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Abstract

Recent research has shown the benefit of framing problems
of imitation learning as solutions to Markov Decision Prob-
lems. This approach reduces learning to the problem of re-
covering a utility function that makes the behavior induced
by a near-optimal policy closely mimic demonstrated behav-
ior. In this work, we develop a probabilistic approach based
on the principle of maximum entropy. Our approach provides
a well-defined, globally normalized distribution over decision
sequences, while providing the same performance guarantees
as existing methods.

We develop our technique in the context of modeling real-
world navigation and driving behaviors where collected data
is inherently noisy and imperfect. Our probabilistic approach
enables modeling of route preferences as well as a powerful
new approach to inferring destinations and routes based on
partial trajectories.

Introduction

In problems of imitation learning the goal is to learn to pre-
dict the behavior and decisions an agent would choose– e.g.,
the motions a person would take to grasp an object or the
route a driver would take to get from home to work. Captur-
ing purposeful, sequential decision-making behavior can be
quite difficult for general-purpose statistical machine learn-
ing algorithms; in such problems, algorithms must often rea-
son about consequences of actions far into the future.

A powerful recent idea for approaching problems of imi-
tation learning is to structure the space of learned policies to
be solutions of search, planning, or, more generally, Markov
Decision Problems (MDP). The key notion, intuitively, is
that agents act to optimize an unknown reward function (as-
sumed to be linear in the features) and that we must find
reward weights that make their demonstrated behavior ap-
pear (near)-optimal. The imitation learning problem then
is reduced to recovering a reward function that induces the
demonstrated behavior with the search algorithm serving to
“stitch-together” long, coherent sequences of decisions that
optimize that reward function.

We take a thoroughly probabilistic approach to reasoning
about uncertainty in imitation learning. Under the constraint
of matching the reward value of demonstrated behavior, we
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employ the principle of maximum entropy to resolve the am-
biguity in choosing a distribution over decisions. We pro-
vide efficient algorithms for learning and inference for de-
terministic MDPs. We rely on an additional simplifying as-
sumption to make reasoning about non-deterministic MDPs
tractable. The resulting distribution is a probabilistic model
that normalizes globally over behaviors and can be under-
stood as an extension to chain conditional random fields that
incorporates the dynamics of the planning system and ex-
tends to the infinite horizon.

Our research effort is motivated by the problem of mod-
eling real-world routing preferences of drivers. We apply
our approach to route preference modeling using 100,000
miles of collected GPS data of taxi-cab driving, where the
structure of the world (i.e., the road network) is known and
the actions available (i.e., traversing a road segment) are
characterized by road features (e.g., speed limit, number of
lanes). In sharp contrast to many imitation learning tech-
niques, our probabilistic model of purposeful behavior in-
tegrates seamlessly with other probabilistic methods includ-
ing hidden variable techniques. This allows us to extend our
route preferences with hidden goals to naturally infer both
future routes and destinations based on partial trajectories.

A key concern is that demonstrated behavior is prone to
noise and imperfect behavior. The maximum entropy ap-
proach provides a principled method of dealing with this
uncertainty. We discuss several additional advantages in
modeling behavior that this technique has over existing ap-
proaches to inverse reinforcement learning including margin
methods (Ratliff, Bagnell, & Zinkevich 2006) and those that
normalize locally over each state’s available actions (Ra-
machandran & Amir 2007; Neu & Szepesvri 2007).

Background

In the imitation learning setting, an agent’s behavior (i.e.,
its trajectory or path, ζ, of states si and actions ai) in some
planning space is observed by a learner trying to model or
imitate the agent. The agent is assumed to be attempting
to optimize some function that linearly maps the features
of each state, fsj

∈ ℜk, to a state reward value represent-
ing the agent’s utility for visiting that state. This function
is parameterized by some reward weights, θ. The reward
value of a trajectory is simply the sum of state rewards, or,
equivalently, the reward weight applied to the path feature
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counts, fζ =
∑

sj∈ζ fsj
, which are the sum of the state fea-

tures along the path.

reward(fζ) = θ⊤fζ =
∑

sj∈ζ

θ⊤fsj

The agent demonstrates single trajectories, ζ̃i, and has an

expected empirical feature count, f̃ = 1
m

∑
i fζ̃i

, based on

many (m) demonstrated trajectories.
Recovering the agent’s exact reward weights is an ill-

posed problem; many reward weights, including degenera-
cies (e.g., all zeroes), make demonstrated trajectories opti-
mal. Ratliff, Bagnell, & Zinkevich (2006) cast this problem
as one of structured maximum margin prediction (MMP).
They consider a class of loss functions that directly measure
disagreement between an agent and a learned policy, and
then efficiently learn a reward function based on a convex
relaxation of this loss using the structured margin method
and requiring only oracle access to an MDP solver. How-
ever, this method suffers from some significant drawbacks
when no single reward function makes demonstrated behav-
ior both optimal and significantly better than any alternative
behavior. This arises quite frequently when, for instance,
the behavior demonstrated by the agent is imperfect, or the
planning algorithm only captures a part of the relevant state-
space and cannot perfectly describe the observed behavior.

Abbeel & Ng (2004) provide an alternate approach based
on Inverse Reinforcement Learning (IRL) (Ng & Russell
2000). The authors propose a strategy of matching feature
expectations (Equation 1) between an observed policy and
a learner’s behavior; they demonstrate that this matching
is both necessary and sufficient to achieve the same perfor-
mance as the agent if the agent were in fact solving an MDP
with a reward function linear in those features.

∑

Path ζi

P (ζi)fζi
= f̃ (1)

Unfortunately, both the IRL concept and the matching of
feature counts are ambiguous. Each policy can be optimal
for many reward functions (e.g., all zeros) and many policies
lead to the same feature counts. When sub-optimal behavior
is demonstrated, mixtures of policies are required to match
feature counts, and, similarly, many different mixtures of
policies satisfy feature matching. No method is proposed to
resolve the ambiguity.

Maximum Entropy IRL
We take a different approach to matching feature counts that
allows us to deal with this ambiguity in a principled way, and
results in a single stochastic policy. We employ the princi-
ple of maximum entropy (Jaynes 1957) to resolve ambigui-
ties in choosing distributions. This principle leads us to the
distribution over behaviors constrained to match feature ex-
pectations, while being no more committed to any particular
path than this constraint requires.

Deterministic Path Distributions

Unlike previous work that reasons about policies, we con-
sider a distribution over the entire class of possible behav-
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Figure 1: A deterministic MDP (a) and a single path from
its path-space (b). A non-deterministic MDP (c) and a single
path from its path-space (d).

iors. This corresponds to paths of (potentially) variable
length (Figure 1b) for deterministic MDPs (Figure 1a).

Similar to distributions of policies, many different dis-
tributions of paths match feature counts when any demon-
strated behavior is sub-optimal. Any one distribution from
among this set may exhibit a preference for some of the
paths over others that is not implied by the path features.
We employ the principle of maximum entropy, which re-
solves this ambiguity by choosing the distribution that does
not exhibit any additional preferences beyond matching fea-
ture expectations (Equation 1). The resulting distribution
over paths for deterministic MDPs is parameterized by re-
ward weights θ (Equation 2). Under this model, plans with
equivalent rewards have equal probabilities, and plans with
higher rewards are exponentially more preferred.

P (ζi|θ) =
1

Z(θ)
eθ⊤fζi =

1

Z(θ)
e

P

sj∈ζi
θ⊤fsj (2)

Given parameter weights, the partition function, Z(θ), al-
ways converges for finite horizon problems and infinite hori-
zons problems with discounted reward weights. For infinite
horizon problems with zero-reward absorbing states, the par-
tition function can fail to converge even when the rewards of
all states are negative. However, given demonstrated tra-
jectories that are absorbed in a finite number of steps, the
reward weights maximizing entropy must be convergent.

Non-Deterministic Path Distributions

In general MDPs, actions produce non-deterministic transi-
tions between states (Figure 1c) according to the state tran-
sition distribution, T . Paths in these MDPs (Figure 1d) are
now determined by the action choices of the agent and the
random outcomes of the MDP. Our distribution over paths
must take this randomness into account.

We use the maximum entropy distribution of paths con-
ditioned on the transition distribution, T, and constrained to
match feature expectations (Equation 1). Consider the space
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of action outcomes, T , and an outcome sample, o, speci-
fying the next state for every action. The MDP is deter-
ministic given o with the previous distribution (Equation 2)
over paths compatible with o (i.e., the action outcomes of the
path and o match). The indicator function, Iζ∈o is 1 when ζ
is compatible with o and 0 otherwise. Computing this dis-
tribution (Equation 3) is generally intractable. However, if
we assume that transition randomness has a limited effect
on behavior and that the partition function is constant for all
o ∈ T , then we obtain a tractable approximate distribution
over paths (Equation 4).

P (ζ|θ, T ) =
∑

o∈T

PT (o)
eθ⊤fζ

Z(θ, o)
Iζ∈o (3)

≈
eθ⊤fζ

Z(θ, T )

∏

st+1,at,st∈ζ

PT (st+1|at, st) (4)

Stochastic Policies

This distribution over paths provides a stochastic policy (i.e.,
a distribution over the available actions of each state) when
the partition function of Equation 4 converges. The proba-
bility of an action is weighted by the expected exponentiated
rewards of all paths that begin with that action.

P (action a|θ, T ) ∝
∑

ζ:a∈ζt=0

P (ζ|θ, T ) (5)

Learning from Demonstrated Behavior

Maximizing the entropy of the distribution over paths sub-
ject to the feature constraints from observed data implies that
we maximize the likelihood of the observed data under the
maximum entropy (exponential family) distribution derived
above (Jaynes 1957).

θ∗ = argmax
θ

L(θ) = argmax
θ

∑

examples

log P (ζ̃|θ, T )

This function is convex for deterministic MDPs and the
optima can be obtained using gradient-based optimization
methods. The gradient is the difference between expected
empirical feature counts and the learner’s expected feature
counts, which can be expressed in terms of expected state
visitation frequencies, Dsi

.

∇L(θ) = f̃ −
∑

ζ

P (ζ|θ, T )fζ = f̃ −
∑

si

Dsi
fsi

(6)

At the maxima, the feature expectations match, guaranteeing
that the learner performs equivalently to the agent’s demon-
strated behavior regardless of the actual reward weights the
agent is attempting to optimize (Abbeel & Ng 2004).

In practice, we measure empirical, sample-based expec-
tations of the feature values, and not the true values of the
agent to be imitated. Assuming the magnitude of the fea-
tures can be bounded, a standard union and Hoeffding bound
argument can provide high-probability bounds on the er-
ror in feature expectations as a function of the number of

samples– in particular, these bounds have only an O(log K)
dependence on the number of features.1 Dudı́k & Schapire
(2006) show that the maximum entropy problem that results
given bounded uncertainty in feature expectation is a max-
imum a posteriori problem exactly like the one described
above, but with an l1-regularizer added on (with the strength
of regularization depending on the uncertainty in that fea-
ture expectation). In our experimental section we use the
online exponentiated gradient descent algorithm, which is
both very efficient and induces an l1-type regularizing effect
on the coefficients. 2

Efficient State Frequency Calculations

Given the expected state frequencies, the gradient can eas-
ily be computed (Equation 6) for optimization. The most
straight-forward approach for computing the expected state
frequencies is based on enumerating each possible path. Un-
fortunately, the exponential growth of paths with the MDP’s
time horizon makes enumeration-based approaches compu-
tationally infeasible.

Algorithm 1 Expected Edge Frequency Calculation

Backward pass

1. Set Zsi,0 = 1

2. Recursively compute for N iterations

Zai,j
=

∑

k

P (sk|si, ai,j)e
reward(si|θ)Zsk

Zsi
=

∑

ai,j

Zai,j

Local action probability computation

3. P (ai,j |si) =
Zai,j

Zsi

Forward pass

4. Set Dsi,t = P (si = sinitial)

5. Recursively compute for t = 1 to N

Dsi,t+1 =
∑

ai,j

∑

k

Dsk,tP (ai,j |si)P (sk|ai,j , si)

Summing frequencies

6. Dsi
=

∑

t

Dsi,t

Instead, our algorithm computes the expected state occu-
pancy frequencies efficiently using a technique similar to the

1In contrast, margin-based and locally normalizing models rely
on techniques that scale linearly in the number of features.

2For stochastic MDPs we can achieve better usage of finite data
by removing the variance in sample feature expectations due to the
uncertainty in the MDP. Space doesn’t permit the full exposition of
the incomplete (and non-convex) log-likelihood, but the intuitive
expectation-maximization algorithm that results fits the maximum-
entropy model using initial feature expectations and then improves
those estimates by running the resulting policy in the MDP.
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forward-backward algorithm for Conditional Random Fields
or value iteration in Reinforcement Learning. The algorithm
approximates the state frequencies for the infinite time hori-
zon using a large fixed time horizon. It recursively “backs
up” from each possible terminal state (Step 1) and computes
the probability mass associated with each branch along the
way (Step 2) by computing the partition function for Equa-
tion 4 at each action and state. These branching values yield
local action probabilities (Step 3), from which state frequen-
cies in each timestep can be computed (Steps 4 and 5) and
summed for the total state frequency counts (Step 6).

Driver Route Modeling

Our research effort on maximum entropy approaches to IRL
was motivated by applications of imitation learning of driver
route choices. We are interested in recovering a utility func-
tion useful for predicting driving behavior as well as for
route recommendation. To our knowledge, this is the largest-
scale IRL problem investigated to date in terms of demon-
strated data size.

Route Choice as an MDP

Road networks present a large planning space with known
structure. We model this structure for the road network sur-
rounding Pittsburgh, Pennsylvania, as a deterministic MDP
with over 300,000 states (i.e., road segments) and 900,000
actions (i.e., transitions at intersections). We assume that
drivers who are executing plans within the road network are
attempting to reach some goal while efficiently optimizing
some trade-off between time, safety, stress, fuel costs, main-
tenance costs, and other factors. We call this value a cost
(i.e., a negative reward). We represent the destination within
the MDP as an absorbing state where no additional costs
are incurred. Different trips have different destinations and
slightly different corresponding MDPs. We assume that the
reward weight is independent of the goal state and therefore
a single reward weight can be learned from many MDPs that
differ only in goal state.

Collecting and Processing GPS Data

We collected GPS trace data from 25 Yellow Cab taxi drivers
over a 12 week duration at all times of day. This yielded a
dataset of over 100,000 miles of travel collected during over
3,000 hours of driving and covering a large area surround-
ing Pittsburgh. We employed a particle filter to fit the sparse
GPS data to the road network and segmented the fitted traces
into approximately 13,000 distinct trips using a time-based
threshold to determine stopping locations. We discarded
roughly 30% of the trips that were too short (fewer than 10
road segments), too cyclic, or too noisy, and split 20% of the
remaining trips into a training set and the remaining 80% of
the data into a testing set of 7403 examples.

Path Features

Our road network data includes a detailed set of charac-
teristics that describe each road segment. For our experi-
ments, we consider four different dimensions of characteris-
tics: road type, speed, lanes, and transitions. A road segment

is categorized in each of these dimensions (i.e., from inter-
state to local road, high speed to low speed, and one lane to
many lanes) and transitions are categorized as straight, left,
right, hard left, and hard right. A path is described by how
many miles of each road segment categorization it contains
and the number of each transition type. Each road segment’s
contribution to these 22 different counts is represented in the
road segment’s features.

IRL Models

We apply our Maximum Entropy IRL model (MaxEnt) to
the task of learning taxi drivers’ collective utility function
for the different features describing paths in our road net-
work. We maximize the probability of demonstrated paths
within a smaller fixed class of reasonably good paths rather
than the class of all possible paths below a fixed length. Our
algorithm is efficient (polynomial time) for both classes, but
this reduction provides a significant speed up (without intro-
ducing optimization non-convexity) and limits consideration
of cycles in the road network.

We demonstrate our approach’s effectiveness by compar-
ing with two other IRL models. The first is Maximum Mar-
gin Planning (MMP) (Ratliff, Bagnell, & Zinkevich 2006),
which is a model capable of predicting new paths, but inca-
pable of density estimation (i.e., computing the probability
of some demonstrated path). The second model is an action-
based distribution model (Action) that has been employed
for Bayesian IRL (Ramachandran & Amir 2007) and hy-
brid IRL (Neu & Szepesvri 2007). The choice of action in
any particular state is assumed to be distributed according
to the future expected reward of the best policy after taking
the action, Q∗(S, a). In our setting, this value is simply the
optimal path cost to the goal after taking a particular action.

P (action a|si, θ) ∝ eQ∗(si,a) (7)

The difference between this action-based model and our
model is best illustrated in the following example.

A

B

3

2

1

Figure 2: Example of probability distributions over paths.

There are three obvious paths from A to B in Figure 2. As-
suming each path provides the same reward, in the maxi-
mum entropy model, each path will have equal probability.
In the action-based model, path 3 will have 50% probability
while paths 1 and 2 have 25% probability. The distribution
will be different for the return trip from B to A.

More generally, paths in action-based distributions such
as this one only compete for probability mass with other
paths locally at the action level, and not against other paths
that branched earlier. This problem is known as label bias
in the Conditional Random Field literature (Lafferty, Mc-
Callum, & Pereira 2001). It has undesirable consequences
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for IRL. For instance, the highest reward policy may not be
the most probable policy in the model, and policies with
the same expected reward can have different probabilities.
Compared to our maximum entropy distribution over paths,
this model gives higher probability mass to paths with a
smaller branching factor and lower probability mass to those
with a higher branching factor.

Comparative Evaluation

We now evaluate each model’s ability to model paths in the
withheld testing set after being trained on the training set
given the path’s origin and destination. We use three differ-
ent metrics. The first compares the model’s most likely path
estimate with the actual demonstrated path and evaluates the
amount of route distance shared. The second shows what
percentage of the testing paths match at least 90% (distance)
with the model’s predicted path. The final metric measures
the average log probability of paths in the training set un-
der the given model. For path matching, we evaluate both
the most likely path within the action-based model and the
lowest cost path using the weights learned from the action-
based model. We additionally evaluate a model based on
expected travel times that weights the cost of a unit distance
of road to be inversely proportional to the speed of the road,
and predicts the fastest (i.e., lowest cost) route given these
costs.

Matching 90% Match Log Prob

Time-based 72.38% 43.12% N/A

Max Margin 75.29% 46.56% N/A

Action 77.30% 50.37% -7.91

Action (costs) 77.74% 50.75% N/A

MaxEnt paths 78.79% 52.98% -6.85

Table 1: Comparison of different models’ abilities to match
most likely path predictions to withheld paths (average per-
centage of distance matching and percentage of examples
where at least 90% of the paths’ distances match) and the
probability of withheld paths (average log probability).

The results of this analysis are shown in Table 1. For each
of these metrics, our maximum entropy model shows signif-
icant (α < .01) improvements over the other models.
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Figure 3: Learned costs of turns (left) and miles of differ-
ent road types (right) normalized to seconds (with interstate
driving fixed to 65 miles per hour).

The learned cost values using our MaxEnt model are
shown in Figure 3. Additionally, we learn a fixed per edge

cost of 1.4 seconds that helps to penalize paths composed of
many short roads.

Applications

Beyond the route recommendation application described
above, our approach opens up a range of possibilities for
driver prediction. Route recommendation can be easily per-
sonalized based on passive observation of a single user. Fur-
ther, by learning a probability distribution over driver pref-
erences, destinations, and routes the MaxEntIRL model of
driver behavior can go beyond route recommendation, to
new queries like: “What is the probability the driver will
take this street?” This enables a range of new applications,
including, e.g., warning drivers about unanticipated traffic
problems on their route without ever explicitly having to
query the user about route or destination; optimizing bat-
tery and fuel consumption in a hybrid vehicle; and activating
temperature controls at a home prior to the driver’s arrival.

So far, we have not described situations where the driver’s
intended destination is unknown. Fortunately we can reason
easily about intended destinations by applying Bayes’ the-
orem to our model of route preference. Consider the case
where we want the posterior probability of a set of destina-
tions given a partially traveled path from A to B.

P (dest|ζ̃A→B) ∝ P (ζ̃A→B |dest)P (dest)

∝

∑
ζB→dest

eθ⊤fζ

∑
ζA→dest

eθ⊤fζ
P (dest)

These quantities can easily be computed using our inference
algorithm (Algorithm 1).

Figure 4: Destination distribution (from 5 destinations) and
remaining path distribution given partially traveled path.
The partially traveled path is heading westward, which is
a very inefficient (i.e., improbable) partial route to any of
the eastern destinations (3, 4, 5). The posterior destination
probability is split between destinations 1 and 2 primarily
based on the prior distribution on destinations.

Figure 4 shows one particular destination prediction prob-
lem. We evaluate our model’s ability to predict destinations
for routes terminating in one of five locations around the city
(Figure 4) based on the fraction of total route observed (Fig-
ure 5). We use a training set to form a prior over destinations
and evaluate our model on a withheld test set. Incorporating
additional contextual information into this prior distribution,
like time of day, will be beneficial for predicting the desti-
nations of most drivers.
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Figure 5: Posterior prediction accuracy over five destina-
tions given partial path.

Related Work

In locally normalizing probabilistic IRL models, probabil-
ity mass is assigned to each action based on some summary
statistic. The value of the optimal policy has been employed
(Neu & Szepesvri 2007; Ramachandran & Amir 2007). Be-
yond this probability mass assignment, paths prefixed with
one action do not compete for probability mass with paths
prefixed by other actions. The effect, known as label bias in
the CRF literature (Lafferty, McCallum, & Pereira 2001), is
that paths in portions of the state space with many branches
will be biased towards lower probability mass while those
with fewer branches will be biased towards higher probabil-
ity mass. As a consequence, the highest reward behavior in
an MDP may not be the most probable, and behaviors that
match in expected reward need not match in probability. Our
model avoids the label bias problem, giving equivalent prob-
ability to behaviors with equivalent expected reward, and
larger probability to higher reward behavior. Further, we
note that the models suggested lead to potentially difficult
non-convex optimization problems with multiple minima.

Route preference modeling has been studied using a few
different approaches. Liao et al. (2007) model transporta-
tion decisions using a directed graphical model. Local ac-
tion distributions are learned from demonstrated behavior
captured in GPS traces. While this model can represent the
same distributions as our undirected model, it is much less
efficient. Contextual information, like road closures, can in-
fluence action probability distribution throughout the entire
road network. Consequentially, a different set of action dis-
tributions must be learned for every destination and possible
context, leading to estimates based on very sparse amounts
of data.

Krumm & Horvitz (2006) use route efficiency of partial
routes to varying destinations to perform destination predic-
tion of a driver. This same notion of efficiency is captured
within our probabilistic model. The TRIP system (Letchner,
Krumm, & Horvitz 2006) learns the time inefficiency val-
ues drivers are willing to accept for each of their traveled
routes and discounts the costs of these previously traveled
road segments for each user by the level of accepted ineffi-
ciency, implicitly capturing some of their preferences. Our
IRL formalization of the problem can be viewed as an ex-

tension to this work that not only enables portions of desired
routes to have lowered costs, but also increases the costs of
undesirable routes. Additionally, approaching the problem
in a parametric fashion allows our model to efficiently in-
corporate contextual information by learning drivers’ pref-
erences of those contexts, and to generalize to previously
un-encountered road networks.

Conclusions and Future Work

We present a novel approach to inverse reinforcement and
imitation learning that cleanly resolves ambiguities in pre-
vious approaches, provides a convex, computationally ef-
ficient procedure for optimization and maintains important
performance guarantees. We applied our method to the
problem of modeling route preferences, but we focused pri-
marily on describing and evaluating the differences between
our model and other imitation learning models using a small
feature space. In future work, we plan to improve our
model by incorporating contextual factors (e.g., time of day,
weather) into our feature space, and inducing region-based
or even specific road based features that can explain, e.g.,
the avoidance of a particular road only during rush hour, or
a steep road during winter weather.
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