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Based on (13) and (19), one obtains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,n (22) - - -2 1)  

as reported in (17). 
From (20), we need now to find the recusion for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE;’. For the 

last layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1  = M), expression (18) particularizes as (see (11) and 

(12)): 

= E,. (23) 

For a hidden layer (0 < 1 < M), expression (18) can be expanded 
using the chain rule as follows: 

Using definition (19) and relationship (13) gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NI + I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y =  I 

= C {(ij$;i) ( / + I )  + si:+l) (!+I) 
Rqn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWlqn 1 

+;(-s(&+” ( / + I )  + 
Wlqrr 

which coincides with (15). 
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Maximum Entropy Regularization in Inverse 
Synthetic Aperture Radar Imagery 

Brett Borden 

Abstract-The method of maximum entropy is applied to the regu- 

larization of inverse synthetic aperture radar (ISAR) image recon- 

structions. This is accomplished by considering an ensemble of images 

with associated “allowed” probability density functions. Instead of di- 
rectly considering the “solution” to he an image, we take it to he the 

a posteriori probability density found by minimizing a regularization 

functional composed of the usual “least squares” term and a Kullhack 
(cross-entropy) information difference term. The desired image is then 
found as the expectation of this density. The basic model of this ap- 

proach is similar to that used in usual maximum a posteriori analysis 

and allows for a more general relationship between the image and its 
“configuration entropy” than is usually employed. In addition, it elim- 
inates the need for inappropriate nonnegativity constraints on the (gen- 
erally complex-valued) image. 

I. INTRODUCTION 

In the weak scatterer approximation, the far-field response E,  
resulting from a harmonic excitation of a “target,” can be modeled 
by a superposition of plane waves [ I ]  

where Q ( k ,  r) = t(r) is proportional to the local (possibly 
complex) scatterer strength at the position r, k is the propagation 
vector with magnitude 27r/h, and D is the support of the target. 
(The e-‘““ time dependence has been suppressed.) 

Since any practical measurement will yield only discrete and fi- 
nite measurements E, = E@,), ( I )  becomes 

E, = iD Q(k,,  r)E(r) d ’ r .  i = 1, . . . , N .  (2) 

When D is finite, E(k)  spans k-space and (2) cannot be uniquely 
inverted to obtain the “image” t ( r )  from the limited set of scat- 
tered field measurements. More generally, if @@,, r )  and E(r) are 
considered to belong to a Hilbert vector space, then we can write 
E = A t ,  where A is the linear operator corresponding to Q which 
maps the function t(r) to the discrete measurements E,. Typically, 
t will belong to a space of infinite dimension and will have a com- 
ponent that lies in the null space of A [2], [3]. In such cases it will 
be impossible to uniquely determine E from ( 2 ) ,  and we may esti- 
mate the null space component only by including some form of 
extra or “prior” information. 

When the data are noisy so that 

E = A c + n  (3) 

we are confronted with the additional complication of trying to de- 
vise a stable reconstruction technique. This is because the inverse 
problem associated with ( 1 )  is ill posed [4], [ 5 ] .  As a result, small 
variations in the data may be mapped to large variations in E .  
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In the following, we briefly review the principle of maximum 
entropy regularization and show how it can be used to select that 
image which is known to be maximally noncommittal with regard 
to measurement limitations and which is consistent with the mea- 
sured data and noise [ l  l ] .  Usual maximum entropy methods re- 
quire the image to be composed of nonnegative values and impose 
a simple relationship between the image space and its ensemble 
properties. This requirement is not well suited to data defined by 
( I ) ,  and we explore an alternate method which uses a more general 
image/ensemble mapping. Then we apply the method to the prob- 
lem of inverse synthetic aperture array (ISAR) imagery. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11. REGULARIZATION 

When the data are merely limited (and not noisy) we often expect 
least squares solutions to (2) to yield adequate results. Letting % 
denote the set of all solutions which are consistent with the prior 
information, a least squares solution t will satisfy 

(4 1 

Similarly, for a solution considered to be a member of an ensem- 
ble of possible solutions, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP the set of all allowed ensemble 
probability density distributions, the least squares density distri- 
bution p of interest is defined to obey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IIE - Ae1l2 = min (IE - Aull?. 
“€9 

IIE - A( t ) , , I I?  = min /IE - A ( E ) ~ ~ / ?  ( 5 )  

where the expected image ( E ) , ,  = q ( t )  dvE is determined 
uniquely by the “solution” density distribution ~ ( 6 ) .  

When the data are noisy the mechanics of determining the set P 
can be complicated by the requirement that the allowed solutions 
be properly smoothed. This restriction may run contrary to the in- 
formation implied by the measured data and functional regular- 
ization methods are frequently employed. If pa denotes a smooth a 
priori distribution then, in terms of ( 5 ) .  our regularized solution p 
will minimize 

y e p  

J ( p )  = IIE - A (  E ),,II* + olJz(p, P O ) ,  p E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP (6) 

where J z ( p ,  po)  is a regularization functional measuring the “dis- 
tance” between p and p a ,  and the regularization parameter a > 0 
controls the extent to which J 2  dominates J .  

Often, regularization methods concentrate directly on smoothing 
the least squares solution E and many possible appropriate regular- 
ization functionals have been examined [4], [SI. Maximum entropy 
methods exploit the “information” ditference between p and po as 
the “distance” measure and set 

(7) 

(This is the “Kullback distance” or “cross entropy” and is the 
negative of the entropy ofp(c) when the “prior” p , , (~ )  is a uniform 
distribution [6], [7].) It has been demonstrated that the choice (7)  

assures that solutions which minimize (6) will be least biased by 
unwarranted assumptions about the data [8], [9]. 

In this formalism, the priorp,,(t) holds the burden of introducing 
both smoothness and null space information. From a Bayesian view, 
the measurement process serves only to refine our prior knowledge 
and so pa(€ )  also helps restrict the set of allowed solutions to be 
considered. The a posreriori density p ( ~ )  is related to the a priori 

density by Bayes’ rule [ IO] ,  [ I l l  

wherepo(t) is the apriori density of E .  p , ( E )  is the apriori density 
of the data E ,  and pEl ~ ( E  1 t )  is the a posreriori density of E given 

The most common maximum entropy approach takes p O  as con- 
stant, and pE16 as proportional to E (which are further constrained 
to be real and nonnegative). The resulting J 2  from (7) is then the 
negative of the so-called configuration entropy of the image and 
the noisy data problem is treated by adding additional (or modified) 
contraints (cf. [12], [13]). In [14] more general pa are used in (7) 
in a maximum entropy analysis of the problem of spectral estima- 
tion (which relates p to the autocovariance of E ) .  Bayesian ap- 
proaches have also been applied (often without entropy consider- 
ations [ 1 I ])  but typically require good estimates of the properties 
of po.  (A more complete survey of these issues and related work 
may be found in [3].) 

ISAR imagery data consist of complex scattered field measure- 
ments and so the usual (simple proportional) relationship between 
t and p ( ~ )  is inappropriate. Moreover, we frequently have only 
minimal information about pa  which, in principle, we would never- 
theless like to be more general than a simple uniform distribution. 
Since our resulting model may depend in a sensitive way on p a ,  we 
seek to make our results maximally noncommittal to our prior as- 
sumptions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111. THE ALGORITHM 

Our basic problem is to determine the ensemble density distri- 
bution p which is consistent with any prior knowledge and which 
minimizes (6) over any unknowns. The connection between this 
solution p and the resulting image is given as the expectation ( E ) , , .  

We model the probability density of the noise by a Gaussian: 

where R,, is the (assumed known) noise correlation matrix, (’) de- 
notes complex-conjugate transposition, and the mean noise is as- 
sumed to be zero. This gives the measurement probability density 
as 

. exp -- ( E  - At)’R;’(E - A t )  . (10) 

The a priori density for the solution ensemble is here assumed to 
also obey a Gaussian law: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I  ) 

where to is the prior expectation. 

the normalization coefficient. Application of Bayes’ rule yields 
The prior p,(E) is independent of E and may be absorbed into 

(det (R; ’  + A’R; ’A)) ’ / ’  
( 2 a y  P(tIE) = 

. exp (-: (t - (e ) , , ) ’ (Re- ’  + A’Rb’A)( t  - ( E ) , , )  

(12) 
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where ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE >,, obeys 

(R;' + A t R , ' A ) ( ( ~ ) , ,  - eo) = AtR,'(E - AtO).  (13) 

Maximum a posteriori image restoration (MAP) maximizes (12) 

with respect to E [IO], [ I l l .  In the present case, this leads to a 
recursive relation that must be satisfied by the image ( E ),,: 

( E ) , ,  = EO + R,AtR,'(E - A ( € ) , , ) .  (14) 

(Note that this is equivalent to (13).) 
In MAP analysis, the smoothing and null space information are 

imposed through the selection of eo and R,. However, often the 
details of these ensemble quantities are not correctly known and 
must be guessed. The practical result is that either eo or R, (some- 
times both) are treated as tuning parameters and adjusted toward 
some final desired image [3]. Incorrect or trivial prior assumptions 
(particularly on R,) may lead to unwarranted features in the resul- 
tant image. 

In our present model eo and R, are independent. We choose to 
introduce the a priori image information through eo alone, and to 
select the R, which are maximally noncommittal in the sense that 
they are determined by minimizing ( 6 ) .  Substituting (12) into (7), 
the total cost functional ( 6 )  becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J ( p )  = IIE - A ( E ) , , \ ~ ~  + E In (det (R;' + A'R i 'A) )  
2 

- E In (det R; ' )  + 'y tr (Rc ' (R[ '  + AtR, 'A) - ' )  

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ( ( E ) , ,  - E ~ ) ~ R ; ' ( ( E ) , ,  - eo) + constant. (15) 

With the eo fixed (and because of the relation (13)), the func- 
tional J ( p )  depends completely on the unknowns R; ' .  Its minimi- 
zation is determined by requiring 

2 2 

A straightforward calculation yields 

R,[AtR,'AR,AtRil  - A'R,'(E - AeO)Dt ]A = 0 (17) 

where D = (4Z/(r - R,')(E - A ( € ) , , )  + R, 'A( ( t> , ,  - e o ) .  
(This result has been significantly simplified by applying the rela- 
tion (13) whenever possible.) 

By construction, At is of full column rank and so 

AtR,'AR,AtR,' = AtRn1(E - AtO)Dt .  (18) 

Operating on (E - A ( E ),,) and simplifying yields the weighted 
"normal equations" 

AtR, 'A( ( t  ) p  - eo) = Q,((E),,)A'R,'(E - Ato) (19) 

where e, (< E ),,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Dt(E - A ( E ),,). 
Because At is of full column rank, AtR, 'A will not have an 

inverse (except in the trivial case when A is square). However, 
since we have chosen to introduce the null space information 
through eo ,  we can work with generalized inverses [15 ] .  Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(AAt)-' does exist and At(AAt ) - 'R , (AAt ) - 'A  is a generalized in- 
verse of A'RT'A. Applying this inverse yields 

(20) 

which is easily seen to satisfy (19). Moreover, since eo is presumed 
to contain all the null space information, (20) is the unique choice 
of solution to (19). 

( E ) , ,  = Eo + Q , A ~ ( A A ~ ) - ~ ( E  - 

Since (19) can be rewritten in the form 

A t R i ' [ ( l  - Q,((c),,))(E - A t , )  - (E - A ( E ) , , ) ]  = 0 (21) 

it is easy to see that E - A ( E ),, is parallel to E - Aeo (when both 
are nonvanishing). This allows us to express Q, in terms of E - 
A E ~ .  Substituting E - A ( E ),, = (1 - e,(( E ) , , ) ) (E  - Ato)  into 
the definition of Q, results in a quadratic relation with roots given 

by 

where = ( E  - Ato)'R,'(E - A E ~ )  and y = (E - A E ~ ) ~ ( E  - 
AEO). 

Comparison of (20) with (13) allows us to identify 

R, = - Q, A ~ ( A A ~ ) - ~ R , ( A A + ) - ~ A .  (23) 
I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, 

Equation (23) can be substituted into (15) to select for the Q, (de- 
termined by (22)) which yields the smaller value of J ( p ) .  This min- 
imizing Qa, together with (20), represents our regularized solution. 

IV. A METHOD FOR SELECTING THE PRIOR IMAGE 

So far we have assumed that the prior image eo is sufficiently 
complete that a solution based on (20) will be an improvement over 
the ordinary inversion of (3). However, usually we will have only 
partial a priori information upon which to base our solution. A 
common prior assumption is that the target is composed of point 
scatterers superimposed on a flat background and so 

M 

c0(r) = C a] 6(r - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArJ )  (24) 
/ = I  

where M is the (unknown) number of scatterers, the j th  having 
complex amplitude a, and location rJ. 

If we require eo in (20) to be of the form (24) then we can sys- 
tematically determine the locations and strengths of the scatterers. 
The algorithm is as follows: 

Step 0. Set eo = 0. 
Step 1. Calculatey = A t ( A A t ) - ' ( E  - A E ~ ) ) .  
Step 2. Calculate Q,(#)  and check against threshold 7; if Q, 

< 7 then go to step 5 .  
Step 3. Replace y by y'  = aj 6(r - r ] )  where aj is the complex 

amplitude of max (y) and r, is its location. 
Step 4. Set E & ' + ' )  = €1)  + Q,y' and go to step 1. 
Step 5. Done; set ( E ) ~  = to + Q,y. 

Additional firm prior information may be incorporated by altering 
the "seed" in step 0 (eo  = 0 is interpreted to mean that scatterer 
strength and location are completely unknown). 

This iterative refinement is Bayesian in intent and results in an 
approach which is similar to that of the CLEAN technique [I61 
except in the way in which noise is dealt with and convergence is 
determined. Here we halt the iterations when Q, = Q,(c0) becomes 
sufficiently small. Convergence is guaranteed since 0 < Q, < 1 .  

V. ISAR IMAGERY FROM A ROTATING TARGET 

For a target with rotational position O(t) in the far field of the 
transmitterheceiver, (1 )  becomes [ I ]  

E(k) = i, ~ ( x ,  y )  exp [i2k(y cos O - x sin e)]  d x  dy (25) 



912 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, APRIL 1992 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

QQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) 

Fig. 1 .  Sample results: Two point scatterers imaged using (a) maximum entropy regularization and (b) ordinary Fourier 
methods. Image dimensions are in centimeters. 

where the factor of 2 accounts for the two-way travel distance from 
transmitter to colocated receiver, and t(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  represents the inte- 
grated contribution of scatterers along the axis of rotation. If we 

discrete form, becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R - l  S - I  

(26) E/,,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,.< exp [ - Q * ( X r S /  + Y.,$m)l. 
set 5 = 2 sin O / h  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. = -2 cos O/h,  then this equation, in its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = O  , = 0  

n . .. 
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TABLE I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U *  = 0.0225  AND^ = 0.095. 

ITERATION DATA FOR THE RECONSTRUCTION OF FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Iteration # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY Q,“ 

1 
2 
3 

86.06 0.99974 
17.98 0.99875 
2.750 0.05041 

In the small angle approximation (sin 0 = 0 and cos 0 - I )  (26) 
allows the usual discrete Fourier transform approximation in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AA’ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARSZ. If, in addition, we take R,, = u’Z,  the equations sim- 
plify significantly and 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€0 + Q,At/(RS)(E - AEO). (27) 

Fig. l(a) illustrates a reconstruction based on this analysis. For 
comparison purposes, the usual inverse Fourier transform (DFT) 
reconstruction (Fig. l(b)) has also been included. Synthetic data 
appropriate to a target consisting of two ideal point scatterers of 
amplitudes 1.0 and 0.5 were constructed for each of 8 angles and 
8 frequencies. The angles were uniformly distributed over 20” of 
aspect and the frequencies were uniformly distributed over a 
4-GHz bandwidth centered on 12 GHz. In addition, the data were 
contaminated with additive Gaussian noise of zero mean and stan- 
dard deviation U = 0.1 x maximum value of the data. For this 
reconstruction the standard deviation U of the noise was set to its 
true value. The image space was 128 X 128 elements and the reg- 
ularization parameter was set to a! = 0.095. 

To better understand the regularization process we have included 
the corresponding iteration data in Table I. The two scatterers were 
reconstructed with Q, = 1 while the remaining iteration (associ- 
ated with spurious, noise induced, scatterers) uses Q, = 0.05. 

VI. DISCUSSION A N D  CONCLUSION 

A method for applying maximum entropy analysis to ISAR im- 
age reconstruction when the data are incomplete and noisy has been 
developed and briefly examined. These data can be quite general, 
and need not be assumed to be positive definite. The method yields 
a nonrecursive solution which readily allows a pr ior i  image infor- 
mation to be included (in fact, it requires it). However, it requires 
less prior information than the corresponding MAP approach and 
typically should also offer a reduced computational burden. We 
have also shown how prior information may be recursively in- 
cluded into the algorithm. 

By example, we have demonstrated that the technique depends 
sensitively upon the information contained in the a pr ior i  image- 
the more completely this information can be determined, the more 
accurately and free from artifact will be the regularized solution 
image. The algorithm is rather sensitive to the choice of regular- 
ization parameter a, however, which we typically set to a = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40’. 
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Integral Inequality Bounding the Weighted Absolute 
Deviation of an n-Dimensional Function 

Alan C .  Bovik 

Abstract-We state and prove an integral inequality that bounds the 
weighted integrated absolute deviation of a differentiable n-dimen- 
sional real function over an interval, relative to any value the function 
takes within the interval. Examples illustrate the utility of the in- 
equality. In particular, the inequality is shown to be applicable to cer- 
tain set-theoretic signal restoration algorithms, which project an ob- 
served (degraded) signal onto a closed, convex prototype set defined by 
a linear filter and a suitable bound. 

We denote points in R“ by t = ( f , ,  t 2 ,  . . . , f , , ) ,  dt = d f , ,  dt, 
. . . dt,,, and the partial derivatives of I ! :  R “  -+ R differentiable at 
t by (d /d t , ) v ( t )  = z!( ‘ ) ( t ) ,  unless n = 1 ,  in which case dzj(f)/ar = 

t ” ( f ) .  

Theorem: Let w:  R” + R be any function for which I f ,  w(t)IP is 
integrable on R ”  for i = 1 ,  . . . , n ,  and let U: R ”  + R be any 
continuously differentiable function for which 1 v ‘ ” ( t ) \  is integra- 
ble on R “  f o r i  = l ,  . . . , n ,  where 9 > n a n d  ( l /p)  + ( I /9)  = 

1.  Then 

5 (w( t  - c)(/u(~) - z)(c)( dt 5 . Ap(w) . 6,(v) (1) 
R” 
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