
MAXIMUM ENTROPY BASED GENERIC FILTER FOR LANGUAGE MODEL

ADAPTATION

Dong Yu, Milind Mahajan, Peter Mau, Alex Acero

Speech Research Group, Microsoft Research, Redmond WA, USA

{dongyu, milindm, petermau, alexac}@microsoft.com

ABSTRACT

Language Model (LM) Adaptation has been shown to be very

important to reduce the Word Error Rate (WER) in task specific

speech recognition systems. Adaptation data collected in the real

world, however, usually contain large amount of non-dictated

text such as email headers, long URL, code fragments, included

reply, signature, etc. that the user will never dictate. Adapting

with these data may corrupt the LM. In this paper, we propose a

Maximum Entropy (MaxEnt) based filter to remove a variety of

non-dictated words from the adaptation data and improve the

effectiveness of the LM adaptation. We argue that this generic

filter is language independent and efficient. We describe the

design of the filter, and show that the usage of the filter can give

us 10% relative WER reduction over LM adaptation without the

filtering, and 22% relative WER reduction over the un-adapted

LM in English email dictation task.

1. INTRODUCTION

Typical Automatic Speech Recognition (ASR) systems recognize

speech based on the following criteria:

() ()ˆ arg max |
w

w P A w P w= , (1)

where w is a word sequence candidate, ()|P A w is the

Acoustic Model (AM) probability, and ()P w is the prior

probability or Language Model (LM) probability. Since the

decision is made on both the AM and LM scores, good

estimation of LM probability is crucial to the performance of the

ASR system.

Training LM, however, requires large amount of relevant

data which is usually unavailable for task specific speech

recognition systems. An alternative way is to use small amount

of domain and/or user specific data to adapt the LM trained with

huge amount of task independent data (e.g., Wall Street Journal)

that is much easier to obtain. For example, we may harvest

emails authored by a specific user to adapt the LM and improve

the email dictation accuracy.

LM adaptation consists of four steps. First step consists of

collection of task specific adaptation data which we term

“harvesting”. In the second or the normalization step, adaptation

data are transformed into standard form. Normalization is

especially important for abbreviations, date and time, and

punctuations. In the third step, the adaptation data are analyzed

and a task specific LM is generated. In the last step, the task

specific LM is interpolated with the task independent LM. The

most frequently used interpolation scheme is linear interpolation:

() () () ()| | 1 |a t iP w h P w h P w hγ γ= + − , (2)

where w is the word, h is the history, ()|aP w h is the adapted

LM probability, ()|tP w h is the task specific LM

probability, ()|iP w h is the task independent LM probability,

and γ is the interpolation weight.

Much of earlier work on LM adaptation focuses on

comparing adaptation algorithms and/or finding relevant data

automatically ([1][2][3]). In this paper, we point out that

filtering out non-dictated words from adaptation data is also very

important. For example, all of the harvested email data for the

user may not be useful for adapting the LM. There are parts

which the user will never dictate such as email headers, long

URL, code fragments, included reply, signature, foreign

language text, etc. Adapting on all of the harvested data may

cause significant degradation in the LM. An example of the non-

dictated text is illustrated in the Table 1.

Filtering out these non-dictated texts is not an easy job in

general. One common way of doing this is to use hand-crafted

rules (e.g. regular expressions). This approach has three

limitations. First, it does not generalize well to situations which

we have not encountered. For example, you may have a rule to

filter out Microsoft Outlook’s email header, but that rule may

not work with Yahoo email headers. Second, rules are usually

language dependent. Porting rules from one language to another

almost equals to rewriting the rules. Third, developing and

testing rules are very costly.

In this paper, we propose a filtering (or sampling) approach

based on Maximum Entropy (MaxEnt) classifier. This approach

TABLE 1

AN EXAMPLE EMAIL WITH NON-DICTATED PART

Label Email Text

Dictated The following header is automatically generated

by the email client application. Adapting LM

with them may corrupt the LM.

Non-

Dictated

>From: Milind Mahajan

>Sent: Wednesday, September 01, 2004 5:38 PM

>To: Dong Yu

>Subject: LM Adaptation

I - 5970-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

is language independent and efficient. We describe the design of

the filter, and show that the use of the filter during LM

adaptation can give us 10% relative WER reduction over the LM

adaptation without filtering, and 22% relative WER reduction

over the un-adapted LM in English email dictation task.

The rest of the paper is organized as follows. In the section 2,

we introduce the MaxEnt based filtering model. Specifically, we

describe our view of the problem, the assumptions we made, and

factors we considered. In the section 3, we discuss the features

which we may use for the filter, and various ways of using them

in the filter. We evaluate the effectiveness of the filter with

personalized email dictation task in the section 4, and conclude

the paper in the section 5.

2. MAXIMUM ENTROPY BASED FILTER

While other approaches (such as [8]) might be used, we consider

the filtering task as a labeling problem to segment the adaptation

data into two categories:

• Category D (Dictated text): Text which should be Used for

LM adaptation;

• Category N (Non-dictated text): Text which should not be

used for LM adaptation.

Text is divided into a sequence of text units (such as lines).

The task of filtering is thus to associate each text unit with a

label D for Dictated text or N for Non-dictated text with the

following criteria:

() ()
1

1 1 1
...

... arg max ... | ...

n

n n n
l l

l l P l l t t= , (3)

where it is the text unit i , and il is the label associated with it .

We assume that we have a small amount of task specific

labeled training data for training the filter parameters. The

training data can be labeled using a rule based filter or through a

manual annotation tool. Since data cleaning is just a small step

in the LM adaptation process, the filter has to be very efficient,

easy to develop, and easy to port to other languages. To design

such a filter, we need to consider several factors such as: text

unit to use, label dependency modeling across units, general

form of the classification model, and the feature set used for

classification. We discuss the first three factors in this section

and leave the discussion of features for the next section.

2.1. Text Unit

Text is divided into a sequence of text units. Natural text units to

consider are lines of text (text separated by linefeed), windows

with fixed number of words per window, and sentences using a

sentence breaker. The unit used in our system is a line of text.

Using line as a unit has three advantages. First, it cleanly

breaks out headers, signatures, tables, ASCII art etc. Second,

since the line has a visual manifestation, it is likely that people

use it naturally to separate out logically related pieces. Third,

using line as the unit would also make it easier to label the

training data if manual annotation tool is used.

2.2. Label Dependency

In our system, we assume that the labels of text units are

independent with each other given the complete sequence of text

units, i.e.,

() ()1 1 11
... | ... | ...

n
n n i ni

P l l t t P l t t=≈∏ . (4)

In other words, our model is state-less (in contrast to [4]). Run-

time complexity of state-less models is very low since we can

independently compute label probability for each text unit. We

further assume that the label for a given unit depends only upon

units in a surrounding window of units:

() ()1| ... | ...i n i i k i kP l t t P l t t− +≈ , (5)

where k is the window size. In the limit when 0k = , the label

depends only upon the unit itself:

() ()1| ... |i n i iP l t t P l t≈ . (6)

This is what we have used in our current system. The reason we

choose state-less model with zero size window is its efficiency.

We will show in the section 4 that this works well in practice.

2.3. Classification Model

In our system, we use Maximum Entropy (MaxEnt) based

classification model ([4][5][6]). The principle of Maximum

Entropy states that we should select the unique probability

distribution which satisfies all known constraints but does not

make any additional assumptions, i.e., maximizes the entropy

subject to all known constraints. A MaxEnt model has the form:

exp((,))
(| ;)

()

i i
i i

i

f l t
P l t

Z t

λλ ≈
i

, (7)

where { }1... mλ λ λ= is the vector of model parameters,

(,)i if l t is the vector of features on the text unit it for label il ,

and ()iZ t is the normalization factor so that the probabilities

sum to one.

() exp((,))
i

i i i
l

Z t f l tλ=∑ i . (8)

Given the feature values and labels on the training set, we can

obtain the values for λ using MaxEnt training algorithm such as

the Generalized Iterative Scaling (GIS) algorithm ([7]).

Once we have the model parameters determined, we can use

the model to label (or filter) the adaptation text. First, we

segment the adaptation text into a sequence of text unit. We then

extract features for each text unit and obtain (| ;)i iP l t λ . After

that, we use a simple threshold to decide whether to label the

text unit as D (Dictated) or N (Non-Dictated). In other words,

whether the text unit is accepted for LM adaptation is

determined by:

, if (| ;)

N, otherwise

i thresh
i

D P D t P
l

λ⎧ >⎪= ⎨
⎪⎩

, (9)

where threshP is the threshold. We use 0.5 as the threshold in our

system as we have observed that the performance does not

change much if the threshold is in the range of [0.4, 0.6].

3. FEATURE SET

Feature set is one of the key factors that affect the filter

performance. For our purpose, we want to find out the feature set

I - 598

➡ ➡

that is inexpensive to compute, language independent, and

effective enough to classify text units.

3.1. Features

We start with an exhaustive list of all easily computable features

which might be useful. Since text normalization is an integral

part of the LM adaptation process, we have used features which

depend on normalization. The minimum set of features

considering the cost-benefit trade-off is determined with

experiments.

• UnitLen: the number of tokens in the unit. Token is

determined by the word breaker. In English, this is simply

determined with the space delimiter.

• TokLen: the average number of characters per token in the

unit.

• Norm: the percentage of the tokens in the raw text which

require normalization.

• RawCompact: the ratio of the number of tokens in the raw

text of the unit to the number of words in the normalized

text.

• EOS: the percentage of words in the normalized text which

are end-of-sentence words.

• OOV: the percentage of words in the normalized text which

are Out Of Vocabulary.

• Perp: the perplexity of the normalized text using task

independent LM.

• TgHit: the percentage of trigrams in the normalized text

which are present in the task independent LM.

• BgHit: the percentage of bigrams in the normalized text

which are present in the task independent LM.

3.2. Space Splitting

In general, feature induction to create new features is useful

to compensate for the limitations of the linear classifier. We

experimented with a specific form of feature induction which is

equivalent to splitting or partitioning the space of text units into

sub-spaces and creating a separate classifier for each sub-space

with all of the underlying features.

More specifically, in some of our experiments, we expand

each feature of the form (,)f l t into multiple features by using the

length of the text unit for partitioning:

* 4

4 8

8 16

16 *

(,) (,) (0 () 4)

(,) (,) (4 () 8)

(,) (,) (8 () 16)

(,) (,) (16 ())

f l t f l t TokLen t

f l t f l t TokLen t

f l t f l t TokLen t

f l t f l t TokLen t

δ
δ
δ
δ

−

−

−

−

= • ≤ <
= • ≤ <
= • ≤ <
= • ≤

 (10)

where

() 1,

0,

if x true
x

otherwise
δ

=⎧
= ⎨
⎩

 (11)

As a heuristic rationale for this we note that since all of the

feature values are normalized by a measure of the unit length, it

is possible that the feature values of smaller units are likely to be

noisier than those for the longer units. Introducing features in

this form, provides the model some flexibility to make

allowances for this.

3.3. Feature Value: Binary or Continuous

We experimented with using the continuous feature value

directly in the model or bucketing it to create a binary value. As

an example, if a feature such as a percentage takes values in the

range 0-100, the bucketed feature for each of the buckets such as

0-10, 10-20, takes a value 0 or 1 depending on whether the value

fell in the bucket. In other words, a feature (,)f l t bucketed by

range [x, y) results in bucket feature:

(,) ((,))
b

x yf l t x f l t yδ− = ≤ < (12)

Using the continuous value results in less number of features

but introduces some a-priori assumptions into the model. Use of

bucketing gives us more control over the assumptions which go

into the treatment of feature values.

In our experiments, we selected bucket end-point values

heuristically. So, for all percentage valued features, the bucket

end points are: 1, 5, 10, 20, 40, 60, 80, 90, 95, 99. This creates

the buckets: 0-1, 1-5, 5-10 etc. Finer bucketing at the extremes

of the range is used based upon the guess that finer granularity

there is likely to be more important than say in the range

between 40-60 for example.

There is a trade-off involved in bucketing. Finer granularity

has the potential of giving more control. However, that needs to

be balanced against noisier estimation of the parameter value

given data sparseness. An alternative way for doing this

automatically is to select buckets based on percentile based (such

as decile) threshold values.

4. EVALUATION

Classifiers are usually evaluated using Accuracy or Receiver

Operating Characteristic (ROC) curve. However, in our task, the

most important criterion is the WER after adapting the LM while

using our filter to classify the adaptation text.

 We evaluated the effectiveness of our approach with

personalized email dictation task. We used email text data from

four users in our experiments. The reason we only tested with

four data sets is that emails contain privacy and/or sensitive

information and it’s hard to collect emails from more users.

The email data from each user was first separated into the

adaptation set and the test set. The test set was chosen from the

most recent emails and did not overlap with any of the

adaptation set. The adaptation set was semi-manually annotated

with D (Dictated) and N (Non-dictated) using a rule based

annotation tool. We built a MaxEnt filter for each user using the

labeled adaptation data from the other three i.e. using leave-one-

out strategy. Note that the filter never sees any of the data for the

user being tested.

For each user, the adaptation set was first processed by the

MaxEnt filter. The filtered adaptation data was then used for LM

adaptation. After that, we performed ASR experiments with the

adapted LM on the acoustic test data for that user which consists

of read emails from the test set of that user.

Table 2 displays the information about each data set. It shows

the base line WER, the number of words in each test set, as well

as the number of words in each user’s adaptation data. The size

of the adaptation data varies from 83K words to over 3M words.

We evaluated our filter with a variety of filter configurations

(different set of features and different ways of using features, as

indicated in the section 3.). We found out that all the

I - 599

➡ ➡

configurations we have tested gave us roughly the same results.

In the following we present the detailed results for the most

efficient configuration which is as follows:

• Uses only features RawCompact, EOS, and OOV (see 3.1);

• Values are bucketed to binary (see 3.3);

• No space splitting (see 3.2).

Fig. 1 illustrates the recognition results of base line, LM

adaptation without filtering, and LM adaptation using MaxEnt

based filter. We can observe from the figure that except for U1

(which has the smallest adaptation set), using our filter during

LM adaptation reduces WER against that of LM adaptation

without filter. We can also see that the WER after adaptation

increases over the un-adapted LM baseline for U2 if our filter is

not used. On average, we get 10% relative WER reduction by

using our filter during adaptation over no filtering, and 22%

relative WER reduction the un-adapted LM baseline.

We have also tested the generalization ability of our filter.

There is no foreign language text in the filter training data. We

retrieved 27K words of Chinese text, 26K words of French text,

and 26K words of Spain text from the Internet and mixed them

with the adaptation data. Our results indicates that the MaxEnt

based filter can successfully remove those foreign language texts

without retraining. On average, the WER is 14.2% if our filter is

used during adaptation, and 17.9% if it’s not used.

5. CONCLUSION AND DISCUSSION

We have demonstrated that removing non-dictated text from

the adaptation text is important to improving the effectiveness of

LM adaptation. We described the design and trade-offs of our

MaxEnt based generic filter, and showed that processing the

adaptation data with our filter can effectively improve the ASR

recognition.

The effects of the filtering are two folds. On the one hand,

filtering out the non-dictated text would prevent the corruption

of the LM. This would improve the effectiveness of the LM

adaptation. On the other hand, removing some of the text from

the adaptation data will decrease the size of the adaptation data.

This usually causes data sparseness problem and so make the

LM probability estimation less accurate and would decrease the

effectiveness of the LM adaptation. The final outcome of the

filtering is the combined effect of these two factors.

The above analysis is confirmed by our experiments. We

have noticed that the filtering is especially important and

effective for the adaptation data with high percentage of non-

dictated text (e.g., U2 case) and the adaptation data with large

size.

To speed up the training data preparation, we have developed

an easy to use manual labeling tool. Our future work is to use the

tool to generate labeled training data for other languages, and to

train and evaluate the filter for these additional languages.

6. ACKNOWLEDGMENT

We want to thank our colleagues in Speech Research Group,

Microsoft Research for valuable discussion and comments.

7. REFERENCES

[1] R. DeMori, & M. Federico, “Language model adaptation”,

In K. Ponting, editor, Computational Models of Speech

Pattern Processing, pages 280--303. Springer Verlag, Berlin,

New York, 1999.

[2] S. F. Chen, K. Seymore, & R. Rosenfeld, “Topic Adaptation

for Language Modeling Using Unnormalized Exponential

Models”, in Proc. 23rd International Conf. on Acoustics,

Speech, and Signal Processing, Seattle, Washington, USA,

1998.

[3] X. Fang, J. Gao, J. Li, H. Sheng, “Training Data

Optimization for Language Model Adaptation”,

EUROSPEECH 2003 Geneva, Switzerland September 1-4,

pp1485-1488, 2003.

[4] A. McCallum, D. Freitag, & F. Pereira, “Maximum Entropy

Markov Models for Information Extraction and

Segmentation", in Proc. 17th International Conf. on Machine

Learning, Morgan Kaufmann, San Francisco, CA, pp591-

598, 2000.

[5] A. Berger, S. Della Pietra, & V. Della Pietra, “A Maximum

Entropy Approach to Natural Language Processing”,

Computational Linguistics, 22(1):39–71, 1996.

[6] R. Rosenfeld, “A Maximum Entropy Approach to Adaptive

Statistical Language Modeling”, Computer, Speech, and

Language, 10, 1996.

[7] J. N. Darroch, & D. Ratcliff, “Generalized iterative scaling

for log-linear models”, The Annals of Mathematical

Statistics, 43(5), 1470–1480, 1972.

[8] D. Hakkani-T¨ur, G. Riccardi, and A. Gorin, “Active

learning for automatic speech recognition,” in Proceedings of

the ICASSP, 2002.

TABLE 2

INFORMATION ABOUT EACH DATA SET

User

Base Line

WER

Test Set

(Wrds)

Adaptation

Set (Wrds)

Adaptation Set After

Filtering (Wrds)

U1 17.3 % 1974 83K 42K

U2 18.1 % 2106 451K 155K

U3 16.7 % 4836 963K 559K

U4 20.7 % 2008 2976K 1680K

16.7

20.7

18.2

20.8

12.4

17.7

15.9
17

18.1
17.3

12.6
14.2

11.8

14.313.9

11

13

15

17

19

21

U1 U2 U3 U4 Avg
Test Set

W
E

R
 (

%
)

base line no filter with filter

Fig. 1. Comparison of WER results between base line, LM

adaptation without filter, and LM adaptation with filter. Using

filter provides relative 10% and 22% WER reduction against the

base line and the LM adaptation without filter condition

respectively.

I - 600

➡ ➠

