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Maximum Entropy Beyond Selecting Probability

Distributions

Thach N. Nguyen, Olga Kosheleva, and Vladik Kreinovich

Abstract Traditionally, the Maximum Entropy technique is used to select a prob-

ability distribution in situations when several different probability distributions are

consistent with our knowledge. In this paper, we show that this technique can be ex-

tended beyond selecting probability distributions, to explain facts, numerical values,

and even types of functional dependence.

1 How Maximum Entropy Technique Is Currently Used

Need to select a distribution: formulation of a problem. Many data processing

techniques assume that we know the probability distribution – e.g., the probability

distributions of measurement errors, and/or probability distributions of the signals;

see, e.g., [6, 7].

Often, however, we have only partial information about a probability distribu-

tion. In such cases, there are several different probability distributions which are

consistent with the available knowledge. To apply to this situation a data process-

ing algorithm which is based on the assumption that the probability distribution is

known, we must select a single probability distribution out of all distributions which

are consistent with our knowledge. How can we select such a distribution?

Main idea. By selecting a single distribution out of several, we inevitably decrease

uncertainty. It is reasonable to select a distribution for which this decrease in uncer-

tainty is as small as possible.
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How to describe this idea as a precise optimization problem. A natural way to

measure uncertainty is by the average number of binary (“yes”-“no”) questions that

we need to ask to uniquely determine the corresponding random value (or, in the

case of continuous variables, to determine the random value with a given accu-

racy ε).

One can show that for a probability distribution with a given probability den-

sity function ρ(x), this average number of binary questions is asymptotically (when

ε → 0) proportional to the entropy S(ρ)
def
= −∫

ρ(x) · ln(ρ(x))dx of this probability

distribution; see, e.g., [5] and references therein.

For a class F of distributions, the average number of binary question is asymp-

totically proportional to max
ρ∈F

S(ρ). We want select a single distribution ρ0 from the

class F for which the decrease in uncertainty is the smallest possible, i.e., for which

the difference max
ρ∈F

S(ρ)−S(ρ0) is the smallest possible.

How to solve the corresponding optimization problem: enter maximum En-

tropy technique. There is a natural solution to this optimization problem: se-

lect a distribution ρ0 for which the entropy is the largest possible, i.e., for which

S(ρ0) = max
ρ∈F

S(ρ). In this case. the desired difference is 0 – and so the decrease in

uncertainty is asymptotically negligible.

This is the main idea behind the Maximum Entropy techniques: when we need

to select a single distribution for the class of all possible distributions, we select the

distribution ρ for which the entropy S(ρ) attains the largest possible value.

Simple examples of using the Maximum Entropy techniques. In some cases, all

we know is that the random variable is located somewhere on a given interval [a,b],
but we have no information about the probability of it being in different parts of

this interval. Which probability distribution would we then select to represent this

situation?

If we use the Maximum Entropy approach, then we need to maximize the ex-

pression −∫ b
a ρ(x) · ln(ρ(x))dx under the condition that the function ρ(x) ≥ 0 is a

probability density function, i.e., that
∫ b

a ρ(x)dx = 1.

Thus, we get a constraint optimization problem: optimize the entropy under the

constraint
∫ b

a ρ(x)dx = 1. To solve this constraint optimization problem, we can

use the Lagrange multiplier method and reduce to the following unconstrained op-

timization problem of maximizing the following expression:

−
∫ b

a
ρ(x) · ln(ρ(x))dx+λ ·

(

∫ b

a
ρ(x)dx−1

)

,

where λ is the Lagrange multiplier – a constant that needs to be determined so that

the original constraint will be satisfied.

We want to find the function ρ , i.e., we want to find the values ρ(x) correspond-

ing to different inputs x. Thus, the unknowns in this optimization problem are the

values ρ(x) corresponding to different inputs x. To solve the resulting unconstrained

optimization problem, we can simply differentiate the above expression by each of
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the unknowns ρ(x) and equate the resulting derivative to 0. As a result, we conclude

that − ln(ρ(x))− 1+λ = 0, hence ln(ρ(x)) is a constant not depending on x (and

equal to λ −1). Therefore, the probability density function ρ(x) itself is a constant.

Thus, in this case, the Maximum Entropy technique leads to a uniform distribution

on the interval [a,b].
This conclusion makes perfect sense: if we have no information about which

values from the interval [a,b] are more probable and which are less probable, it is

reasonable to conclude that all these values are equally probable, i.e., that ρ(x) =
const. (This idea goes back to Laplace and is known as the Laplace Indeterminacy

Principle.)

In other situations, the only information that we have about the probability dis-

tribution on a real line is its first two moments
∫

x ·ρ(x)dx = µ and

∫

(x−µ)2 ·ρ(x)dx = σ2.

In this case, the Maximum Entropy technique means selecting a distribution for

which the entropy is the largest under the above two constraints and the constraint

that
∫

ρ(x)dx = 1. For this problem, the Lagrange multiplier methods leads to the

following unconstrained optimization problem, in which λi are Lagrange multipli-

ers:

Maximize −
∫

ρ(x) · ln(ρ(x))dx+λ1 ·
(

∫

x ·ρ(x)dx−µ

)

+

λ2 ·
(

∫

(x−µ)2 ·ρ(x)dx−σ2

)

+λ3 ·
(

∫ b

a
ρ(x)dx−1

)

.

Differentiating the maximized expression with respect to each unknown ρ(x) and

equating the resulting derivative to 0, we conclude that

− ln(ρ(x))−1+λ1 · x+λ2 · (x−µ)2 +λ3 = 0,

i.e., we conclude that ln(ρ(x)) is a quadratic function of x and thus, that ρ(x) =
exp(ln(ρ(x))) is a Gaussian distribution.

This conclusion is also in good accordance with common sense. Indeed:

• in many case, e.g., the measurement error results from many independent small

effects and,

• according to the Central Limit Theorem, the distribution of the sum of a large

number of independent small random variables is close to Gaussian.

There are many other examples of a successful use of the Maximum Entropy

technique; see, e.g., [4].

A natural question. Since the Maximum Entropy technique works so well for se-

lecting a distribution, can we extend it solving other problems – e.g., explaining a

fact, finding the unknown value of a quantity, or finding the formula for a functional

dependence?
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What we do in this paper. In this paper, we show, on several examples, that such

an extension is indeed possible. We will show it on case studies that cover all three

types of possible problems: explaining a fact, finding the number, and finding the

functional dependence.

2 First Case Study: How Maximum Entropy Techniques Can Be

Used to Explain a Fact

Fact to be explained. This fact comes from a recent study [1], and it is related to

the uncertainty of expert estimates.

Experts’ estimates are imprecise – just like measuring instruments are imprecise.

Moreover, when we ask the same expert after some time to estimate the same quan-

tity, he/she will, in general, give a slightly different estimate – just like when we

repeatedly measure the same quantity with the same measuring instrument, we, in

general, get slightly different results. We can describe the expert’s estimates xi of a

quantity x as xi = x+∆xi, where ∆xi
def
= xi − x is the estimation error.

A reasonable way to gauge the expert’s accuracy is to compute the mean square

value of the expert’s estimation error, i.e., the value σx
def
=

√

1

N
·

n

∑
i=1

(∆xi)
2, where N

is the overall number of estimates performed by this expert. This quantity describes

the intra-expert variation of the expert estimate.

We can also compare the estimates xi = x+∆xi and yi = x+∆yi of two (or more)

different experts and compute the standard deviation

σxy
def
=

√

1

N
·

n

∑
i=1

(xi − yi)
2 =

√

1

N
·

n

∑
i=1

(∆xi −∆yi)
2

that describes the inter-expert variation of expert estimates.

An interesting empirical fact is that in many situations, the intra-expert and inter-

expert variations are practically equal: the difference between the two variations is

about 3% [1].

Why does this fact need explanation. At first glance, it may seem that the above

fact is very natural and does not need any sophisticated explanation. However, as

we show, a deeper analysis makes this fact truly puzzling.

Indeed, the above estimates seem to be informally based on a simple probabilistic

model, in which the differences ∆xi are instances of a random variable ∆x with

0 mean. The above expression for the intra-expert variance is simply a sample-

based estimation of this random variable’s standard deviation: σx ≈ σ [∆x] and thus,

σ2
x ≈ σ2[∆x] = E[(∆x)2], where, as usual, E[η ] denotes the expected value of a

random quantity η , and σ [η ] denotes its standard deviation.
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Similarly, the inter-expert variation is approximately equal to the standard devia-

tion of the difference ∆x−∆y between the random variables ∆x and ∆y correspond-

ing to two experts: σxy ≈ σ [∆x−∆y], i.e., σ2
xy ≈ E[(∆x−∆y)2].

Thus, the fact that the intra-expert and the inter-expert variations coincide means

that E[(∆x−∆y)2]≈ E[(∆x)2]≈ E[(∆y)2].
If experts were fully independent, then we would have E[(∆x − ∆y)2] =

E[(∆x)2]+E[(∆y)2], so we would have σ2
xy ≈ 2σ2

x and σxy ≈
√

2 ·σx, and the inter-

expert variation would be at least 40% larger than the intra-expert one.

This we do not observe. It means that there is a correlation between the experts.

If there was the perfect correlation, we would have ∆xi = ∆yi, and the inter-expert

variation would be exactly 0.

In situations of partial correlation, we would get all possible values of σxy rang-

ing from 0 to
√

2 ·σx. So why, out of all possible values from interval [0,
√

2 ·σx],
the value σx corresponds to the average inter-expert variation?

Maximum Entropy technique can help us explain this fact. To provide our expla-

nation, let us express the inter-expert variation in terms of the (Pearson) correlation

coefficient r
def
=

E[∆x ·∆y]

σ [∆x] ·σ [∆y]
.

By definition of the inter-expert correlation, we have

σ2
xy = E[(∆x−∆y)2] = E[(∆x)2]+E((∆y)2]−2E(∆x ·∆y].

Here, E(∆x)2] = E(∆y)2] = σ2
x , and, by definition of the correlation coefficient,

E[∆x ·∆y] = r ·σ [∆x] ·σ [∆y] = r ·σ2
x . Thus, the above formula for the inter-expert

variation takes the form

σ2
xy = 2σ2

x −2r ·σ2
x = 2 · (1− r) ·σ2

x .

In general, the correlation r can take any value from −1 to 1, but in this case,

since we assume that all experts are indeed experts, it is reasonable to assume that

their estimates are non-negatively correlated, i.e., that r ≥ 0. Thus, in this example,

the set of possible value of the correlation r is the interval [0,1].
In different situations, we may have different values of the correlation coefficient:

some experts may be independent, other pairs of experts may have the same back-

ground and thus, have strongly correlated estimates. So, in real life, there will be

some probability distribution on the set [0,1] of all possible values of the correlation

coefficient that reflects the frequency of different pairs of experts. We would like to

estimate the average value E[r] of r over this distribution. Then, by averaging over

r, we will get the desired relation between the intra- and inter-expert variations:

σ2
xy = 2 · (1−E[r]) ·σ2

x .

We do not have any information about which values r are more probable (i.e.,

more frequent) and which values r are less probable. In other words, in principle,

all probability distributions on the interval [0,1] are possible. To perform the above

estimation, we need to select a single distribution form this class.
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It is reasonable to apply the Maximum Entropy technique to select such a distri-

bution. As we have mentioned, in this case, the Maximum Entropy technique selects

a uniform distribution on the interval [0,1]. For the uniform distribution on the in-

terval [0,1], the probability density is equal to 1, and the mean value is 0.5:

E[r] =
∫ 1

0
x ·ρ(x)dx =

∫ 1

0
xdx =

x2

2

∣

∣

∣

1

0
=

12

2
− 02

2
= 0.5.

Substituting the value E[r] = 0.5 into the above formula σ2
xy = 2 · (1−E[r]) ·σ2

x , we

conclude that σ2
xy = σ2

x , which is exactly the fact that we try to explain.

3 Second Case Study: How Maximum Entropy Techniques Can

Be Used to Find a Numerical Value

Empirical fact. It has been observed that when people make crude estimates, their

estimates differ by half-order of magnitude; see, e.g., [2]. For example, when people

estimate the size of a crowd, they normally give answers like 100, 300, 1000, but it

is much more difficult for them to distinguish, e.g., between 100 and 200. Similarly,

when describing income, people talk about low six figures, high six figures, etc, –

which is exactly half-orders of magnitude.

So, what is so special about the ratio 3 corresponding to half-order of magnitude?

Why not 2 or 4?

There are explanations for this fact, but can we have a simpler one? There are

explanations for the above fact; see, e.g., [3]. However, these explanations are some-

what complicated.

For a simple fact about commonsense reasoning, it is desirable to have a simpler,

more intuitive explanation.

What we do in this section. In this section, we show that the Maximum Entropy

technique can be used to provide a simpler explanation for this empirical fact.

Let us formulate this problem in precise terms. Let us assume that we have two

quantities a and b, and a is smaller than b. For example, a and b are the salaries of

two employees on the two layers of the company’s hierarchy. If all we know is that

a < b, what can we conclude about the relation between a and b?

Applying Maximum Entropy technique: first attempt. Let us try to apply the

Maximum Entropy techniques to answer this question. For this purpose, it may

sound reasonable to come up with some probability distribution on the set of all

possible values of a and on the set of possible values of b. Here, we do not have any

bound on a and b. In this case, similar to the case of interval bounds, the Maximum

Entropy technique implies that ρ(x) = const for all possible real numbers x – and

thus, since we want ρ(x)> 0, we get
∫ ∞

0 ρ(x)dx = ∞ > 1.
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Applying Maximum Entropy technique: second attempt and the resulting ex-

planation. To be able to meaningfully apply the Maximum Entropy idea, we need

to consider bounded quantities. One such possibility is to consider, instead of the

original salary a, the fraction of the overall salary a+b that goes to a, i.e., the ratio

r
def
=

a

a+b
.

We know that a < b, so this ratio takes all possible values from 0 to 0.5, where

0.5 corresponds to the ideal case when the salaries a and b are equal. By using

the Maximum Entropy technique, we can conclude that the variable r is uniformly

distributed on the interval [0,0.5). Thus, the average value of this variable is at the

midpoint of this interval, when r = 0.25. So, on average, the salary a of the first

person takes 1/4 of the overall amount a+ b, and thus, the average salary b of the

second person is equal to the remaining amount 1− 1/4 = 3/4. Thus, the ratio of

the two salaries is exactly
b

a
=

3/4

1/4
= 3.

This corresponds exactly to the half-order of magnitude ratio that we are trying

to explain. Thus, the Maximum Entropy technique indeed explains this empirical

ratio.

4 Third Case Study: How Maximum Entropy Techniques Can

Be Used to Find a Functional Dependence

Often, we need to find a functional dependence. In many practical situations, we

know that the value of a quantity x uniquely determines the values of the quantity y,

i.e., that y = f (x) for some function f (x).

• In some practical situations, this dependence is known, but

• in other situations, we need to find this dependence.

How the Maximum Entropy technique can help: the main idea. For each physi-

cal quantity, we usually know its bounds. Thus, we can safely assume that we know

that:

• all possible values of the quantity x are in a known interval [x,x], and

• all possible values of the quantity y are in a known interval [y,y].

If we apply the Maximum Entropy technique to the quantity x, we conclude that x

is uniformly distributed on the interval [x,x]. Similarly, if we apply the Maximum

Entropy technique to the quantity y, we conclude that x is uniformly distributed on

the interval [y,y].
It is therefore reasonable to select a function f (x) for which,

• when x is uniformly distributed on the interval [x,x],
• the quantity y = f (x) is uniformly distributed on the interval [y,y].
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What are the resulting functional dependencies? For a uniform distribution, the

probability to be in an interval is proportional to its length. In particular, for a small

interval [x,x+∆ ] of width ∆x, the probability to be in this interval is equal to ρx ·∆x.

The corresponding y-interval [ f (x), f (x+∆x)] has width

∆y = | f (x+∆x)− f (x)|.

For small ∆x, we have

f (x+∆x)− f (x)

∆x
≈ lim

h→0

f (x+h)− f (x)

h
= f ′(x).

Thus, for small ∆x, we have f (x + ∆x)− f (x) ≈ f ′(x) · ∆x and therefore, ∆y ≈
| f ′(x)| ·∆x. Since the variable y is also uniformly distributed, the probability for y

to be in this interval is equal to ρy ·∆y = ρy · | f ′(x)| ·∆x.

Comparing this expression with the original formula ρx ·∆x for the same proba-

bility, we conclude that ρy · | f ′(x)| ·∆x = ρx ·∆x, hence | f ′(x)|= ρx

ρy

, i.e., | f ′(x)|=
const. So, we conclude that the function f (x) should be linear.

What is our result and why it is interesting. Our conclusion is that if we have

no information about the functional dependence, it is reasonable to assume that this

dependence is linear.

This fits well with the usual engineering practice, where indeed the first idea

is usually to try a linear dependence. However, the usual motivation for using a

linear dependence first is that such a dependence is the easiest to analyze – and why

would nature care which dependencies are easier for us to analyze? The Maximum

Entropy argument seems more convincing, since it relies on the general ideas about

uncertainty itself – and not on our ability to deal with this uncertainty.

Need for nonlinear dependencies. That we came up with an explanation for a

linear dependence may be nice, but in practice, linear dependence is usually only

the first approximation to the true non-linear dependence. Once we know that the a

linear dependence is only an approximation, we would like to find a more adequate

nonlinear model.

The Maximum Entropy technique can help beyond linear dependencies. It turns

out that the Maximum Entropy technique can also help in finding such a nonlinear

dependence – just like for probability distributions:

• once we have an additional information which is not consistent with the assump-

tion that the actual distribution is uniform,

• we can add this information to the corresponding Maximum Entropy problem

and get a non-uniform distribution consistent with this information.

We will actually describe two alternative ideas on in which the Maximum Entropy

technique can help.

The Maximum Entropy technique can help beyond linear dependencies: first

idea. The first, more direct, idea is to take into account that often, not only the
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quantity y, but also its derivative z
def
=

dy

dx
(and sometimes, its second derivative as

well) is also an observable quantity. For example, when y is a distance and x is time,

then the first derivative v
def
=

dy

dx
is velocity and the second derivative a

def
=

dv

dx
=

d2y

dx2

is acceleration – both perfectly observable quantities.

If we apply the Maximum Entropy techniques to the dependence of velocity v on

time x, we conclude that the velocity linearly depends on time – in which case, by

integrating this dependence, we conclude that the distance is a quadratic function of

time. Similarly, if we apply the Maximum Entropy technique to the dependence of

acceleration a on time, then we conclude that the velocity is a quadratic function of

time, and thus, that the distance is a cubic function of time.

The Maximum Entropy technique can help beyond linear dependencies: sec-

ond idea. The second, less direct idea, is to take into account that when the de-

pendence y = f (x) is non-linear, then, even when the probability distribution for x is

uniform, with density ρx(x) = ρx = const, the corresponding probability distribution

ρy(y) for the quantity y is, in general, not uniform.

How can we describe the dependence ρy(y) of the probability density on y? To

describe this auxiliary dependence, we can use the Maximum Entropy technique

and conclude that this dependence is linear, i.e., that ρy(y) = a+b · y. Now that we

know the distributions for x and y, we can look for functions f (x) for which:

• once x is uniformly distributed,

• the quantity y = f (x) is distributed with the probability density ρy(y) = a+b · y.

Similarly to the above case when both x- and y-distributions were uniform, the

probability of being in the x-interval of width ∆x is equal to ρx ·∆x, and on the other

hand, it is equal to ρy(y) · | f ′(x)| ·∆x = (a+ b · f (x)) · | f ′(x)| ·∆x. By comparing

these two expressions for the same probability, we conclude that

| f ′(x)| · (a+b · f (x)) = const,

i.e., that
d f

dx
· (a+ b · f ) = const. By moving all the terms containing f to one side

and all the terms containing x to another sides, we conclude that
d f

a+b · f
= const ·x.

So, for g
def
= f +

a

b
, we get

dg

g
= c ·dx. Integration leads to ln(g) = c ·x+C for some

integration constant C, thus, g = A · exp(cẋ), and f = A · exp(c · x)+ const.
By assuming that y is uniformly distributed, we get the inverse (logarithmic) de-

pendence. By assuming that the dependence ρy(y) on y is not linear but is described

by one of these nonlinear formulas, we can get an even more complex dependence.

Thus, we can indeed use the Maximum Entropy technique to describe nonlinear

dependencies as well.
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