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Abstract

The aim of this paper is to show that procedure of maximum entropy prin-
ciple for closure of moments equations for rarefied monatomic gases can be
extended also to polyatomic gases. The main difference with respect to the
usual procedure is existence of two hierarchies of macroscopic equations for
moments of suitable distribution function, in which the internal energy of a
molecule is taken into account. The field equations for 14 moments of distri-
bution function, which include dynamic pressure, are derived. The entropy
and the entropy flux are shown to be a generalization of the ones for classical
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macroscopic approach of extended thermodynamics for real gases.
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1. Introduction

The aim of this paper is to establish a macroscopic model for non-equilibrium
processes in rarefied polyatomic gases using the approach of maximum en-
tropy principle (MEP). To reach that goal we use the kinetic model proposed
by Bourgat, Desvillettes, Le Tallec and Perthame [1], in which the distribu-
tion function depends on an additional continuous variable that takes into
account the internal energy of a molecule.

The entropy maximization, which has its roots in statistical mechanics
and information theory, proved to be successful in the case of monatomic
gases. Namely, it was shown (see [2]) that in the case of 13 fields the follow-
ing three procedures yield the same macroscopic equations for monatomic
gases: (i) Grad’s moment method, (ii) extended thermodynamics (ET) of
viscous, heat-conducting gases and (iii) maximization of entropy. An inter-
esting review on irreversible thermodynamics, which also elucidates different
pathways to macroscopic equations, is recently given by Müller and Weiss
[3].

The closure problem for suitable set of macroscopic equations is at the
heart of the issue and each of these procedures is aimed at solving it. The
Grad’s moment method is focused on finding the approximate non-equilibrium
velocity distribution function f(t,x, ξ) which closes the system of balance
laws in the physical case of 13 moments. The celebrated solution, given by
Grad [4], is based upon expansion of distribution function in terms of tenso-
rial Hermite polynomials. This procedure led to the system of balance laws
for 13 moments of f , i.e. fields of mass density, velocity, temperature, stress
tensor and heat flux.

The extended thermodynamics (ET) [2, 6], as primarily macroscopic the-
ory, arrived at the same set of equations by imposing universal principles of
relativity, entropy inequality with convex entropy. Motivated by the similar-
ity of ET and moment equations derived from the Boltzmann equation on one
hand, and Kogan’s observation that Grad’s distribution function maximizes
the entropy [5] on the other, a maximum entropy principle was established
first by Dreyer [7]. In the first edition of the book of ET of Müller and Ruggeri
[8] this procedure was extended for any number of moments. Successively,
similar result was given by Levermore [9]. The complete equivalence between
entropy principle and MEP was proved subsequently by Boillat and Ruggeri
[10].

The success in the study of monatomic gases by the methods previously
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described have not been achieved in the case of polyatomic gases. The inclu-
sion of new degrees of freedom (rotation and vibration) enriched the physical
insight at the expense of mathematical coherence of the procedure [11]. In
particular, internal energy density is no longer related to the trace of the
second moment of distribution function, which prevents construction of sim-
ple hierarchy of transfer equations for moments. Moreover, complex physical
description made solution procedures extremely complicated even for slightly
involved problems.

Concerning the kinetic approach, a new light was shed on the problem
when the model for binary collisions was introduced by Borgnakke and Larsen
[12], which takes into account an exchange of energy (other than transla-
tional) during the collision. It was initially used for Monte Carlo simulations
of polyatomic gases, but also applied for derivation of appropriate Boltzmann
equation [1].

In the macroscopic framework, an ET theory for real gases has been
successfully developed only very recently by Arima, Taniguchi, Ruggeri and
Sugiyama [13], after several pioneering papers [14, 15]. This is the theory
of 14 fields of mass density, velocity, temperature, viscous stress, dynamic
pressure, and heat flux with two parallel hierarchical series of field equations
of balance type. The constitutive equations are determined explicitly by
the thermal and caloric equations of state. The theory naturally includes
the special case of rarefied polyatomic gases and, as a singular limit, the
case of monatomic gases. This approach was applied also for derivation of 6
moments moments ET model which extends the Meixner’s theory [16].

Our aim is to show that maximum entropy principle applied to kinetic
model for polyatomic gases yields appropriate macroscopic balance laws for
14 independent fields, and presents a natural generalization of the same pro-
cedure applied for monatomic gases. Principal novelty, which is in accordance
with the conjecture of ET of real gases [13], is that we obtain two hierarchies
of transfer equations for moments, in contrast to one hierarchy in the case of
monatomic gases. One of them is related to classical moments of distribution
function, i.e. “momentum-like” moments. Another independent hierarchy,
which starts with the second order moment corresponding to internal energy
density, is expanded into transfer equations for “energy-like” moments. This
hierarchy, however, cannot be merged into the first one since internal energy
density is no longer twice the trace of the classical second order moment, as
it is in monatomic case.

The paper is organized as follows. The Section 2 contains brief review
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of classical results related to application of the maximum entropy principle
in kinetic theory of monatomic gases. In Section 3 the basic features of the
model for polyatomic gases will be discussed at the Euler level. In partic-
ular, an equilibrium distribution function will be derived using maximum
entropy principle, coinciding with the equilibrium distribution deduced in
[1] by means of H−theorem, with accompanying Euler equations. This will
also be the preparatory material for the next two sections where new non-
equilibrium results will be given. Namely, Section 4 will contain exposition
of the main idea of the paper – to construct two independent hierarchies
of moment equations, “momentum” and “energy” one. The Section 5 will
be focused on 14 moments approximation of velocity distribution function.
First, the non-equilibrium velocity distribution function will be derived by
means of maximum entropy principle. Second, corresponding set of balance
laws (field equations) as transfer equations for moments will be derived in
the spirit of procedure described in Section 4, which proves the complete
consistence between the entropy principle of ET for real gases and MEP for
polyatomic gases. This part of the study also contains novel results regarding
the source terms and transport coefficients in balance laws for momentum
flux (i.e. pressure tensor) and energy (heat) flux. Finally, entropy density and
entropy flux will be determined for polyatomic gases both in equilibrium and
non-equilibrium case. It is shown that Gibbs relation holds for equilibrium
distribution function, whereas entropy density and entropy flux represent
generalization of Grad’s ones, since they comprise dynamic pressure. The
section finishes with discussion on the qualitative analysis in the framework
of symmetric hyperbolic systems. At the end, some remarks about further
problems will be given.

2. Moment equations and entropy maximization

The kinetic theory of gases assumes that the state of the monatomic gas is
described by the velocity distribution function f(t,x, ξ). Then f(t,x, ξ) dx dξ
is the number of atoms in the volume dx dξ of phase space centered at
(x, ξ) ∈ R

3×R
3. The time rate of change of the velocity distribution function

in the absence of external forces is determined by the Boltzmann equation

∂tf + ξj∂jf = Q(f), (1)

where the collision integral Q(f) determines the collision rate of change of
distribution function. The symbols ∂t and ∂j denote partial derivatives with
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respect to time t and space variables xj, respectively
1. Finding solution of

(1) is extremely complicated and laborious task. Moreover, one is usually
interested in evolution of macroscopic observable quantities under special
conditions and exact solution is not even necessary. One way to circum-
vent direct solution of the Boltzmann equation is to define certain number
of macroscopic quantities through averaging f over the velocity space and to
determine appropriate governing equations for them. In fact, these macro-
scopic quantities are the moments of distribution function:

Fi1...in =

∫

R3

mξi1 · · · ξinf dξ, (ik ∈ {1, 2, 3}, ∀k ∈ N).

Transfer equations for moments have the form of balance laws:

∂tF+ ∂jFj = P, (2)

where, the densities F, the fluxes Fj and the productions P are:

F(t,x) =

∫

R3

Ψ(ξ)f dξ,

Fj(t,x) =

∫

R3

ξjΨ(ξ)f dξ, (3)

P(t,x) =

∫

R3

Ψ(ξ)Q(f) dξ,

with

Ψ(ξ) = m



















1
ξi1

ξi1ξi2
...

ξi1 · · · ξin
...



















.

The Boltzmann equation (1) is in this way substituted by an infinite sequence
of balance laws for the moments (2). Notable property of this sequence is
that the flux in moment equation of tensorial order n becomes the density
in the moment equation of order n+ 1. The first five balance laws, obtained

1Throughout the paper summation with respect to repeated indices will be assumed.
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for collision invariants (m,mξi, (1/2)m|ξ|2), have the physical meaning of
conservation laws of mass, momentum and energy, since the first 5 production
terms are annihilated.

The hierarchy of macroscopic equations (2) is usually truncated at some
order of moments, say N , and the closure of the system and the accuracy of
the solution of the truncated system strongly depends upon proper choice of
the distribution function. One method which provides appropriate solution
of this problem is the maximization of entropy. It is well known that every
solution f of the Boltzmann equation (1) satisfies the supplementary entropy
balance law:

∂th+ ∂jhj = Σ ≥ 0, (4)

where

h = −k

∫

R3

f log f dξ, hj = −k

∫

R3

ξjf log f dξ, Σ = −k

∫

R3

Q(f) log f dξ,

k being the Boltzmann constant. This result, in a bit different form (with
factor −k dropped), is known as H−theorem, equality being satisfied when
f is the Maxwellian distribution. On the other hand, it was shown that the
local Maxwellian distribution (with hydrodynamic variables which depend on
t and x), as well as the Grad’s distribution, maximizes the physical entropy
h.

These results motivated formulation of the maximum entropy principle.
It states that actual distribution function f is the one which maximizes the
physical entropy:

h = −k

∫

R3

f log f dξ → max, (5)

under the constraints that its moments are prescribed:

F(N)(t,x) =

∫

R3

Ψ(N)(ξ)f(t,x, ξ) dξ, (6)

where F(N) is the truncated vector of moments up to tensorial order N ,
and Ψ(N) is the vector Ψ truncated at order N . Thus, the approximate
distribution function comes out as solution of a variational problem with
constraints.

The problem can put on physical ground in the following way: entropy is
related to probability of reaching certain state, and maximization of entropy
is the search for the most probable velocity distribution function. On the
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other hand, the only information we get about the system is its macroscopic
state, described by the moments (6) of the distribution function. Therefore,
we seek a distribution function f within the set of functions compatible with
a given macroscopic state (set of admissible functions) which maximizes the
entropy2.

The variational problem (5) with the constraints (6) is solved by the
method of Lagrange multipliers and yields the following solution

f(t,x, ξ) = exp (−1− χ/k) , χ = λ(N)(t,x) ·Ψ(N)(ξ). (7)

It is important to note that the Lagrange multipliers, and consequently the
distribution function, depend on t and x through the moments, λ(N) ≡
λ(N)(F(N)(t,x)). For both mathematical (convergence) and physical reasons
(processes not far from equilibrium), carefully explained in [17] §3.16, the
maximizer (7) is expanded in the neighborhood of local equilibrium. There-
fore, the distribution function can be approximated as:

f = fM

(

1−
1

k
λ̃

(N)
·Ψ(N)

)

, λ̃
(N)

= λ(N) − λ
(N)
E (8)

where fM denotes the Maxwellian distribution in local equilibrium (the lo-

cal Maxwellian) and λ
(N)
E are the Lagrange multipliers evaluated at local

equilibrium state. It was proved in [18] that all the equilibrium multipliers
vanish, except the first 5 which correspond to the first 5 moments, i.e. the
hydrodynamic variables. Plugging (8) into (6) we obtain a linear algebraic

system that permits to evaluate the Lagrange multipliers λ̃
(N)

in terms of
the densities F(N):

F(N)(t,x)− F
(N)
E (t,x) = (9)

−
1

k

∫

R3

(

λ̃
(N)

(t,x) ·Ψ(N)(ξ)
)

Ψ(N)(ξ)fE(t,x, ξ) dξ,

(F
(N)
E denotes the equilibrium values). Inserting λ̃

(N)
solution of (9) into (8),

we obtain the explicit dependence of the truncated fluxes and source terms

F
(N)
j (t,x) =

∫

R3

ξjΨ
(N)(ξ)f dξ, P(N)(t,x) =

∫

R3

ξjΨ
(N)(ξ)Q(f) dξ,

2To be more precise we have to write f (N) instead of f because we have different f

changing N but to avoid heavy notation we omit the index N . Nevertheless, it is important
to note that f (N) is not solution of the Boltzmann equation (1) and the conjecture is that
f (N) converge to f when N → ∞.
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on the densities and, as a consequence, the truncated system of moment
equations:

∂tF
(N) + ∂jF

(N)
j = P(N), (10)

is a closed system in which the only unknowns are the densities.
It was shown by Boillat and Ruggeri [10] that the maximum entropy so-

lution (8) of order N generates the equivalent set of balance laws as extended
thermodynamics of the same order in which it is required that the truncated
system (10) satisfy the entropy principle (4) with entropy, entropy density
and entropy production which depend on the truncated densities. It is also
proved that the closed balance laws system can be put into symmetric hyper-
bolic form using the main field u′ which coincides with Lagrange multipliers
λ(N). Moreover, the same authors put in evidence that the moments closure
gives a nesting theories of principal subsystems. In fact, it was proved in [18]
that if the closure is obtained with two different truncation orders M < N ,
then the system of order M is a principal subsystem of the system of order
N . The main consequence is that maximum characteristic velocity does not
decrease with the index N , and tends to infinity when N → ∞ [10]. General-
ization of this procedure for higher order expansions of distribution function
was given in [19]. Recently, the maximum entropy principle was discussed in
a broader context of evolution equations with source terms [20].

3. Equilibrium distribution function for polyatomic gases

Our first aim is to recover the equilibrium distribution function and ap-
propriate field equations for hydrodynamic variables (i.e. transfer equations
for moments) via MEP. We shall, therefore, briefly describe the kinetic model
for polyatomic gases and point out the important consequences related to in-
ternal energy density.

The basic feature of the kinetic model for polyatomic gases proposed in
[1], and later on applied to chemically reacting mixtures [21], is the presence
of a single continuous internal energy parameter I ≥ 0. It represents com-
municable internal energy of the molecules in collision, i.e. it captures the
influence of internal degrees of freedom on energy exchange during collisions.
To that end, the conservation laws of momentum and energy during collisions
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read:

ξ′ + ξ′∗ = ξ + ξ∗, (11)

1

2
m|ξ′|2 +

1

2
m|ξ′∗|

2 + I ′ + I ′∗ =
1

2
m|ξ|2 +

1

2
m|ξ∗|

2 + I + I∗,

where |ξ| = (ξiξi)
1/2. The post-collisional quantities are described by the so-

called Borgnakke-Larsen procedure, based on a repartition of the kinetic and
internal energy [12], [1], [21]. We pass to the reference frame of the center of
mass and write total energy of the incoming molecules, which is, by virtue
of (11), the same as the one of the outgoing molecules:

ε =
1

4
m|ξ − ξ∗|

2 + I + I∗ =
1

4
m|ξ′ − ξ′∗|

2 + I ′ + I ′∗.

Then, with a help of parameter R ∈ [0, 1], we attribute a part of total energy
of the outgoing molecules to their kinetic energy, and the rest to their internal
energy:

Rε =
1

4
m|ξ′ − ξ′∗|

2 (12)

(1−R) ε = I ′ + I ′∗.

To distribute the internal energy itself between the two outgoing molecules,
we introduce a new parameter r ∈ [0, 1] and write

I ′ = r (1−R) ε, I ′∗ = (1− r)(1−R) ε.

Finally, as collisions between molecules are of specular reflection type, we
parameterize (12) by a unitary vector ω ∈ S2:

ξ′ − ξ′∗ =

√

4Rε

m
Tω

[

ξ − ξ∗
|ξ − ξ∗|

]

,

where Tω is the symmetry with respect to the plane {ω}⊥, i.e.

Tωz = z − 2(ω · z)ω, ∀z ∈ R
3.

Coming back into the laboratory reference frame, we end up with expressions
for post-collisional velocities:

ξ′ =
ξ + ξ∗

2
+

√

Rε

m
Tω

[

ξ − ξ∗
|ξ − ξ∗|

]

, ξ′∗ =
ξ + ξ∗

2
−

√

Rε

m
Tω

[

ξ − ξ∗
|ξ − ξ∗|

]

.
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As a consequence of considering one additional parameter, velocity distri-
bution function f(t,x, ξ, I) is defined on extended domain [0,∞) × R

3 ×
R

3 × [0,∞). Its rate of change is determined by the Boltzmann equation
which has the same form as (1) but collision integral Q(f) takes into account
the influence of internal degrees of freedom through collisional cross section.
Collision invariants for this model form a 5-vector:

ψ(ξ, I) = m

(

1, ξi, |ξ|
2 + 2

I

m

)T

, (13)

which lead to hydrodynamic variables in the form:




ρ
ρui

ρ|u|2 + 2ρε



 =

∫

R3

∫ ∞

0

ψ(ξ, I)f(t,x, ξ, I)ϕ(I) dI dξ, (14)

where ρ, u and ε are mass density, hydrodynamic velocity and internal en-
ergy, respectively. A non-negative measure ϕ(I) dI is property of the model
aimed at recovering classical caloric equation of state for polyatomic gases in
equilibrium. Entropy is defined by the following relation:

h = −k

∫

R3

∫ ∞

0

f log fϕ(I) dI dξ. (15)

We shall introduce the peculiar velocity:

C = ξ − u (16)

and rewrite the Eq. (14) in terms of it. Then:





ρ
0i
2ρε



 =

∫

R3

∫ ∞

0

m





1
Ci

|C|2 + 2I/m



 f(t,x,C, I)ϕ(I) dI dC. (17)

Note that the internal energy density can be divided into the translational
part ρεT and part related to the internal degrees of freedom ρεI :

ρεT =

∫

R3

∫ ∞

0

1

2
m|C|2f(t,x,C, I)ϕ(I) dI dC,

ρεI =

∫

R3

∫ ∞

0

If(t,x,C, I)ϕ(I) dI dC. (18)
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The former can be related to kinetic temperature in the following way:

εT =
3

2

k

m
T, (19)

whereas the latter should determine the contribution of internal degrees of
freedom to internal energy of a polyatomic gas.

The maximum entropy principle is expressed in terms of the following
variational problem: determine the velocity distribution function f(t,x,C, I)
such that h → max, subject to the constraints (14), or equivalently, due to
Galilean invariance, to the constraints (17). The solution is given as follows.

Statement 1. The distribution function which maximizes the entropy (15)
subject to the constraints (17) has the form:

fE =
ρ

mq(T )

( m

2πkT

)3/2

exp

{

−
1

kT

(

1

2
m|C|2 + I

)}

, (20)

where

q(T ) =

∫ ∞

0

exp

(

−
I

kT

)

ϕ(I) dI. (21)

The proof of the statement relies on application of Lagrange multiplier

method. To that end we shall introduce the vector of multipliers
(

λ(0), λ
(1)
i , µ(2)

)

.

Superscript indicates the tensorial order of the moment to which the multi-
plier is related. The appropriate extended functional is defined as follows:

L =

∫

R3

∫ ∞

0

{

−kf log f −m

[

λ(0) + λ
(1)
i ξi + µ(2)

(

|ξ|2 + 2
I

m

)]

f

}

ϕ(I) dI dξ.

(22)
Since L is a scalar, it must retain the same value also for zero hydrodynamic
velocity u = 0, due to the Galilean invariance. Therefore:

L =

∫

R3

∫ ∞

0

{

−kf log f −m

[

λ̂(0) + λ̂
(1)
i Ci + µ̂(2)

(

|C|2 + 2
I

m

)]

f

}

ϕ(I) dI dC,

(23)
where the hat denotes the Lagrange multipliers evaluated for u = 0. Com-
parison between (22) and (23) yields the relations:

λ(0) = λ̂(0) − λ̂
(1)
i ui + µ̂(2)|u|2; λ

(1)
i = λ̂

(1)
i − 2µ̂(2)ui; µ(2) = µ̂(2) (24)

11



which dictate the velocity dependence of Lagrange multipliers in accordance
with the general results of Galilean invariance [22].

The Euler-Lagrange equation δL/δf = 0 leads to the following form of
solution:

f = exp

{

−1−
m

k

[

λ̂(0) + λ̂
(1)
i Ci + µ̂(2)

(

|C|2 + 2
I

m

)]}

.

Plugging the solution into the constraints (17), with the help of (19), one de-
termines the zero velocity Lagrange multipliers in terms of the hydrodynamic
variables:

exp
(

−1−
m

k
λ̂(0)

)

=
ρ

m q(T )

( m

2πkT

)3/2

, λ̂
(1)
i = 0, µ̂(2) =

1

2T
, (25)

with q(T ) is defined by (21), which completes the proof. Notice that using
(24) and (25) we can have the explicit form of the Lagrange multipliers (i.e.
the main field) that symmetrize the system and coincide with the Godunov
variables [23]:

λ(0) =
1

T

(

−G+
1

2
|u|2

)

; λ
(1)
i = −

ui

T
; µ(2) =

1

2T
,

where G denotes the chemical potential.
The velocity distribution (20) is generalization of the classical Maxwellian

equilibrium distribution in the case of polyatomic gases. It was derived in [1]
and [21] by means of the H−theorem. However, the model chosen to describe
the polyatomic structure, i.e. measure ϕ(I)dI, determines (20) through q(T ).

The structure of weighting function ϕ(I) is determined such that it is
possible to recover caloric equation of state for polyatomic gases. If D is the
number of degrees of freedom of a molecule, it can be shown that ϕ(I) = Iα

leads to appropriate caloric equation in equilibrium provided:

α =
D − 5

2
. (26)

Statement 2. In equilibrium, the internal energy εI has the following form:

εI |E =
ρ

m

η1(T )

q(T )
, η1(T ) =

∫ ∞

0

Iϕ(I) exp(−
I

kT
) dI. (27)
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Moreover, if weighting function is chosen to be ϕ(I) = Iα, internal energy of
a polyatomic gas in equilibrium reads:

ε|E =

(

5

2
+ α

)

k

m
T, α > −1. (28)

To prove (27) one just has to put the equilibrium distribution (20) into
(18)2. Furthermore, choosing ϕ(I) = Iα, and taking into account the iden-
tity:

ηβ(T ) =

∫ ∞

0

Iβϕ(I) exp(−
I

kT
) dI = (kT )β+1+αΓ(β + 1 + α),

for β ≥ 0, auxiliary functions can be expressed in terms of Gamma function:

q(T ) = η0(T ) = (kT )1+αΓ(1 + α), η1(T ) = (kT )2+αΓ(2 + α), (29)

with overall restriction α > −1. With the help of relation Γ(z + 1) = zΓ(z)
one obtains η1(T )/q(T ) = (1+α)kT , which in turn leads to (28) by combining
with translational energy (19).

The relation between α and D (26) follows directly from comparison
between (28) and well-know caloric equation for polyatomic gases:

ε|E =
D

2

k

m
T.

Observe that model for a monatomic gas (D = 3) cannot be recovered from
the one with continuous internal energy, since the value of parameter α in
monatomic case violates the overall restriction α > −1.

If hydrodynamic variables ρ, u and T in (20) are constants, distribution
function identically satisfies the Boltzmann equation. If they are functions
of (t,x) ∈ (0,∞] × R

3, we have so-called local Maxwellian distribution, but
the hydrodynamic variables – moments of distribution function – cannot be
arbitrary: they have to satisfy the transfer equations for moments. These
equations have the form (10) for Ψ being substituted by collision invariants
(13). As a matter of fact, they are the Euler gas dynamics equations for
polyatomic gases.

Statement 3. If (20) is local equilibrium distribution with ρ ≡ ρ(t,x), u ≡
u(t,x) and T ≡ T (t,x), then the hydrodynamic variables ρ, u and T satisfy

13



the following systems of equations:

∂tρ+ ∂j(ρuj) = 0,

∂t(ρui) + ∂j(ρuiuj + p δij) = 0, (30)

∂t

(

1

2
ρ|u|2 + ρε

)

+ ∂j

{(

1

2
ρ|u|2 + ρε+ p uj

)}

= 0,

where δij is Kronecker delta, p = (k/m)ρT and ε is determined by (28).

Equations (30) are obtained as moment equations of the distribution func-
tion in the form (10) with:

F(2) =

∫

R3

∫ ∞

0

ψ(ξ, I)fEI
α dI dξ,

F
(2)
j =

∫

R3

∫ ∞

0

ξjψ(ξ, I)fEI
α dI dξ,

P(2) =

∫

R3

∫ ∞

0

ψ(ξ, I)Q(fE)I
α dI dξ = 0,

for ψ(ξ, I) defined by (13) and N = 2. In fact, moments and their fluxes
read:

F(2) =





ρ
ρui

ρ|u|2 + 2ρε



 , F
(2)
j =





ρuj

ρuiuj + pij
(ρ|u|2 + 2ρε)uj + 2pijui + 2qj



 ,

where pij and qi are pressure tensor and heat flux, respectively. When they
are evaluated as fluxes of local Maxwellian (20) one obtains:

pij =

∫

R3

∫ ∞

0

mCiCjfEI
α dI dC =

k

m
ρT δij = p δij,

qj =

∫

R3

∫ ∞

0

Cj

(

1

2
m|C|2 + I

)

fEI
α dI dC = 0,

which completes the proof. Note that equations (30) have the same form
in the case of monatomic gases, except for the fact that internal energy in
monatomic case is strictly ε = 3

2
k
m
T .
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4. The hierarchy of the moment equations for polyatomic gases

The derivation of macroscopic equations at Euler lever is rather straight-
forward. One takes the moments of local Maxwellian against collision invari-
ants and obtains the conservation laws of mass, momentum and energy. The
closure of the system is achieved due to the fact that non-equilibrium fluxes
– pressure tensor and heat flux – vanish in local equilibrium state, whereas
pressure and internal energy are uniquely determined.

If non-equilibrium effects are to be taken into account in polyatomic gases,
one faces the problem at the very first step. Although the model with con-
tinuous internal energy parameter helped to recover the caloric equation of
state, nice hierarchical structure, present in Eqs. (2)-(3) for monatomic gases,
is destroyed. It is a consequence of the structure of collision invariants (13).
The energy is not equal to the half of the trace of the second order moment
anymore due to the presence of additional parameter I. Thus, the hierarchy
of moments equations cannot be constructed in the same fashion as in the
monatomic case. Consequently, Grad’s procedure cannot be generalized in
a straightforward manner. This difficulty was overcome in [24]. Main idea,
already anticipated in [1], was to extend the state space of the molecule in
order to treat additional parameter as velocity in such a higher-dimensional
space. This procedure yielded hierarchy which is much alike the one for
monatomic gases and allowed direct application of Grad’s method.

Our analysis will pursue in different direction. In classical continuum
mechanics the conservation laws of momentum and energy are independent
physical laws as long as changes of internal energy of the medium occur.
Motivated by the idea stated in the paper [13], we shall generalize this fea-
ture to moment equations for polyatomic gases by constructing two inde-
pendent hierarchies. One will be much alike classical “momentum” hierar-
chy of monatomic gases (F−hierarchy); the other one, “energy” hierarchy,
commences with the moment related to energy collision invariant and pro-
ceeds with standard increase of the order through multiplication by velocities
(G−hierarchy). They read:

∂tF+ ∂jFj = P, ∂tG+ ∂jGj = Q.
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The moments, fluxes and productions of F−hierarchy are defined as:

F(t,x) =

∫

R3

∫ ∞

0

Ψ(ξ)f ϕ(I) dI dξ,

Fj(t,x) =

∫

R3

∫ ∞

0

ξjΨ(ξ)f ϕ(I) dI dξ,

P(t,x) =

∫

R3

∫ ∞

0

Ψ(ξ)Q(f)ϕ(I) dI dξ,

with:

Ψ(ξ) = m



















1
ξi1

ξi1ξi2
...

ξi1 · · · ξin
...



















.

The moments, fluxes and productions of G−hierarchy are defined as:

G(t,x) =

∫

R3

∫ ∞

0

Θ(ξ, I)f ϕ(I) dI dξ,

Gj(t,x) =

∫

R3

∫ ∞

0

ξjΘ(ξ, I)f ϕ(I) dI dξ,

Q(t,x) =

∫

R3

∫ ∞

0

Θ(ξ, I)Q(f)ϕ(I) dI dξ,

with:

Θ(ξ, I) = m



















|ξ|2 + 2 I
m

(

|ξ|2 + 2 I
m

)

ξk1
(

|ξ|2 + 2 I
m

)

ξk1ξk2
...

(

|ξ|2 + 2 I
m

)

ξk1 · · · ξkm
...



















,

i.e.

Θ(ξ, I) =

(

2
I

m
+ |ξ|2

)

Ψ(ξ).

Note that minimal order of the moment in F−hierarchy is 0, while minimal
order in G−hierarchy is 2. Furthermore, due to the collision invariants the
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first two orders of productions in F−hierarchy are zero, as well as second
(the lowest) order production in G−hierarchy. Finally, the property that
flux in moment equation of order n becomes the density in moment equation
of order n+ 1 holds, albeit separately for F− and for G−hierarchy.

Like in monatomic gases, infinite sequences of moment equations may be
truncated to form a finite set of balance laws:

∂tF
(N) + ∂jF

(N)
j = P(N), ∂tG

(M) + ∂jG
(M)
j = Q(M).

for N ≥ 0 and M ≥ 2. Note that local equilibrium case, equations (30) from
previous section, is recovered for N = 1 and M = 2, with closure achieved
through the equilibrium distribution (20). For higher order approximations
the closure problem remains open. In the next section we shall study the
most interesting physical case of non-equilibrium 14 moments.

5. The 14 moments system for polyatomic gases

When the system is dissipative, the pressure tensor pij, or equivalently
the stress tensor tij = −pij, have also a non-equilibrium part due to viscosity:

pij = pδij − Sij. (31)

In the real gas, Sij have an isotropic part and a deviatoric part:

Sij = −Πδij − p〈ij〉, (32)

where Π is the so-called dynamic pressure, which vanishes in monatomic case,
and p〈ij〉 is traceless part of the pressure tensor. Therefore, we have:

pij = (p+Π)δij + p〈ij〉. (33)

Moreover, the heat flux qi does not vanish in non-equilibrium. The existence
of the dynamic pressure implies that non-equilibrium state of real gas is
described by 14 field variables, instead of 13 fields of monatomic gas.

The recent study of ET of real gases [13] suggested the following form of
field equations governing evolution of 14 field variables (moments):

∂tF + ∂jFj = 0,

∂tFi1 + ∂jFi1j = 0, ∂tGpp + ∂jGppj = 0, (34)

∂tFi1i2 + ∂jFi1i2j = Pi1i2 , ∂tGppk1 + ∂jGppk1j = Qppk1 ,
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where F is the mass density, Fi1 is the momentum density, Gpp is twice
the total energy density, Fi1i2 is the momentum flux, and Gppk1 is twice
the total energy flux; Fi1i2j and Gppk1j are the fluxes of Fi1i2 and Gppk1 ,
respectively, and Pi1i2 and Qppk1 are the productions with respect to Fi1i2

and Gppk1 respectively. It is inevitable that equations (34) perfectly fit into
hierarchy of moment equations for rarefied polyatomic gas, if one choose
N = 2 and M = 3:

∂tF
(2) + ∂jF

(2)
j = P(2), ∂tG

(3) + ∂jG
(3)
j = Q(3). (35)

The vectors of densities are:

F(2)(t,x) =





F
Fi1

Fi1i2



 =

∫

R3

∫ ∞

0

m





1
ξi1

ξi1ξi2



 f(t,x, ξ, I)ϕ(I) dI dξ,

(36)

G(3)(t,x) =

(

Gpp

Gppk1

)

=

∫

R3

∫ ∞

0

m

(

|ξ|2 + 2 I
m

(

|ξ|2 + 2 I
m

)

ξk1

)

f(t,x, ξ, I)ϕ(I) dI dξ.

In the sequel it will be assumed ϕ(I) = Iα, α > −1.
Inserting (16) into (36) we have the velocity dependence that it is in

agreement with the Galilean invariance [13, 22]:

F = ρ, Fi1 = ρui1 , Fi1i2 = ρui1ui2 + pi1i2
Gpp = 2ρε+ ρ|u|, Gppk1 =

(

2ρε+ ρ|u|2
)

uk1 + 2pik1ui + 2qi

with




ρ
0i
pij



 =

∫

R3

∫ ∞

0

Ψ(2)(C)f(t,x,C, I)ϕ(I) dI dC,

(37)
(

ρε
qi

)

=
1

2

∫

R3

∫ ∞

0

Θ(3)(C, I)f(t,x,C, I)ϕ(I) dI dC,

where the following notation is used:

Ψ(2)(C) = m





1
Ci

CiCj



 , Θ(3)(C, I) = m

(

|C|2 + 2 I
m

(

|C|2 + 2 I
m

)

Ci

)

. (38)
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Note that (36) determine 14 constraints for 14 scalar moments of distri-
bution function, in contrast to 13 moments in monatomic gases. The number
of constrained moments is increased since Fii 6= Gii in polyatomic gases.

5.1. The non-equilibrium distribution function

For the entropy defined by (15) the following variational problem can
be formulated, expressing the maximum entropy principle: determine the
velocity distribution function f(t,x,C, I) such that h → max, subject to
constraints (37). The solution of the problem is as follows.

Statement 4. The velocity distribution function which maximizes the en-
tropy (15) subject to constraints (37) for the choice of weighting function
ϕ(I) = Iα, has the form:

f = fE

{

1−
ρ

p2
qiCi +

ρ

p2

[

p〈ij〉 −

(

5

2
+ α

)

(1 + α)−1Πδij

]

CiCj (39)

−
3

2(1 + α)

ρ

p2
Π

(

1

2
|C|2 +

I

m

)

+

(

7

2
+ α

)−1
ρ2

p3
qi

(

1

2
|C|2 +

I

m

)

Ci

}

where fE is the equilibrium distribution (20) and q(T ) is the auxiliary func-
tion (21).

To solve the problem we shall introduce the following vectors of Lagrange
multipliers:

λ(2) ≡
(

λ(0), λ
(1)
i , λ

(2)
ij

)

, µ(3) ≡
(

µ(2), µ
(3)
i

)

,

where λ(2) corresponds to constraints (36)1 and µ(3) corresponds to con-
straints (36)2. The superscript indicates the order of the moment to which
the multiplier is applied.

The extended functional for the constrained variational problem reads:

L =

∫

R3

∫ ∞

0

{

−kf log f − λ(2) ·Ψ(2)(ξ)− µ(3) ·Θ(3)(ξ, I)
}

ϕ(I) dξ. (40)

For Galilean invariance the functional is the same also for zero hydrodynamic
velocity (u = 0) and therefore

L =

∫

R3

∫ ∞

0

{

−kf log f − λ̂
(2)

·Ψ(2)(C)− µ̂(3) ·Θ(3)(C, I)
}

ϕ(I) dC, (41)
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where the following vectors of zero velocity Lagrange multipliers are intro-
duced:

λ̂
(2)

≡
(

λ̂(0), λ̂
(1)
i , λ̂

(2)
ij

)T

, µ̂(3) ≡
(

µ̂(2), µ̂
(3)
i

)T

,

and Ψ(2)(C) and Θ(3)(C, I) are defined by (38). In the formulation of the
variational problem it is sufficient to use the macroscopic quantities deter-
mined by peculiar velocity C, rather than the molecular one ξ. We observe

that λ̂
(2)

corresponds to constraints (37)1 and µ̂
(3) corresponds to constraints

(37)2.
The equivalence between (40) and (41) implies

λ(2) ·Ψ(2)(C+ u) + µ(3) ·Θ(3)(C+ u, I) = λ̂
(2)

·Ψ(2)(C) + µ̂(3) ·Θ(3)(C, I)

for all C ∈ R
3. This implies the velocity dependence of Lagrange multipliers

in accordance with the Galilean invariance [22]:

λ(0) = λ̂(0) − λ̂
(1)
i ui + λ̂

(2)
ij uiuj + µ̂(2)|u|2 − µ̂

(3)
j uj|u|

2,

λ
(1)
i = λ̂

(1)
i − 2λ̂

(2)
ij uj − 2µ̂(2)ui + 2µ̂

(3)
j uiuj + µ̂

(3)
j |u|2,

λ
(2)
ij = λ̂

(2)
ij −

(

µ̂
(3)
j ui + µ̂

(3)
i uj

)

+
4

9
µ̂
(3)
k ukδij, (42)

µ(2) = µ̂(2) − µ̂
(3)
j uj,

µ
(3)
j = µ̂

(3)
j .

From (41) the solution of the Euler-Lagrange equation δL/δf = 0 is given
by:

f = exp(−1− χ/k), χ = λ̂
(2)

·Ψ(2)(C) + µ̂(3) ·Θ(3)(C, I).

The apparent similarity between this solution and solution (7) in monatomic
case draws our attention to the convergence problem. To ensure the conver-
gence of moments of distribution function, we shall recourse to the approx-
imate form of the maximizer by its expansion in the neighborhood of local
equilibrium:

f = fE

(

1−
1

k

(

λ̃
(2)

·Ψ(2) + µ̃(3) ·Θ(3)
)

)

, (43)
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where fE is the equilibrium distribution (20) and λ̃
(2)

= λ̂
(2)

− λ̂
(2)

E , µ̃(3) =

µ̂(3)−µ̂
(3)
E , where subscript E indicates the values of the Lagrange multipliers

at the local equilibrium state.
Inserting (43) into the constraints (37) one immediately obtains λ̃(0) = 0,

and taking into account (28) the following system of algebraic equations
emerges:

λ̃
(2)
ii + (5 + 2α) µ̃(2) = 0,

λ̃
(1)
i + (7 + 2α)

p

ρ
µ̃
(3)
i = 0,

2
p2

ρ
λ̃
(2)
ij −

(

k

m
p−

2p2

ρ
µ̃(2)

)

δij = −
k

m
pij, (44)

(

7

2
+ α

)

λ̃
(2)
ii +

[

15

2
+ 2(1 + α)(5 + α)

]

µ̃(2) = 0,

(

7

2
+ α

)

p2

ρ
λ̃
(1)
i +

[

35

2
+ 2(1 + α)(7 + α)

]

p3

ρ2
µ̃
(3)
i = −

k

m
qi.

The equations (44)1−3 come out from the constraints (37)1, while (44)4−5

come out from (37)2. Simple analysis shows that (44)1 and (44)4 are linearly
dependent. Taking the trace of (44)3 one obtains:

−2
p2

ρ
λ̃
(2)
ii + 3

(

k

m
p−

2p2

ρ
µ̃(2)

)

=
k

m
pii,

which in conjunction with (44)1 gives:

k

m

(

1

3
pii − p

)

=
4

3

p2

ρ
(1 + α)µ̃(2) =

k

m
Π. (45)

By combining this result with (44)3 and solving Eqs. (44)2 and (44)5, the
following solution is obtained:

λ̃
(1)
i =

k

m

ρ

p2
qi,

λ̃
(2)
ij = −

k

m

ρ

2p2

{

p〈ij〉 +

(

5

2
+ α

)

(1 + α)−1Πδij

}

,

µ̃(2) =
k

m

3

4(1 + α)

ρ

p2
Π,

µ̃
(3)
i = −

k

2m

(

7

2
+ α

)−1
ρ2

p3
qi,
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and thus non-equilibrium velocity distribution (39) is obtained.
Remarkable property of real gases, anticipated at the beginning of the

Section, is the existence of the dynamic pressure, which does not appear in
monatomic gases. It manifests itself through Eq. (45), although its existence
is anticipated in (44)1. Namely, in the monatomic case, i.e. classical Grad’s

distribution, constraint (37)1 yields λ̃
(2)
ii = 0, and consequently Π = 0. Ad-

ditional term in (44)1 is due to the presence of internal energy parameter I
in equilibrium distribution (20).

The important feature of the non-equilibrium distribution (39) is its com-
patibility with other distributions obtained in the context of polyatomic
gases. Firstly, it reduces to velocity distribution obtained by Mallinger [24]
for diatomic molecules (α = 0). Further, a comparison could be made with
semi-classical model of Wang Chang, Uhlenbeck and de Boer [25], which as-
sumes that molecules can occupy discrete states of internal energy. It may
be observed (see [11], Section 5.2) that the auxiliary function q(T ) takes the
role of the partition function Z =

∑

α exp(−eα/kT ). The complete compat-
ibility with corresponding non-equilibrium function can be observed when I
is substituted by eα and macroscopic quantities are defined by summation
over α instead of integration over I.

5.2. Non-convective fluxes and production terms

The non-equilibrium distribution function (39) can be regarded as ap-
proximation of the exact solution of the Boltzmann equation expressed in
terms of moments. Nevertheless, we have yet another benefit as well: it is a
way by which closure of the transfer equations for moments is achieved. As
already noticed, fluxes in transfer equations of order n become densities in
equations of order n + 1. This leaves the fluxes in equations of order n + 1
undetermined, as well as all the production terms. Maximization of entropy,
subject to constraints (37), permits to calculate the fluxes:

F
(2)
j =





Fi

Fij

Fijk



 , G
(3)
j =

(

Gppi

Gppij

)

,

where taking into account (16) and Galilean invariance:

Fijk = ρuiujuk + uipjk + ujpki + ukpij + pijk,

Gppij =
(

ρ|u|2 + 2ρε
)

uiuj + 2uiukpjk + 2ujukpik + ρ|u|2pij + 2qij.
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The non-convective fluxes are defined as:

pijk =

∫

R3

∫ ∞

0

mCiCjCkf(t,x,C, I)ϕ(I) dI dC,

qij =

∫

R3

∫ ∞

0

(

1

2
m|C|2 + I

)

CiCjf(t,x,C, I)ϕ(I) dI dC.

Statement 5. The non-convective fluxes pijk and qij in 14 moments approx-
imation have the following form:

pijk =

(

7

2
+ α

)−1

(qiδjk + qjδki + qkδij) , (46)

qij =

(

9

2
+ α

)

p

ρ
pij −

p2

ρ
δij. (47)

Expressions (46) and (47) for non-convective fluxes are derived in a straight-
forward way by plugging (39) in the above given definitions.

It must be emphasized that structure of non-convective fluxes (46) and
(47) implies genuine coupling of two hierarchies – heat flux qi appears in
F−hierarchy, whereas pressure tensor pij appears in G−hierarchy. It also
resembles the structure of non-convective fluxes in Grad’s approximation for
monatomic gases and can be regarded as its generalization. However, it is
not only the parameter α which brings the flavor of polyatomic gases, but
also the pressure tensor whose trace contains dynamic pressure (apart from
the ideal gas one).

Closure of the moments system (35) needs calculation of production
terms:

P(2)(t,x) =

∫

R3

∫ ∞

0

m





1
ξi
ξiξj



Q(f)ϕ(I) dI dξ =





0
0i
Pij



 ,

Q(3)(t,x) =

∫

R3

∫ ∞

0

m

(

|ξ|2 + 2 I
m

(

|ξ|2 + 2 I
m

)

ξi

)

Q(f)ϕ(I) dI dξ =

(

0
Qi

)

.

Zero entries appear due to collision invariants. Typical obstacle in calculation
of production terms is complicated structure of collision integral Q(f). In
this study we shall assume the structure of collision integral given in [1] and
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[21]:

Q(f)(ξ, I) =

∫

R3×R+×[0,1]2×S2

[f(ξ′, I ′) f(ξ′∗, I
′
∗)− f(ξ, I) f(ξ∗, I∗)]×

× B(ξ, ξ∗, I, I∗, r, R,ω)(1−R) |ξ − ξ∗|
1

ϕ(I)
dω dr dR dI∗ dξ∗,

where r ∈ [0, 1] and R ∈ [0, 1] are parameters, introduced in Section 3,
describing the exchange of internal energy during molecular collision and
ω ∈ S2 is a unit sphere vector. As in classical case, the model of interaction
between molecules is reflected on collision cross section B. Here, we shall
assume the following form of the cross section:

B = R1/2 |ξ − ξ∗|

∣

∣

∣

∣

ω ·
ξ − ξ∗
|ξ − ξ∗|

∣

∣

∣

∣

,

which resembles the variable hard spheres model. Furthermore, we shall
assume that state of the gas during processes is not far from local equilibrium.
Therefore, products of non-equilibrium distribution functions which appear
in collision integral will be linearized with respect to moments of distribution
functions, i.e. stress tensor pij and heat flux qi.

Statement 6. Up to first order terms in densities, production term in second
order moments equation in F−hierarchy reads:

Pij = −
4

15

mπ

q2(T )

p2

ρ

{

p〈ij〉 +
4

7

(

5

2
+ α

)

(1 + α)−1Πδij

}

(48)

whereas production term in third order moments equation in G−hierarchy
has the following form:

Qi = −
8

15

mπ

q2(T )

p2

ρ

{(

p〈ij〉 +
4

7

(

5

2
+ α

)

(1 + α)−1Πδij

)

uj

+
10

7

(

7

2
+ α

)−1

qi

}

, (49)

where p〈ij〉 denotes traceless part of the pressure tensor defined by (33).

The derivation of (48) and (49) rests upon assumptions stated above
and standard calculations used in kinetic theory of gases for derivation of
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production terms. The interested reader may grasp the details from the book
[11], or from the Annexe 1 of [24]. These results complete the calculations
needed for transfer equations for moments, i.e. 14 moments macroscopic field
equations.

The results obtained here are a consequence of the model of interaction
between the molecules. The production terms (48) and (49) thus repre-
sent the macroscopic dissipative effects. However, their structure reflects
the mesoscopic mechanism of interaction without any prior recourse to phe-
nomenological relations.

5.3. The 14 moments equations and transport coefficients

In preceding paragraphs all the necessary ingredients of the field equa-
tions are determined in 14 moments approximation. Hence, we are in position
to write down the closed set of 14 moments equations. At the same time,
statement that maximization of entropy is equivalent to extended thermo-
dynamics of moments [7], calls for comparison of the results given here with
ones derived in [13], obtained by the formalism of extended thermodynam-
ics. Although the latter ones are valid for any real gas, it can be proved that
they are equivalent in the case of rarefied polyatomic gases. In this way the
equivalence of MEP and ET will be extended from monatomic gases [7, 10]
to polyatomic ones.

In the first step, the explicit form of 14 moments equations will be given.
Equations of F−hierarchy have the form:

∂tρ+ ∂i(ρui) = 0,

∂t(ρui) + ∂j(ρuiuj + pij) = 0, (50)

∂t (ρuiuj + pij) + ∂k {ρuiujuk + uipjk + ujpki + ukpij

+(7/2 + α)−1 (qiδjk + qjδki + qkδij)
}

= −
4

15

mπ

q2(T )

p2

ρ

{

p〈ij〉 +
4

7

(

5

2
+ α

)

(1 + α)−1Πδij

}

,
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while equations of G−hierarchy read:

∂t

(

1

2
ρ|u|2 + ρε

)

+ ∂i

{(

1

2
ρ|u|2 + ρε

)

ui + pijuj + qi

}

= 0,

∂t

{(

1

2
ρ|u|2 + ρε

)

ui + pijuj + qi

}

+ ∂j

{(

1

2
ρ|u|2 + ρε

)

uiuj (51)

+uiukpjk + ujukpik +
1

2
ρ|u|2pij +

(

9

2
+ α

)

p

ρ
pij −

p2

ρ
δij

}

= −
4

15

mπ

q2(T )

p2

ρ

{(

p〈ij〉 +
4

7

(

5

2
+ α

)

(1 + α)−1Πδij

)

uj

+
10

7

(

7

2
+ α

)−1

qi

}

.

In derivation of (50)-(51) we started from (35). The internal energy ε is
determined by (28) and q(T ) by (29). We also exploited expressions for non-
convective fluxes (46)-(47) and slightly transformed version of production
terms (48)-(49).

To prove the equivalence of the system (50)-(51) with equations of ET,
one must take into account (31), (32), (33), use the material derivative ( )· =
∂t( ) + uj∂j( ), and exploit the relation (26) between α and D. In such a
way, the system (50)-(51) is transformed into Eq. (67), given in [13], which
represent 14 moments system of ET for dense gases in rarefied gas limit.
Moreover, relaxation times τS for viscous stress, τΠ for dynamic pressure
and τq for heat flux, of the ET model can be explicitly calculated from our
production terms:

1

τS
=

4

15

mπ

q2(T )

p2

ρ
,

1

τΠ
=

16

105

(

5

2
+ α

)

(1 + α)−1 mπ

q2(T )

p2

ρ
,

1

τq
=

8

21

(

7

2
+ α

)−1
mπ

q2(T )

p2

ρ
.

In [13] it was also proved, by means of so-called Maxwellian iteration, that
the classical equations of Navier-Stokes and Fourier appear as limit cases
of the balance laws (50)3 and (51)2. Taking into account these results one

26



may obtain explicit form of transport coefficients, i.e. shear viscosity µ, bulk
viscosity ν and heat conductivity κ:

µ = p τS =
15

4

Γ2(1 + α)

π
(kT )1+2α,

ν =
2(D − 3)

3D
p τΠ =

35

8
(1 + α)2

(

5

2
+ α

)−2
Γ2(1 + α)

π
(kT )1+2α, (52)

κ =
D + 2

2

p2

ρT
τq =

21

8

(

7

2
+ α

)2
k

m

Γ2(1 + α)

π
(kT )1+2α.

Note that the transport coefficients can be evaluated explicitly from the
model with internal energy, in contrast to ET where only the relation to the
relaxation times can be determined.

5.4. Entropy and entropy flux

Another important feature which we need to discuss is the structure of en-
tropy density and entropy flux for non-equilibrium distribution (39). Macro-
scopic entropy is defined by (15):

h = ρs = −k

∫

R3

∫ ∞

0

f log f ϕ(I) dI dξ, (53)

while entropy flux has the form:

hj = ρsuj + ϕj, ϕj = −k

∫

R3

∫ ∞

0

Cjf log f ϕ(I) dI dξ, (54)

where ϕj is a non-convective entropy flux. As a first step, we shall derive
them for the equilibrium distribution (20).

Statement 7. The entropy density and the non-convective entropy flux for
polyatomic gases in local equilibrium state have the following form:

ρsE = −k
ρ

m

{

log

(

ρ

mq(T )

( m

2πkT

)3/2
)

−

(

5

2
+ α

)}

, ϕjE = 0. (55)

Moreover, Gibbs relation holds in equilibrium:

dsE =
1

T

{

dεE −
p

ρ2
dρ

}

, (56)

where εE is the internal energy density of polyatomic gas (28).
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For both relations (55) and (56) the proof is straightforward. They are
derived by direct insertion of equilibrium distribution (20) into (53) and (54).
Gibbs relation comes out after differentiation of (55)1.

We can conclude from the last Statement that equilibrium entropy density
presents generalization of the one for monatomic gases and the form of Gibbs
relation is also preserved. The form of non-equilibrium entropy density and
entropy flux is dictated by the form of non-equilibrium velocity distribution
function and thus can be expressed in terms of 14 scalar fields.

Statement 8. The non-equilibrium entropy density and entropy flux for poly-
atomic gases in 14 moments approximation have the following form:

ρs = ρsE −
1

4

k

m

ρ

p2
p〈ij〉p〈ij〉 −

1

2

(

7

2
+ α

)−1
k

m

ρ2

p3
qiqi

−
3

4

(

5

2
+ α

)

(1 + α)−1 k

m

ρ

p2
Π2, (57)

ϕi =
qi
T

−
k

m

ρ

p2

(

7

2
+ α

)−1

p〈ij〉qj −
k

m

ρ

p2

(

7

2
+ α

)−1

Πqi. (58)

To prove these results it is sufficient to follow the procedure used in the
derivation of entropy density and entropy flux in the case of Grad’s distri-
bution function [4, 11]. First, one has to put non-equilibrium distribution
function (39) into (53) and (54). Since we shall restrict our study to second
order terms with respect to non-equilibrium densities – pressure tensor pij,
heat flux qi and dynamic pressure Π – we shall exploit the approximation
log(1 + x) ≈ x− x2/2, valid for |x| ≪ 1. Under these assumptions, relations
(57)-(58) are obtained after tedious, but straightforward integration of (53)
and (54).

Non-equilibrium entropy density (57) comprises the equilibrium one ρsE
and non-linear, quadratic terms related to pressure tensor, heat flux and
dynamic pressure. It is a generalization of Grad’s entropy density since
it contains the polyatomic parameter α and term Π2 which does not exist
in monatomic case. Moreover, it fulfills the convexity conditions provided
α > −1 (or equivalently D > 3), ensuring that 14 moments system (50)-(51)
can be put into symmetric hyperbolic form [18].

The entropy flux (58) share the same properties as the entropy density.
It contains the linear term, qi/T , typical for linear theory, but also comprises
non-linear terms p〈ij〉qj, also present in monatomic case, and Πqi which is
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the non-linear contribution peculiar for polyatomic gases. The parameter α
is also present. Also, these results are in perfect agreement with the ones of
ET [13].

5.5. Qualitative Analysis

As we proved the equivalence between ET and MEP for rarefied poly-
atomic gas, we can apply the same results concerning hyperbolic system
endowed with a supplementary convex entropy. According with the general
results due to Godunov [23], Boillat [26] and Ruggeri & Strumia [27], the
original system can be put in symmetric form using the main field u′, which
coincide with the Lagrange multipliers of balance laws [10]. Therefore, we
can conclude that the system (50), (51) is symmetric hyperbolic (at least in
neighborhood of an equilibrium state) in the main field components given
by (42). Symmetric structure of the system ensures local well posedness for
Cauchy problems. Moreover, it can be shown, proceeding as in [28], that
the Kawashima-Shizuta condition [29] holds also for polyatomic rarefied gas.
Hence, all the previous general results [30, 31, 32, 33] hold and global smooth
solutions of the system exist, provided initial data are sufficiently small.

6. Conclusions

In this paper we applied maximum entropy principle to the model of
polyatomic rarefied gases with continuous internal energy. The aim was
to derive approximate non-equilibrium velocity distribution function in the
spirit of Grad’s moment method, and to exploit it in closure procedure for
transfer equations for moments. Since there was no simple relation between
the trace of pressure tensor and internal energy density, like the one for
monatomic gases, it was needed to establish two independent hierarchies of
moment equations – the momentum and the energy one. This is the first
novelty in our study.

By the application of maximum entropy principle, we first recovered the
equilibrium distribution function (20), as well as Euler gas dynamics equa-
tions. In the next step the approximate non-equilibrium distribution function
(39) was derived. Solution of the variational problem with constraints com-
prises 14 moments – mass and momentum density, pressure tensor, energy
density and heat flux – and naturally proves the existence of dynamic pres-
sure. This solution was used to resolve the closure problem for the system
of 14 moment equations (35). The non-convective fluxes (46)-(47) for the
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highest order moment equations were derived, as well as production terms
(48)-(49). With all these ingredients we were able to close the system of
field equations (50)-(51) and to determine the transport coefficients (52).
Finally, entropy density and entropy flux (53)-(54) were calculated for equi-
librium distribution and for non-equilibrium one (57)-(58) and the Gibbs
(56) relation was proved in local equilibrium state. As far as the authors are
concerned, the results listed above are derived for the first time, along with
idea to use two hierarchies of moment equations instead of one.

The results presented in this paper can be regarded just as the tip of
the iceberg. Due to equivalence of maximum entropy principle and extended
thermodynamics of moments, further study of polyatomic gases can be based
upon either standpoint. At this moment, two classes of problems may be
roughly depicted. One is related to the general structure of hierarchies of
moment equations. Nested structure of classical hierarchy was thoroughly
analyzed in [18]. Thus, there appears the question about the level of trun-
cation in each hierarchy, which is important for both formal mathematical
reasons and physical interpretation. Another path of study is paved with
particular flow problems (like linear and non-linear waves, shock structure
etc.) and analysis of transport coefficients for different models of interaction,
i.e. different choices of collision cross-section B. Furthermore, following [21]
one may proceed in a similar way with the mixture modelling. These are
some hints about possible problems which could become the part of a bigger
project related to the modelling of real gases.
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