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Abstract 

We present the maximum entropy (MaxEnt) model with continuous features. 
We show that for the continuous features the weights should be continuous 
functions instead of single values. We propose a spline interpolation based 
solution to the optimization problem that contains continuous weights and 
illustrate that the optimization problem can be converted into a standard 
log-linear one without continuous weights at a higher-dimensional space.  

1 Introduction  

The maximum entropy (MaxEnt) model with moment constraints on binary features has been 

shown to be effective (e.g., Berger et al. 1996; Yu et al. 2005; Ma et al. 2007). However, it is not 

as successful when continuous features are used.  In the past, people have found that 

quantization techniques (e.g. bucketing or binning) help sometimes.  

In this paper, we present the MaxEnt model with continuous features. We point out that the 

weights for continuous features in the MaxEnt model should not be single values but 

continuous functions. We further provide a solution to the optimization problem that contains 

continuous weights using spline interpolations (Yu et al. 2008) and convert the optimization 

problem into a standard log-linear optimization problem with only single-value weights at a 

higher-dimensional space where each original continuous feature is mapped into several 

features. The existing training and testing algorithms for the MaxEnt model can thus be 

directly applied to this higher-dimensional space.  

The rest of the paper is organized as follows. In Section 2, we examine the MaxEnt model with 

moment constraints. In Section 3, we show that continuous weighting functions should be used 

for continuous features and propose a solution to the optimization problem that contains 

continuous weights. We conclude the paper in Section 4. 

2 MaxEnt Model  with Moment Constraints  

Let us consider a random process that produces an output value 𝑦 from a finite set 𝑌 for some 

input value 𝑥. We assume that a training set  𝑥1 , 𝑦1 ,  𝑥2 , 𝑦2 ,⋯ ,  𝑥𝑁 , 𝑦𝑁  with 𝑁 samples is 

given. Our goal is to construct a stochastic model that can accurately represent the random 

process that generated the training set. We denote 𝑝(𝑦|𝑥) as the probability of outputting 𝑦 by 

the model when 𝑥 is given. The MaxEnt principle dictates that for all the models that confine 

to the constraints 𝐶  we should select the model that maximizes the entropy. If only the 

constraints on the first order moment 

𝐸𝑝  𝑓𝑖 = 𝐸𝑝  𝑓𝑖 , 𝑖 = 1,⋯ ,𝑀 (1) 

are used, where 

𝐸𝑝 𝑓𝑖 =  𝑝  𝑥 𝑝 𝑦 𝑥 𝑓𝑖 𝑥, 𝑦 

𝑥 ,𝑦

 (2) 

and 



𝐸𝑝  𝑓𝑖 =  𝑝 (𝑥, 𝑦)𝑓𝑖 𝑥, 𝑦 

𝑥 ,𝑦

=  𝑝  𝑥 𝑝  𝑦 𝑥 𝑓𝑖 𝑥, 𝑦 

𝑥 ,𝑦

, (3) 

The solution to the MaxEnt model is in the log-linear form of (Berger et al. 1996) 

𝑝 𝑦 𝑥 =
1

𝑍𝜆(𝑥)
exp  𝜆𝑖𝑓𝑖 𝑥, 𝑦 

𝑖

 , (4) 

where 

𝑍𝜆 𝑥 =  exp  𝜆𝑖𝑓𝑖 𝑥,𝑦 

𝑖

 

𝑦

 (5) 

is a normalization constant to make sure  𝑝 𝑦 𝑥 𝑦 = 1, and 𝜆 is chosen to maximize  

Ψ 𝜆 = − 𝑝  𝑥 𝑙og𝑍𝜆 𝑥 

𝑥

+  𝜆𝑖𝐸 𝑝  𝑓𝑖  

𝑖

. (6) 

Typical algorithms used to solve the above convex optimization problem include generalized 

iterative scaling (GIS) (Darroch & Ratcliff 1972) and gradient ascent and conjugate gradient 

(e.g. L-BFGS) (Nocedal 1980) based algorithms. 

With the binary features where 𝑓𝑖(𝑥, 𝑦) ∈  0,1 , the moment constraint (1) is a strong constraint 

since 𝐸𝑝 𝑓 = 𝑝 𝑓 = 1 . However, the moment constraint is rather weak for continuous 

features.  

3 MaxEnt Model  with  Continuous Features  

To get a better statistical model, quantization techniques such as bucketing (or binning) have 

been proposed to convert the continuous features to the binary features, with which a 

continuous feature 𝑓𝑖  in the range of [𝑙, ℎ] can be converted into 𝐾 binary features  

𝑓𝑖𝑘 𝑥, 𝑦 =  
ℎ𝑘 + 𝑙𝑘

2
𝑖𝑓 𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑎𝑛𝑑 𝑥 ∈  𝑙𝑘 , ℎ𝑘  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (7) 

where 𝑘 ∈  1,2,⋯ ,𝐾 , and 𝑙𝑘 = ℎ𝑘−1 = (𝑘 − 1) ℎ − 𝑙 𝐾 + 𝑙. Using bucketing we essentially 

approximate the constraints on the distribution of the continuous features with the moment 

constraints on each segment.  

Now assume we have infinite number of training samples and we may increase the number of 

buckets to any large number we want. Under this condition, we have 

lim
𝑘→∞

 𝜆𝑖𝑘𝑓𝑖𝑘  𝑥, 𝑦 

𝑘

= 𝜆𝑖 𝑓𝑖 𝑥, 𝑦  𝑓𝑖 𝑥, 𝑦  (8) 

by noting that only one 𝑓𝑖𝑘  𝑥, 𝑦  is none-zero for each  𝑥, 𝑦  pair, where 𝜆𝑖 𝑓𝑖 𝑥, 𝑦   is a 

continuous weighting function over the feature values. (8) suggests that when continuous 

features are used the solution to the MaxEnt model is 

𝑝 𝑦 𝑥 =
1

𝑍𝜆(𝑥)
exp  𝜆𝑖 𝑓𝑖 𝑥, 𝑦  𝑓𝑖 𝑥, 𝑦 

𝑖∈ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  

+  𝜆𝑗𝑓𝑗  𝑥, 𝑦 

𝑗∈ 𝑏𝑖𝑛𝑎𝑟𝑦  

  (9) 

which contains continuous weights. Let us further approximate each continuous weight using a 

cubic-spline with natural boundary conditions. As we have shown in Yu et al. (2008) that given 

𝐾  evenly distributed knots   𝑓𝑖𝑘 , 𝜆𝑖𝑘   𝑘 = 1,⋯ ,𝐾  where ℎ = 𝑓𝑖𝑘+1 − 𝑓𝑖𝑘 = 𝑓𝑖𝑗+1 − 𝑓𝑖𝑗 >

0,∀𝑗, 𝑘 ∈  1,⋯ ,𝐾 − 1 , 𝜆𝑖 𝑓𝑖  can be approximated as 



𝜆𝑖 𝑓𝑖 ≅ 𝒂𝑻 𝑓𝑖 𝝀𝑖  (10) 

where 𝝀𝑖 =  𝜆𝑖1 ,⋯ , 𝜆𝑖𝐾 
𝑇  and 𝒂𝑻 𝑓𝑖  is a vector (Yu et al. 2008). Note that with (10) we have 

𝜆𝑖 𝑓𝑖 𝑓𝑖 ≅ 𝒂𝑻 𝑓𝑖 𝝀𝑖𝑓𝑖 =  𝒂𝑻 𝑓𝑖 𝑓𝑖 𝝀𝑖 =  𝜆𝑖𝑘  𝑎𝑘 𝑓𝑖 𝑓𝑖 

𝑘

, (11) 

where 𝑎𝑘 𝑓𝑖  is the 𝑘-th element of 𝒂𝑻 𝑓𝑖 . (11) indicates that the optimization problem (9) can 

be converted into 

𝑝 𝑦 𝑥 =
1

𝑍𝜆(𝑥)
exp  𝜆𝑖𝑘𝑓𝑖𝑘  𝑥, 𝑦 

𝑖∈ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  ,𝑘

+  𝜆𝑗𝑓𝑗  𝑥, 𝑦 

𝑗 ∈ 𝑏𝑖𝑛𝑎𝑟𝑦  

 , (12) 

where 

𝑓𝑖𝑘  𝑥, 𝑦 = 𝑎𝑘 𝑓𝑖 𝑥, 𝑦  𝑓𝑖 𝑥, 𝑦 . (13) 

(12) is in the standard log-linear form at a higher-dimensional space and can be solved with 

existing algorithms that supports negative values.  

To validate our theory, we have compared it with the single-constraint MaxEnt model where 

each continuous feature is constrained only on its mean, and the bucketing approach where 

each continuous feature is quantized into 𝐾 segments, on two classification tasks from the UCI 

data repository (Asuncion & Newman 2007). In all the experiments, our proposed approach 

consistently outperforms the single-constraint MaxEnt model and the bucketing approach with 

significant margins.  

4 Summary and Discussion  

In this paper, we presented the MaxEnt model with continuous features. We showed that for 

continuous features, the weights should be continuous functions instead of single values. We 

provided a solution to the optimization problem that contains continuous weights. The beauty 

of our solution is that we can spread and expand each original feature into several features at a 

higher-dimensional space through a non-linear mapping. With this feature conversion, the 

optimization problem with continuous weights is transformed into a standard log-linear feature 

combination problem and the existing MaxEnt algorithms can thus be directly used.  
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