1/2
δM

,

η = 0.5 ck C
−1/2
δK

and η = 0.5 cd C
−1/2
δD

respectively, yields

|||U̇n(t)|||2! ≤
∫ t

0

|||U̇n(τ)|||2 } dτ +
CδM

c2
m

∫ T

0

‖f(τ)‖2 ′ dτ , (E.18)

|||U̇n(t)|||2 ≤
∫ t

0

|||U̇n(τ)|||2 } dτ +
CδK

c2
k

∫ T

0

‖f(τ)‖2 ′ dτ , (E.19)

∫ t

0

|||U̇n(τ)|||2 dτ ≤ CδD

c2
d

∫ T

0

‖f(τ)‖2 ′ dτ . (E.20)

Adding Eq. (E.18) to Eq. (E.20) yields

|||U̇n(t)|||2! ≤
(

CδM

c2
m

+
CδD

c2
d

)∫ T

0

‖f(τ)‖2 ′ dτ , (E.21)

and adding Eq. (E.19) to Eq. (E.20) yields

|||Un(t)|||2 ≤
(

CδK

c2
k

+
CδD

c2
d

)∫ T

0

‖f(τ)‖2 ′ dτ . (E.22)
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. Graph of function n 7→ E{‖[GAn
]−1‖2} for δA = 0.1, 0.3 and 0.5.

FIG. 2. Geometry of the mean structure.

FIG. 3. Graph of wave impulse function t 7→ e(t).

FIG. 4. Graph of the modulus of the Fourier transform of wave impulse function.

FIG. 5. Graph of the convergence of dynamic magnification factor bn as function of n for the mean

reduced matrix model.

FIG. 6. Graph of function t 7→ rn(t) for n = 40 corresponding to the response ratio for the mean

reduced matrix model.

FIG. 7. Graph of function n 7→ E{Bn} (mathematical expectation of the random dynamic

magnification factor) for nS = 50 (circle symbol), 300 (x-mark symbol), 600 (plus symbol) and

900 (square symbol).

FIG. 8. Graph of function n 7→ Bn,max( (nS)) (maximum of the random dynamic magnification

factor) for nS = 50 (circle symbol), 300 (x-mark symbol), 600 (plus symbol) and 900 (square

symbol).

FIG. 9. Transient responses t 7→ rn(t) (lower thin solid line), t 7→ E{Rn(t)} (thick solid line) and
t 7→ Rn,max(t ;  (nS)) (upper thin solid line) for n = 120 and nS = 900.
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