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Abstract. Maximum flow and minimum s-¢ cut algorithms are used to
solve several fundamental problems in computer vision. These problems
have special structure, and standard techniques perform worse than the
special-purpose Boykov-Kolmogorov (BK) algorithm. We introduce the
incremental breadth-first search (IBFS) method, which uses ideas from
BK but augments on shortest paths. IBFS is theoretically justified (runs
in polynomial time) and usually outperforms BK on vision problems.

1 Introduction

Computing maximum flows is a classical optimization problem that often finds
applications in new areas. In particular, the minimum cut problem (the dual of
maximum flows) is now an important tool in the field of computer vision, where
it has been used for segmentation, stereo images, and multiview reconstruction.
Input graphs in these applications typically correspond to images and have spe-
cial structure, with most vertices (representing pixels or voxels) arranged in a
regular 2D or 3D grid. The source and sink are special vertices connected to all
the others with varying capacities. See [2, 3] for surveys of these applications.

Boykov and Kolmogorov [2] developed a new algorithm that is superior in
practice to general-purpose methods on many vision instances. Although it has
been extensively used by the vision community, it has no known polynomial-
time bound. No exponential-time examples are known either, but the algorithm
performs poorly in practice on some non-vision problems.

The lack of a polynomial time bound is disappointing because the maximum
flow problem has been extensively studied from the theoretical point of view and
is one of the better understood combinatorial optimization problems. Known
solutions to this problem include the augmenting path [9], network simplex [7],
blocking flow [8,15] and push-relabel [12] methods. A sequence of increasingly
better time bounds has been obtained, with the best bounds given in [16, 11].

Experimental work on the maximum flow problem has a long history and in-
cludes implementations of algorithms based on blocking flows (e.g., [5,13]) and
on the push-relabel method (e.g., [6,10,4]), which is the best general-purpose
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approach in practice. With the extensive research in the area and its use in
computer vision, the Boykov-Kolmogorov (BK) algorithm is an interesting de-
velopment from a practical point of view.

In this paper we develop an algorithm that combines ideas from BK with
those from the shortest augmenting path algorithms. In fact, our algorithm is
closely related to the blocking flow method. However, we build the auxiliary
network for computing augmenting paths in an incremental manner, by updating
the existing network after each augmentation while doing as little work as we
can. Since for the blocking flow method network construction is the bottleneck
in practice, this leads to better performance. Like BK, and unlike most other
current algorithms, we build the network in a bidirectional manner, which also
improves practical performance.

We call the resulting algorithm Incremental Breadth First Search (IBFS). It
is theoretically justified in the sense that it gets good (although not the best)
theoretical time bounds. Our experiments show that IBFS is faster than BK
on most vision instances. Like BK, the algorithm does not perform as well as
state-of-the-art codes on some non-vision instances. Even is such cases, however,
IBFS appears to be more robust than BK. BK is heavily used to solve vision
problems in practice. IBFS offers a faster and theoretically justified alternative.

2 Definitions and Notation

The input to the maximum flow problem is (G, s,t,u), where G = (V, A) is
a directed graph, s € V is the source, t € V is the sink (with s # t), and
u:A=[1,...,U] is the capacity function. Let n = |V| and m = |A].

Let a* denote the reverse of an arc a, let A® be the set of all reverse arcs,
and let A’ = AU AP A function g on A’ is anti-symmetric if g(a) = —g(a®).
Extend u to be an anti-symmetric function on A’, i.e., u(a®) = —u(a).

A flow f is an anti-symmetric function on A’ that satisfies capacity constraints
on all arcs and conservation constraints at all vertices except s and t. The capac-
ity constraint for a € Ais 0 < f(a) < u(a) and for a € A% it is —u(a’®) < f(a) <
0. The conservation constraint for vis 3, yea f(u,v) =32, pyea f(v,w). The
flow value is the total flow into the sink: |f[ =3, ,c4 f(v,t). A cutis a parti-
tioning of vertices SUT =V with s € S,t € T. The capacity of a cut is defined
by w(S,T) = 3, cswet,(vw)ea (v, w). The max-flow/min-cut theorem [9] says
that the maximum flow value is equal to the minimum cut capacity.

The residual capacity of an arc a € A’ is defined by us(a) = u(a) — f(a).
Note that if f satisfies capacity constraints, then u is nonnegative. The residual
graph Gy = (V, Ay) is the graph induced by the arcs in A’ with strictly positive
residual capacity. An augmenting path is an s—t path in Gy.

When we talk about distances (and shortest paths), we mean the distance
in the residual graph for the unit length function. A distance labeling from s is
an integral function ds on V that satisfies ds(s) = 0. Given a flow f, we say
that ds is valid if for all (v,w) € Ay we have ds(w) < ds(v) + 1. A (valid)
distance labeling to ¢, d;, is defined symmetrically. We say that an arc (v, w) is
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admissible w.r.t. dg if (v, w) € Ay and ds(v) = ds(w)—1, and admissible w.r.t. dy
if (v,w) € Ay and dy(w) = d;(v) — 1.

3 BK Algorithm

In this section we briefly review the BK algorithm [2]. It is based on augmenting
paths. It maintains two trees of residual arcs, S rooted from s and T rooted into
t. Initially S contains only s and T contains only ¢t. At each step, a vertex is in
S,in T, or free. Each tree has active and internal vertices. The outer loop of the
algorithm consists of three stages: growth, augmentation, and adoption.

The growth stage expands the trees by scanning their active vertices and
adding newly-discovered vertices to the tree from which they have been discov-
ered. The newly-added vertices become active. Vertices become internal after
being scanned. If no active vertices remain, the algorithm terminates. If a resid-
ual arc from S to T is discovered, then the augmentation stage starts.

The augmentation stage takes the path found by the growth stage and aug-
ments the flow on it by its bottleneck residual capacity. Some tree arcs become
saturated, and their endpoints farthest from the corresponding root become or-
phans. If an arc (v, w) becomes saturated and both v and w are in S, then w
becomes an S-orphan. If both v and w are in T, v becomes a T-orphan. If v is
in S and w is in 7', then a saturation of (v, w) does not create orphans. Orphans
are placed on a list and processed in the adoption stage.

The adoption stage processes orphans until there are none left. Consider an
S-orphan v (T-orphans are processed similarly). We examine residual arcs (u, v)
in an attempt to find a vertex u in .S. If we find such u, we check whether the
tree path from wu to s is valid (it may not be if it contains an orphan, including
u). If a vertex u with a valid path is found, we make u the parent of v.

If we fail to find a new parent for v, we make v a free vertex and make all
children of v orphans. Then we examine all residual arcs (u,v) and for each u
in S, we make u active. Note that for each such u, the tree path from s to u
contains an orphan (otherwise u would have been picked as v’s parent) and this
orphan may find a new parent. Making u active ensures that we find v again.

The only known way to analyze BK is as a generic augmenting path algo-
rithm, which does not give polynomial bounds.

4 Incremental Breadth-First Search

The main idea IBFS is to modify BK to maintain breadth-first search trees, which
leads to a polynomial time bound (O(n?m)). Existing techniques can improve
this further, matching the best known bounds for blocking flow algorithms.
The algorithm maintains distance labels ds and d; for every vertex. The two
trees, S and T, satisfy the tree invariants: for some values Dy and Dy, the trees
contain all vertices at distances up to D, from s and up to D; to t, respectively.
We also maintain the invariant that L = Dy + D; + 1 is a lower bound on the

augmenting path length, so the trees are disjoint.
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A vertex can be an S-vertex, T-vertex, S-orphan, T-orphan, or N-vertex
(not in any tree). Each vertex maintains a parent pointer p, which is null for
N-vertices and orphans. We maintain the invariant that tree arcs are admissible.
During the adoption step, the trees are rebuilt and are not well-defined. Some
invariants are violated and some orphans may leave the trees. We say that a
vertex is in S if it is an S-vertex or an S-orphan. In a growth step, there are no
orphans, so S is the set of S-vertices. Similarly for T

If a vertex v is in S, ds(v) is the meaningful label value and d;(v) is unused.
The situation is symmetric for vertices in 7T'. Labels of N-vertices are irrelevant.
Since at most one of dg(v) and d:(v) is used at any given time, one can use a
single variable to represent both labels.

Initially, S contains only s, T contains only t, ds(s) = di(t) = 0, and all
parent pointers are null. The algorithm proceeds in passes. At the beginning
of a pass, all vertices in S are S-vertices, all vertices in T' are T-vertices, and
other vertices are N-vertices. The algorithm chooses a tree to grow in the pass,
either S (forward) or T (reverse). Assume we have a forward pass; the other case
is symmetric. The goal of a pass is to grow S by one level and to increase D
(and L) by one. We make all vertices v of S with ds(v) = D, active. The pass
executes growth steps, which may be interrupted by augmentation steps (when
an augmenting path is found) followed by adoption steps (to fix the invariants
violated when some arcs get saturated). At the end of the pass, if S has any
vertices at level Dy + 1, we increment Dy; otherwise we terminate.

For efficiency, we use the current arc data structure, which ensures that each
arc into a vertex is scanned at most once between its distance label increases
during the adoption step. When an N-vertex is added to the tree or when the
distance label of a vertex changes, we set the current arc to the first arc in its
adjacency list. We maintain the invariant that the arcs preceding the current arc
on the adjacency list are not admissible.

The growth step picks an active vertex v and scans v by examining resid-
ual arcs (v,w). If w is an S-vertex, we do nothing. If w is an N-vertex, we
make w an S-vertex, set p(w) = v, and set ds(w) = Ds + 1. If w is in T, we
perform an augmentation step as described below. Once all arcs out of v are
scanned, v becomes inactive. If a scan of v is interrupted by an augmentation
step, we remember the outgoing arc that triggered it. If v is still active after the
augmentation, we resume the scan of v from that arc.

The augmentation step applies when we find a residual arc (v, w) with v in
S and w in T. The path P obtained by concatenating the s—v path in S, the
arc (v,w), and the w-t path in T is an augmenting path. We augment on P,
saturating some of its arcs. Saturating an arc (z,y) # (v,w) creates orphans.
Note that  and y are in the same tree. If they are in S, we make y an S-orphan,
otherwise we make x a T-orphan. At the end of the augmentation step, we have
(possibly empty) sets Oy and Oy of S- and T-orphans, respectively. These sets
are processed during the adoption step.

We describe the adoption step assuming we grow S (the case for T is sym-
metric). S has a partially completed level Dy + 1. To avoid rescanning vertices
at level D;, we allow adding vertices to this level during orphan processing.
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Our implementation of the adoption step is based on the relabel operation of
the push-relabel algorithm. To process an S-orphan v, we first scan the arc list
starting from the current arc and stop as soon as we find a residual arc (u,v)
with dgs(u) = ds(v) — 1. If such a vertex w is found, we make v an S-vertex, set
the current arc of v to (v,u), and set p(v) = u. If no such w is found, we apply
the orphan relabel operation to v. The operation scans the whole list to find the
vertex u for which dg(u) is minimum and (u, v) is residual. If no such wu exists, or
if ds(u) > Dy, we make v an N-vertex and make vertices w such that p(w) = v
S-orphans. Otherwise we choose u to be the first such vertex and set the current
arc of v to be (v,u), set p(v) = u, set ds(v) = ds(u) + 1, make v an S-vertex,
and make vertices w such that p(w) = v S-orphans. If v was active and now
ds(v) = Dy + 1, we make v inactive.

The adoption step for T-vertices is symmetric except we make v an N-vertex
if d¢(u) > Dy (not just di(u) > D) because we are in the forward pass. Once
both adoption steps finish, we continue the growth step.

4.1 Correctness and Running Time

We now prove that IBFS is correct and bound its running time. When analyzing
individual passes, we assume we are in a forward pass; the reverse pass is similar.
We start the analysis by considering what happens on tree boundaries.

Lemma 1. If (u,v) is residual:

1. Ifue S, ds(u) < Ds, andv ¢ S, then u is an active S-vertex.
2. IfveT andu & T, then di(v) = Dy.
3. After the increase of Ds, if u € S and v € S, then ds(u) = Ds.

Proof. The proof is by induction on the number of growth, augmentation, and
adoption steps and passes.

At the beginning of a pass, all S-vertices u with ds(u) = D, are active. More-
over, (2) and (3) hold at the end of the previous pass (or after the initialization
for the first pass). This implies (1) and (2).

A growth step on w without an augmentation makes u inactive, but only after
completing a scan of arcs (u,v) and adding all vertices v # t with a residual arc
(u,v) to S, so (1) is maintained. A growth step does not change T, so it cannot
affect the validity of (2).

An augmentation can make an arc (u,v) non-residual, which cannot cause
any claim to be violated. An augmentation can create a new residual arc (u,v)
with u € S, if flow is pushed along (v,w). In this case v = p(u), so v must also
be in S and (1) does not apply for (u,v). The symmetric argument shows that
(2) does not apply for a new residual arc either.

An orphan relabel step can remove a vertex v from S. However, if a residual
arc (u,v) exists with u € S and ds(u) < Ds, then by definition of the orphan
relabel step, v remains an S-vertex. So (1) is maintained after an orphan relabel
step. The symmetric argument shows that (2) is maintained as well.

Finally, if there are no active vertices, then (u,v) can be a residual arc with
u € S and v € S only if ds(u) > Ds. Since we grow the tree by one level,
ds(u) = Ds + 1. This implies that (3) holds after the increase of Dj. O
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We now consider the invariants maintained by the algorithm.

Lemma 2. The following invariants hold:

1. Vertices in S and T have valid labelings, ds and d;.

2. For every vertex uw in S, u’s current arc either precedes or is equal to the first
admissible arc to u. For every vertex u in T, u’s current arc either precedes
or is equal to the first admissible arc from u.

3. If u is an S-vertex, then (p(u),u) is admissible. If u is a T-vertex, then
(u, p(u)) is admissible.

4. For every vertex v, ds(v) and d¢(v) never decrease.

Proof. The proof is by induction on the growth, augmentation and adoption
steps. We prove the claim for S; the proof for T is symmetric.

Augmentations do not change labels and therefore (4) does not apply. An aug-
mentation can create a new residual arc (u, p(u)) by pushing flow on (p(u), u). Us-
ing the induction assumption of (3), however, (p(u), u) is admissible, so (u, p(u))
cannot be admissible and thus (2) still applies. In addition, ds(p(u)) = ds(u) —1,
so (1) is maintained. An augmentation can make an arc (p(u), u) non-admissible
by saturating it. However, this cannot violate claims (1) or (2) and vertex u
becomes an orphan, so (3) is not applicable.

Consider a growth step on u that adds a new vertex v to S. We set dq(v) =
ds(u) +1 = Dy + 1, so (3) holds. For every residual arc (w,v) with w € S, w
must be active by Lemma 1. Since the ds value of every active vertex is Dy, we
get ds(w) = Dy = dgs(v) — 1, so (1) holds. The current arc of v is v’s first arc, so
(2) holds. Since v is added at the highest possible label, it is clear that the label
of v did not decrease and (4) is maintained.

Consider an adoption step on v. The initial scan of the orphan’s arc list does
not change labels and therefore cannot break (1) or (4). An orphan scan starts
from the current arc, which precedes the first admissible arc by the induction
assumption of (2), therefore it will find the first admissible arc to v. So if v finds
a new parent, the new current arc is the first admissible arc to v, as required
by (2) and (3). An orphan relabel finds the first lowest label dgs(u) such that
(u,v) is residual. So the labeling remains valid and the current arc is the first
admissible arc, as required by (1), (2) and (3). Using the induction assumption
of (1), labeling validity ensures that an orphan relabel cannot decrease the label
of a vertex, by definition, so (4) is maintained. O

At the end of the forward step there are no active vertices, so if the level
D, +1 of S is empty, then by Lemma 1 there are no residual arcs from a vertex
in S to a vertex not in .S, and therefore the current flow is a maximum flow.

The following two lemmas are useful to provide some intuition on the algo-
rithm. They are not needed for the analysis, so we state them without proofs.

Lemma 3. During a growth phase, for every vertex v € S, the path in S from
s to v is a shortest path, and for every vertex v € T, the path in T from v to t
is a shortest path.
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Lemma 4. The algorithm maintains the invariant that L = Dy + Dy + 1 is
a lower bound on the augmenting path length, and always augments along the
shortest augmenting path.

The next lemma allows us to charge the time spent on orphan arc scans.

Lemma 5. After an orphan relabel on v in S, ds(v) increases. After an orphan
relabel on v in T, di(v) increases.

Proof. Consider an orphan relabel on an orphan v € S. The analysis for an
orphan v € T' is symmetric.

Let U be the set of vertices u such that v € S and (u,v) is residual during
the orphan relabel. By Lemma 2, v’s current arc precedes the first admissible
arc to v. Since during the orphan scan we did not find any admissible arc after
v’s current arc, there are no admissible arcs to v. By Lemma 2, the labeling is
valid, so ds(u) > ds(v) — 1 for every u € U. Since no admissible arc to v exists,
we have that ds(u) > ds(v) for every u € U. So if the relabel operation does not
remove v from S, it will increase ds(v).

Assume the relabel operation removes v from S. Let d.(v) be the value of
ds(v) when v was removed from S. Vertex v might be added to S later, during a
growth step on some vertex w € S. If w € U, then ds(w) did not decrease since
the relabel on v (by Lemma 2), so v will be added to S with a higher label. If
w ¢ U then (w,v) became residual after v was removed from S. This means flow
was pushed along (v, w) with v ¢ S. This is only possible with w ¢ S. So w was
at some point removed from S and then added back to S at label Dy+1 > d.,(v).
Using Lemma 2, ds(w) did not decrease since that time, so when v is added to
S, we get ds(v) = ds(w) +1 > d(v) + 1. O

We are now ready to bound the running time of the algorithm.
Lemma 6. IBFS runs in O(n?m) time.

Proof. There are three types of operations we must account for: adoption steps,
growth steps with augmentations, and growth steps without augmentations.
Consider a growth step on v without an augmentation. We charge a scan of
a single arc during the step to the label of v. Since we do not perform augmenta-
tions, v becomes inactive once the scan of its arcs is done. Vertex v can become
active again only when its label increases. Thus every arc (v,u) scanned during
such a growth step charges the distance label at most once. There are at most
n—1 different label values for each side (S or T'), so the total time spent scanning
arcs in growth steps without augmentations is O(X, degree(v)-(n—1)) = O(nm).
We charge a scan of a single arc during an adoption step on v to the label of
v. By Lemma 5 and Claim (4) of Lemma 2, after every orphan relabel d,(v) or
di(v) increases and cannot decrease afterwards. So every arc charges each label
at most twice, once in an orphan scan and once in an orphan relabel. Since there
are O(n) labels, the time spent scanning arcs in adoption steps is also O(nm).
We divide the work of a growth step with an augmentation on v into scan-
ning arcs of v to find the arc to 7" and performing the augmentation. For the
former, since we remember the arc used in the last augmentation, an arc of v
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not participating in an augmentation is scanned only once per activation of v.
An analysis similar to that for the growth steps without augmentation gives an
O(nm) bound on such work for the whole algorithm. For the latter, the work
per augmentation is O(n). If the saturated arc (u,v) is in S or T, the work can
be charged to the previous scan of the arc after which it was added to the tree.
It remains to account for augmentations that saturate an arc (u,v) with u € S
and v € T. We charge every such saturation to the label dq(u). While v remains
active, (u,v) cannot be saturated again. As with growth steps without augmen-
tations, u can only become active again when its label increases. So a saturation
of (u,v) charges the label dg(u) at most once. There are at most n — 1 distinct
label values, so the total number of such charges is O(nm). An augmentation
during a growth of v, including the scan of v’s arcs until the augmentation,
takes O(n) time. So the total time spent on growth steps with augmentations is
O(n?m). O

This bound can be improved to O(nmlogn) using the dynamic trees data struc-
ture [17], but in practice the simple O(n?m) version is faster on vision instances.

5 Variants of IBFS

We briefly discuss two variants of IBFS, incorporating blocking flows and delays.
According to our preliminary experiments, these variants have higher constant
factors and are somewhat slower than the standard algorithm on vision instances,
which are relatively simple. These algorithms are interesting from a theoretical
viewpoint, however, and are worth further experimental evaluation as well.

A blocking flow version. Note that at the beginning of a growth pass, we have
an auxiliary network on which we can compute a blocking flow (see e.g. [15]).
The network is induced by the arcs (v, w) such that either both v and w are in
the same tree and the arc is admissible, or v is in S and w is in T and (v, w)
is residual. We get a blocking flow algorithm by delaying vertex relabelings: a
vertex whose parent arc becomes saturated, or whose parent becomes an orphan,
tries to reconnect at the same level of the same tree and becomes an orphan if it
fails. In this case its distance from s (if it is an S-orphan) or from ¢ (T-orphan)
increased. We process orphans at the end of the growth/augment pass.

It may be possible to match the bound on the number of iterations of the
binary blocking flow algorithm bound [11].

A delayed version. The standard version of IBFS ignores some potentially useful
information. For example, suppose that Dy, = D; = 10, L = 21, and for an S-
vertex v, ds(v) = 2. Then a lower bound on the distance from v to ¢ is 21 -2 = 19.
Suppose that, after an augmentation and an adoption step, v remains an S-vertex
but ds(v) = 5. Because distances to ¢ are monotone, 19 is still a valid lower
bound, and we can delay the processing of v until L increases to 5 4+ 19 = 24.
The delayed IBFS algorithm takes advantage of such lower bounds to delay
processing vertices known not to be on shortest paths of length L. Furthermore,



Maximum Flows by Incremental Breadth-First Search 9

the algorithm is lazy: it does not scan delayed vertices. As a result, vertices
reachable only through delayed vertices (not “touching” tree vertices) are im-
plicitly delayed as well. Compared to standard IBFS, the delayed variant is more
complicated, and so is its analysis: it maintains a lot of information implicitly,
and more state transitions can occur.

6 Experimental Results

6.1 Implementation Details

We now give details of our implementation of IBFS, which we call IB. Instead of
performing a forward or reverse pass independently, we grow both trees by one
level simultaneously. This may result in augmenting paths one arc longer than
shortest augmenting paths: for example, during the growth step of an S-vertex v
with label Dy we may find a T-vertex w with label D; + 1. Since the s—v path in
S and the w—t path in T" are shortest paths, one can still show that the distances
are monotone and the analysis remains valid. Note that BK runs in the same
manner, growing both trees simultaneously.

We process orphans in FIFO order. If an augmentation saturates a single arc
(which is quite common), FIFO order means that all subsequent orphans (in the
original orphan’s subtree) will be processed in ascending order of labels.

We maintain current arcs implicitly. The invariants of IBFS ensure the cur-
rent arc of v is either its parent arc or the first arc in its adjacency list. A single
bit suffices to distinguish between these cases.

For each vertex v in a tree, we keep its children in a linked list, allowing them
to be easily added to the list of orphans when v is relabeled.

During an orphan relabel step on a vertex v in S, if a potential parent u is
found with dg(u) = ds(v), then the scan halts and w is taken as the parent. It
is easy to see that such a vertex w must have the minimum possible label. A
similar rule is applied to vertices in T'.

On vision instances, orphan relabels often result in increasing the label of the
orphan by one. To make this case more efficient, we use the following heuristic.
When an orphan v is relabeled, its children become orphans. For every child «
of v, we make (v,u) the first arc in u’s adjacency list. If v’s label does increase
by one, a subsequent orphan relabel step on u will find (u,v) immediately and
halt (due to the previous heuristic), saving a complete scan of u’s arc list.

We also make some low-level optimizations for improved cache efficiency.
Every arc (u,v) maintains a bit stating whether the residual capacity of (v, u) is
zero. This saves an extra memory access to the reverse arc during growth steps in
T and during orphan steps in .S. The bit is updated during augmentations, when
residual capacities change. Moreover, we maintain the adjacency list of a vertex v
in an array. To make the comparison fair, we make these low-level optimizations
to BK as well. We compared our improved code, UBK, to BK version 3.0.1
from http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html. Overall, UBK
is about 20% faster than the original BK implementation, although the speedup
is not uniform and BK is slightly faster on some instances.
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All implementations (BK, UBK, and IB) actually eliminate the source and
target vertices (and their incident arcs) during a preprocessing step. For each
vertex v, they perform a trivial augmentation along the path (s,v) - (v,t) and
assign either a demand or an excess to v, depending on whether (s,v) or (v,t)
is saturated. The running times we report to not include preprocessing.

6.2 Experiments

We ran our experiments on a 32-bit Windows 7 machine with 4 GB of RAM and
a 2.13 GHz Intel Core i3-330M processor (64 KB L1, 256 KB L2, and 3MB L3
cache). We used the Microsoft Visual C++ 6.0 compiler with default “Release”
optimization settings. We report system times (obtained with the ftime function)
of the maximum flow computation, which excludes the time to read and initialize
the graph. For all problems, capacities are integral.

Table 1 has the results. For each instance, we give the number of vertices, n,
and density, m/n. We then report the running times (in seconds) of IB and UBK,
together with the relative speedup (SPD), i.e., the ratio between them. Values
greater than 1.0 favor IB. The remaining columns contain some useful operation
counts. PU is the combined length of all augmenting paths. GS is the number
of arc scans during growth steps. OS is the number of arc scans during orphan
steps. Finally, OT is the number of arcs scanned by UBK when traversing the
paths from a potential parent to the root of its tree (these are not included in
0S). Note that all counts are per vertez (i.e, they are normalized by n).

The instances in the table are split into six blocks. Each represents a different
family: image segmentation using scribbles, image segmentation, surface fitting,
multiview reconstruction, stereo images, and a hard DIMACS family.

The first five families are vision instances. The scribble instances were cre-
ated by the authors, and are available upon request. The four remaining vision
families are available at http://vision.csd.vwo.ca/mazflow-data/, together with
detailed descriptions. (Other instances from these families are available as well;
we took a representative sample due to space constraints.) Note that each image
segmentation instance has two versions, with maximum capacity 10 or 100. For
the vision problems, the running times are the average of three runs for every
instance. Because stereo image instances are solved extremely fast, we present
the total time for solving all instances of each subfamily.

Note that IB is faster than BK on all vision instances, except bonel0 and
bone100. The speedup achieved by IB is usually modest, but can be close to an
order of magnitude in some cases (such as gargoyle). IB is also more robust.
It has similar performance on gargoyle and camel, which are problems from
the same application and of similar size; in contrast, UBK is much slower on
gargoyle than on camel.

Operation counts show that augmenting on shortest paths leads to fewer arc
flow changes and growth steps, but to more orphan processing. This is because IB
has more restrictions on how a disconnected vertex can be reconnected. UBK also
performs OT operations, which are numerous on some instances (e.g., gargoyle).
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Table 1. Performance of IBF'S and BK on various instances.

INSTANCE TIME |[s] PU as 0s oT

NAME n = IB  UBK SPD IB  UBK IB  UBK IB  UBK UBK
diggedshweng 301035 5.0 0.42 1.26 3.00 16.9 160.0 6.7 7.7 87.8 7.7 38.4
hessila 494402 5.0 5.81 6.43 1.11 108.4 353.2 7.3 254 601.7 43.9 126.5
monalisa 789419 5.0 2.92 4.33 1.48 30.9 181.9 81 11.7 2394 17.1 59.2
house 967874 5.0 2.54 3.16 1.24 33.0 122.2 6.3 10.2 129.6 13.3 43.7
anthra 1061920 5.0 6.28 6.73 1.07 53.5 153.0 6.8 17.3 348.3 27.3 83.3

bone_subx10 3899394 7.0 2.73 3.20 1.17 0.6 1.3 6.6 8.2 25.0 5.5 11.7
bone_subx1003899394 7.0 3.30 5.32 1.61 2.8 10.9 6.8 8.8 30.1 6.8 23.0
liver10 4161602 7.0 4.91 5.98 1.22 1.0 2.1 6.5 9.6 45.6 8.7 22.2
liver100 4161602 7.0 6.62 14.21 2.15 7.5 232 6.9 12.3 56.0 13.6 66.5
babyfacel0 5062502 7.0 4.98 5.72 1.15 0.5 1.0 6.4 9.3 38.6 7.0 15.4
babyfacel00 5062502 7.0 6.44 11.33 1.76 4.5 127 6.6 10.7 46.3 9.5 39.5

bonel0 7798786 7.0 6.24 4.21 0.67 0.1 0.1 6.9 7.5 30.7 3.6 3.6
bonel00 7798786 7.0 7.01 5.56 0.79 0.5 2.0 6.9 8.1 35.6 5.1 7.0
bunny-med 6311088 7.0 1.04 1.28 1.23 0.3 0.5 6.2 6.2 0.6 0.4 0.6

gargoyle-sml 1105922 5.0 0.89 8.56 9.57 7.8 212.8 7.5 6.8 33.5 10.7 143.2
gargoyle-med 8847362 5.0 22.58 139.06 6.16 22.7 337.2 8.7 12.1 121.6 20.7 250.5
camel-sml 1209602 5.0 0.84 1.31 1.56 5.3 27.6 6.6 6.8 27.5 8.0 23.1
camel-med 9676802 5.0 21.00 32.33 1.54 20.4 74.0 6.8 9.4 92.4 13.0 61.2

BVZ-tsukuba — — 042 045 1.09 1.2 1.7 5.1 5.5 10.8 3.9 2.8
BVZ-sawtooth — — 0.70 0.84 1.20 1.6 2.5 5.1 5.5 6.1 3.7 2.7
BVZ-venus — — 1.06 1.19 1.11 2.3 4.1 5.7 6.2 13.5 6.0 5.1
KZ2-sawtooth — — 1.68 249 1.48 2.6 4.3 8.1 9.3 7.5 8.8 4.0
KZ2-venus — — 298 4.14 1.39 3.3 6.2 8.8 11.2 18.0 13.5 8.1

rmf-wide-14 16807 6.6 0.17 0.57 3.35 99.6 385.5 57.1 113.7 492.1 339.9 1659.5
rmf-wide-16 65025 6.7 2.06 13.22 6.43 184.6 1339.2 97.7 413.0 1161.0 982.6 8835.8
rmf-wide-18 259308 6.8 25.37 641.83 25.30 334.3 5923.9 150.4 3417.3 2626.8 6635.4 85807.3

Most vision instances are easy, with few operations per vertex. To see what
happens on harder problems, and to observe asymptotic trends, we use the DI-
MACS [14] family that is hardest for modern algorithms, rmf-wide. In this case,
each entry in the table is the average of five instances with the same parame-
ters and different seeds. On this family, IB is asymptotically faster than UBK,
but not competitive with good general-purpose codes [10]. For larger instances,
UBK performs more operations of every kind, including orphan processing. In
addition, it performs a large number of OT operations.

We also experimented with other DIMACS problem families. On all of them
IBF'S outperformed UBK, in some cases by a very large margin.

7 Concluding Remarks

We presented a theoretically justified analog to the BK algorithm and showed
that it is more robust in practice. We hope that the algorithm will be adopted
by the vision community. Recently, Arora et al. [1] presented a new push-relabel
algorithm that runs in polynomial time and outperforms BK on vision instances.
It may outperform ours on some instances as well, but unfortunately we were
unable to perform a direct comparison.

Note that our algorithm also applies in the semi-dynamic setting where we
want to maintain shortest path trees when arbitrary arcs can be deleted from
the graph, and arcs not on shortest paths can be added. We believe that the
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variants of the IB algorithm introduced in Section 5 are interesting and deserve
further investigation.
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