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ABSTRACT 

Language Model (LM) Adaptation has been shown to be very 

important to reduce the Word Error Rate (WER) in task specific 

speech recognition systems. Adaptation data collected in the real 

world, however, usually contain large amount of non-dictated 

text such as email headers, long URL, code fragments, included 

reply, signature, etc. that the user will never dictate. Adapting 

with these data may corrupt the LM. In this paper, we propose a 

Maximum Entropy (MaxEnt) based filter to remove a variety of 

non-dictated words from the adaptation data and improve the 

effectiveness of the LM adaptation. We argue that this generic 

filter is language independent and efficient. We describe the 

design of the filter, and show that the usage of the filter can give 

us 10% relative WER reduction over LM adaptation without the 

filtering, and 22% relative WER reduction over the un-adapted 

LM in English email dictation task. 

1. INTRODUCTION 

Typical Automatic Speech Recognition (ASR) systems recognize 

speech based on the following criteria:  

( ) ( )ˆ arg max |
w

w P A w P w= , (1) 

where w  is a word sequence candidate, ( )|P A w  is the 

Acoustic Model (AM) probability, and ( )P w  is the prior 

probability or Language Model (LM) probability. Since the 

decision is made on both the AM and LM scores, good 

estimation of LM probability is crucial to the performance of the 

ASR system.  

Training LM, however, requires large amount of relevant 

data which is usually unavailable for task specific speech 

recognition systems. An alternative way is to use small amount 

of domain and/or user specific data to adapt the LM trained with 

huge amount of task independent data (e.g., Wall Street Journal) 

that is much easier to obtain. For example, we may harvest 

emails authored by a specific user to adapt the LM and improve 

the email dictation accuracy.  

LM adaptation consists of four steps. First step consists of 

collection of task specific adaptation data which we term 

“harvesting”. In the second or the normalization step, adaptation 

data are transformed into standard form. Normalization is 

especially important for abbreviations, date and time, and 

punctuations. In the third step, the adaptation data are analyzed 

and a task specific LM is generated. In the last step, the task 

specific LM is interpolated with the task independent LM. The 

most frequently used interpolation scheme is linear interpolation: 

( ) ( ) ( ) ( )| | 1 |a t iP w h P w h P w hγ γ= + − , (2) 

where w is the word, h is the history, ( )|aP w h  is the adapted 

LM probability, ( )|tP w h is the task specific LM 

probability, ( )|iP w h is the task independent LM probability, 

and γ is the interpolation weight. 

Much of earlier work on LM adaptation focuses on 

comparing adaptation algorithms and/or finding relevant data 

automatically ([1][2][3]). In this paper, we point out that 

filtering out non-dictated words from adaptation data is also very 

important. For example, all of the harvested email data for the 

user may not be useful for adapting the LM. There are parts 

which the user will never dictate such as email headers, long 

URL, code fragments, included reply, signature, foreign 

language text, etc. Adapting on all of the harvested data may 

cause significant degradation in the LM. An example of the non-

dictated text is illustrated in the Table 1.  

Filtering out these non-dictated texts is not an easy job in 

general. One common way of doing this is to use hand-crafted 

rules (e.g. regular expressions). This approach has three 

limitations. First, it does not generalize well to situations which 

we have not encountered. For example, you may have a rule to 

filter out Microsoft Outlook’s email header, but that rule may 

not work with Yahoo email headers. Second, rules are usually 

language dependent. Porting rules from one language to another 

almost equals to rewriting the rules. Third, developing and 

testing rules are very costly. 

In this paper, we propose a filtering (or sampling) approach 

based on Maximum Entropy (MaxEnt) classifier. This approach 

TABLE 1 

AN EXAMPLE EMAIL WITH NON-DICTATED PART

Label Email Text 

Dictated The following header is automatically generated 

by the email client application. Adapting LM 

with them may corrupt the LM. 

Non-

Dictated 

________________________________ 

>From: Milind Mahajan  

>Sent: Wednesday, September 01, 2004 5:38 PM 

>To: Dong Yu 

>Subject: LM Adaptation  

I - 5970-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



is language independent and efficient. We describe the design of 

the filter, and show that the use of the filter during LM 

adaptation can give us 10% relative WER reduction over the LM 

adaptation without filtering, and 22% relative WER reduction 

over the un-adapted LM in English email dictation task.  

The rest of the paper is organized as follows. In the section 2, 

we introduce the MaxEnt based filtering model. Specifically, we 

describe our view of the problem, the assumptions we made, and 

factors we considered. In the section 3, we discuss the features 

which we may use for the filter, and various ways of using them 

in the filter. We evaluate the effectiveness of the filter with 

personalized email dictation task in the section 4, and conclude 

the paper in the section 5. 

2. MAXIMUM ENTROPY BASED FILTER 

While other approaches (such as [8]) might be used, we consider 

the filtering task as a labeling problem to segment the adaptation 

data into two categories:  

• Category D (Dictated text): Text which should be Used for 

LM adaptation; 

• Category N (Non-dictated text): Text which should not be 

used for LM adaptation. 

Text is divided into a sequence of text units (such as lines). 

The task of filtering is thus to associate each text unit with a 

label D for Dictated text or N for Non-dictated text with the 

following criteria: 

( ) ( )
1

1 1 1
...

... arg max ... | ...

n

n n n
l l

l l P l l t t= , (3) 

where it is the text unit i , and il is the label associated with it . 

We assume that we have a small amount of task specific 

labeled training data for training the filter parameters. The 

training data can be labeled using a rule based filter or through a 

manual annotation tool. Since data cleaning is just a small step 

in the LM adaptation process, the filter has to be very efficient, 

easy to develop, and easy to port to other languages. To design 

such a filter, we need to consider several factors such as: text 

unit to use, label dependency modeling across units, general 

form of the classification model, and the feature set used for 

classification. We discuss the first three factors in this section 

and leave the discussion of features for the next section. 

2.1. Text Unit 

Text is divided into a sequence of text units. Natural text units to 

consider are lines of text (text separated by linefeed), windows 

with fixed number of words per window, and sentences using a 

sentence breaker. The unit used in our system is a line of text.  

Using line as a unit has three advantages. First, it cleanly 

breaks out headers, signatures, tables, ASCII art etc. Second, 

since the line has a visual manifestation, it is likely that people 

use it naturally to separate out logically related pieces. Third, 

using line as the unit would also make it easier to label the 

training data if manual annotation tool is used.  

2.2. Label Dependency 

In our system, we assume that the labels of text units are 

independent with each other given the complete sequence of text 

units, i.e., 

( ) ( )1 1 11
... | ... | ...

n
n n i ni

P l l t t P l t t=≈∏ . (4) 

In other words, our model is state-less (in contrast to [4]). Run-

time complexity of state-less models is very low since we can 

independently compute label probability for each text unit. We 

further assume that the label for a given unit depends only upon 

units in a surrounding window of units:  

( ) ( )1| ... | ...i n i i k i kP l t t P l t t− +≈ , (5) 

where k is the window size. In the limit when 0k = , the label 

depends only upon the unit itself: 

( ) ( )1| ... |i n i iP l t t P l t≈ . (6) 

This is what we have used in our current system. The reason we 

choose state-less model with zero size window is its efficiency. 

We will show in the section 4 that this works well in practice. 

2.3. Classification Model 

In our system, we use Maximum Entropy (MaxEnt) based 

classification model ([4][5][6]). The principle of Maximum 

Entropy states that we should select the unique probability 

distribution which satisfies all known constraints but does not 

make any additional assumptions, i.e., maximizes the entropy 

subject to all known constraints. A MaxEnt model has the form: 

exp( ( , ))
( | ; )

( )

i i
i i

i

f l t
P l t

Z t

λλ ≈
i

,  (7) 

where { }1... mλ λ λ= is the vector of model parameters, 

( , )i if l t is the vector of features on the text unit it for label il , 

and ( )iZ t is the normalization factor so that the probabilities 

sum to one. 

( ) exp( ( , ))
i

i i i
l

Z t f l tλ=∑ i . (8) 

Given the feature values and labels on the training set, we can 

obtain the values for λ using MaxEnt training algorithm such as 

the Generalized Iterative Scaling (GIS) algorithm ([7]). 

Once we have the model parameters determined, we can use 

the model to label (or filter) the adaptation text. First, we 

segment the adaptation text into a sequence of text unit. We then 

extract features for each text unit and obtain ( | ; )i iP l t λ . After 

that, we use a simple threshold to decide whether to label the 

text unit as D (Dictated) or N (Non-Dictated). In other words, 

whether the text unit is accepted for LM adaptation is 

determined by: 

, if ( | ; )

N, otherwise

i thresh
i

D P D t P
l

λ⎧ >⎪= ⎨
⎪⎩

, (9) 

where threshP  is the threshold. We use 0.5 as the threshold in our 

system as we have observed that the performance does not 

change much if the threshold is in the range of [0.4, 0.6]. 

3. FEATURE SET 

Feature set is one of the key factors that affect the filter 

performance. For our purpose, we want to find out the feature set 
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that is inexpensive to compute, language independent, and 

effective enough to classify text units.  

3.1. Features 

We start with an exhaustive list of all easily computable features 

which might be useful. Since text normalization is an integral 

part of the LM adaptation process, we have used features which 

depend on normalization. The minimum set of features 

considering the cost-benefit trade-off is determined with 

experiments.  

• UnitLen: the number of tokens in the unit. Token is 

determined by the word breaker. In English, this is simply 

determined with the space delimiter. 

• TokLen: the average number of characters per token in the 

unit.  

• Norm: the percentage of the tokens in the raw text which 

require normalization.  

• RawCompact: the ratio of the number of tokens in the raw 

text of the unit to the number of words in the normalized 

text.  

• EOS: the percentage of words in the normalized text which 

are end-of-sentence words.  

• OOV: the percentage of words in the normalized text which 

are Out Of Vocabulary.  

• Perp: the perplexity of the normalized text using task 

independent LM. 

• TgHit: the percentage of trigrams in the normalized text 

which are present in the task independent LM. 

• BgHit: the percentage of bigrams in the normalized text 

which are present in the task independent LM. 

3.2. Space Splitting 

In general, feature induction to create new features is useful 

to compensate for the limitations of the linear classifier. We 

experimented with a specific form of feature induction which is 

equivalent to splitting or partitioning the space of text units into 

sub-spaces and creating a separate classifier for each sub-space 

with all of the underlying features. 

More specifically, in some of our experiments, we expand 

each feature of the form ( , )f l t into multiple features by using the 

length of the text unit for partitioning: 

* 4

4 8

8 16

16 *

( , ) ( , ) (0 ( ) 4)

( , ) ( , ) (4 ( ) 8)

( , ) ( , ) (8 ( ) 16)

( , ) ( , ) (16 ( ))

f l t f l t TokLen t

f l t f l t TokLen t

f l t f l t TokLen t

f l t f l t TokLen t

δ
δ
δ
δ

−

−

−

−

= • ≤ <
= • ≤ <
= • ≤ <
= • ≤

 (10) 

where  

( ) 1,  

0,

if x true
x

otherwise
δ

=⎧
= ⎨
⎩

 (11) 

As a heuristic rationale for this we note that since all of the 

feature values are normalized by a measure of the unit length, it 

is possible that the feature values of smaller units are likely to be 

noisier than those for the longer units. Introducing features in 

this form, provides the model some flexibility to make 

allowances for this. 

3.3. Feature Value: Binary or Continuous 

We experimented with using the continuous feature value 

directly in the model or bucketing it to create a binary value. As 

an example, if a feature such as a percentage takes values in the 

range 0-100, the bucketed feature for each of the buckets such as 

0-10, 10-20, takes a value 0 or 1 depending on whether the value 

fell in the bucket. In other words, a feature ( , )f l t bucketed by 

range [x, y) results in bucket feature: 

( , ) ( ( , ) )
b

x yf l t x f l t yδ− = ≤ <  (12) 

Using the continuous value results in less number of features 

but introduces some a-priori assumptions into the model. Use of 

bucketing gives us more control over the assumptions which go 

into the treatment of feature values. 

In our experiments, we selected bucket end-point values 

heuristically. So, for all percentage valued features, the bucket 

end points are: 1, 5, 10, 20, 40, 60, 80, 90, 95, 99. This creates 

the buckets: 0-1, 1-5, 5-10 etc. Finer bucketing at the extremes 

of the range is used based upon the guess that finer granularity 

there is likely to be more important than say in the range 

between 40-60 for example.  

There is a trade-off involved in bucketing. Finer granularity 

has the potential of giving more control. However, that needs to 

be balanced against noisier estimation of the parameter value 

given data sparseness. An alternative way for doing this 

automatically is to select buckets based on percentile based (such 

as decile) threshold values. 

4. EVALUATION 

Classifiers are usually evaluated using Accuracy or Receiver 

Operating Characteristic (ROC) curve. However, in our task, the 

most important criterion is the WER after adapting the LM while 

using our filter to classify the adaptation text. 

 We evaluated the effectiveness of our approach with 

personalized email dictation task. We used email text data from 

four users in our experiments. The reason we only tested with 

four data sets is that emails contain privacy and/or sensitive 

information and it’s hard to collect emails from more users.  

The email data from each user was first separated into the 

adaptation set and the test set. The test set was chosen from the 

most recent emails and did not overlap with any of the 

adaptation set. The adaptation set was semi-manually annotated 

with D (Dictated) and N (Non-dictated) using a rule based 

annotation tool. We built a MaxEnt filter for each user using the 

labeled adaptation data from the other three i.e. using leave-one-

out strategy. Note that the filter never sees any of the data for the 

user being tested. 

For each user, the adaptation set was first processed by the 

MaxEnt filter. The filtered adaptation data was then used for LM 

adaptation. After that, we performed ASR experiments with the 

adapted LM on the acoustic test data for that user which consists 

of read emails from the test set of that user.  

Table 2 displays the information about each data set. It shows 

the base line WER, the number of words in each test set, as well 

as the number of words in each user’s adaptation data. The size 

of the adaptation data varies from 83K words to over 3M words. 

We evaluated our filter with a variety of filter configurations 

(different set of features and different ways of using features, as 

indicated in the section 3.). We found out that all the 
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configurations we have tested gave us roughly the same results. 

In the following we present the detailed results for the most 

efficient configuration which is as follows: 

• Uses only features RawCompact, EOS, and OOV (see 3.1); 

• Values are bucketed to binary (see 3.3); 

• No space splitting (see 3.2). 

Fig. 1 illustrates the recognition results of base line, LM 

adaptation without filtering, and LM adaptation using MaxEnt 

based filter. We can observe from the figure that except for U1 

(which has the smallest adaptation set), using our filter during 

LM adaptation reduces WER against that of LM adaptation 

without filter. We can also see that the WER after adaptation 

increases over the un-adapted LM baseline for U2 if our filter is 

not used. On average, we get 10% relative WER reduction by 

using our filter during adaptation over no filtering, and 22% 

relative WER reduction the un-adapted LM baseline. 

We have also tested the generalization ability of our filter. 

There is no foreign language text in the filter training data. We 

retrieved 27K words of Chinese text, 26K words of French text, 

and 26K words of Spain text from the Internet and mixed them 

with the adaptation data. Our results indicates that the MaxEnt 

based filter can successfully remove those foreign language texts 

without retraining. On average, the WER is 14.2% if our filter is 

used during adaptation, and 17.9% if it’s not used.

5. CONCLUSION AND DISCUSSION 

We have demonstrated that removing non-dictated text from 

the adaptation text is important to improving the effectiveness of 

LM adaptation. We described the design and trade-offs of our 

MaxEnt based generic filter, and showed that processing the 

adaptation data with our filter can effectively improve the ASR 

recognition. 

The effects of the filtering are two folds. On the one hand, 

filtering out the non-dictated text would prevent the corruption 

of the LM. This would improve the effectiveness of the LM 

adaptation. On the other hand, removing some of the text from 

the adaptation data will decrease the size of the adaptation data. 

This usually causes data sparseness problem and so make the 

LM probability estimation less accurate and would decrease the 

effectiveness of the LM adaptation. The final outcome of the 

filtering is the combined effect of these two factors. 

The above analysis is confirmed by our experiments. We 

have noticed that the filtering is especially important and 

effective for the adaptation data with high percentage of non-

dictated text (e.g., U2 case) and the adaptation data with large 

size.  

To speed up the training data preparation, we have developed 

an easy to use manual labeling tool. Our future work is to use the 

tool to generate labeled training data for other languages, and to 

train and evaluate the filter for these additional languages. 
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TABLE 2 

INFORMATION ABOUT EACH DATA SET

User

# 

Base Line

WER 

Test Set

(Wrds)

Adaptation 

Set (Wrds) 

Adaptation Set After 

Filtering (Wrds) 

U1 17.3 % 1974 83K 42K 

U2 18.1 % 2106 451K 155K 

U3 16.7 % 4836 963K 559K 

U4 20.7 % 2008 2976K 1680K 

16.7

20.7

18.2

20.8

12.4

17.7

15.9
17

18.1
17.3

12.6
14.2

11.8

14.313.9

11
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17

19

21

U1 U2 U3 U4 Avg
Test Set

W
E

R
 (

%
)

base line no filter with filter

Fig. 1. Comparison of WER results between base line, LM 

adaptation without filter, and LM adaptation with filter. Using 

filter provides relative 10% and 22% WER reduction against the 

base line and the LM adaptation without filter condition 

respectively. 
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