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ABSTRACT 

Maximum likelihood algorithms are described for generalized linear mixed models. 

We show how to construct a Monte Carlo version of the EM algorithm, propose a Monte 
Carlo Newton·Raphson algorithm and evaluate and improve the use of importance 

sampling ideas. Calculation of the maximum likelihood estimates are shown to be feasible 

for a wide variety of problems where they were not previously. We also use the Newton­
Raphson algorithm as a framework to compare maximum likelihood with the ')oint­

maximization" or penalized quasi-likelihood methods and explain why the latter can 

perform poorly. 

Keywords: Monte Carlo EM, Newton-Raphson, Metropolis-Hastings algorithm, 
importance sampling, simulated maximum likelihood, joint-maximization algorithms, 

penalized quasi-likelihood. 



1. INTRODUCTION 

Generalized linear mixed models ( GLMMs) are a natural outgrowth of both linear 

mixed models and generalized linear models. As such, they are of wide applicability and 

practical importance (e.g., Breslow and Clayton, 1993). GLMMs enable the 

accommodation of non-normally distributed responses, specification of a possibly 

nonlinear link between the mean of the response and the predictors, and can model 

overdispersion and correlation by incorporating random effects. While maximum 

likelihood and variants are standard for both linear mixed models (e.g. REML) and 

generalized linear models (e.g., logistic regression), its use in GLMMs has been limited to 

simple models due to the need to numerically evaluate high dimensional integrals. 

To avoid these computational problems several approaches have been proposed. 

McCulloch (1994) describes a Monte Carlo EM (MCEM) approach which can handle 

complicated fixed and random effects structure but is limited to a binary response with a 

probit-link. "Joint-maximization" algorithms have been proposed by a number of authors 

(Gilmour, Anderson and Rae, 1984; Harville and Mee, 1984; Schall, 1991). These are 

approximate versions of the mixed model equations of Henderson eta! ( 1959) which arise 

from maximizing the joint distribution of the observed data and random effects with 

respect to the parameters and the random effects. Others (Breslow and Clayton, 1993; 

Wolfinger, 1994) have arrived at essentially the same computational algorithm via 

different justifications. We compare these methods with ML in Sections 5 and 6. 

Generalized estimating equations approaches (Diggle, Liang and Zeger, 1994) are useful 

for longitudinal data situations and have attractive robustness properties, but may not be 

applicable in other situations and sometimes suffer from a lack of efficiency (Fitzmaurice, 

1995). As a general approach to difficult ML problems Tanner (1993) and Diggle, Liang 

and Zeger (1994) have suggested using a Bayesian paradigm with flat or diffuse priors to 

approximate ML estimates. This will often be inappropriate for models with random 

effects (such as we are interested in here) since the posterior may not exist for diffuse 

priors (Natarajan and McCulloch, 1995; Hobert and Casella, 1996). This may not be 

detected when using computational techniques such as the Gibbs sampler and wrong 

estimates can result. 

In this paper we show how an MCEM algorithm can be constructed, propose a 

new procedure, called Monte Carlo Newton-Raphson (MCNR), and evaluate and improve 

the use of simulated maximum likelihood methods. We also use the Newton-Raphson 

(NR) algorithm as a framework within which to compare ML with joint-maximization 

approaches. While MCEM algorithms are not new (Tanner, 1993; Ledholter and Chan, 

1994), those which have been proposed are not directly applicable to the class of models 

considered here. We show how the incorporation of a Metropolis-Hastings step allows 

construction of an MCEM algorithm for ML in GLMMs. Geyer and Thompson (1992) 

and Gelfand and Carlin (1993) have developed the use of simulation to directly 

approximate the likelihood and have suggested but not systematically investigated its use 

in finding maximum likelihood estimates. We demonstrate that these methods may not 

work well for GLMMs and suggest an improvement by preceding them with either 

MCEM or MCNR and a Metropolis step. 
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In Section 2 we define our GLMM and establish notation. In Section 3, the three 

basic methods are given: we show how to construct the EM algorithm, develop the 

Monte Carlo Newton-Raphson algorithm and adapt simulated maximum likelihood (SML) 

for our class of models. Section 4 considers a data set and a logit-normal model which 

demonstrates some basic properties of the methods. We then propose a hybrid method 

combining MCNR with SML. Section 5 uses the NR algorithm to compare ML with the 

joint-maximization algorithms. Some simulations comparing the methods are given in 

Section 6 and Section 7 discusses convergence issues and offers conclusions. 

2. THE BASIC MODEL AND NOTATION 

We consider the following class of models. Let Y be the observed data vector 

and, conditional on the random effects, u, we assume that the elements of Y are 

independent and drawn from a distribution in the exponential family, which, for simplicity 

of exposition, we take with canonical link. To complete the specification we assume a 

distribution for u, depending on parameters, D: 

/y11u(ylu,{J,rjJ) = exp{(Y17;- c(q; )) I a(rjJ) +d(y, ¢)} 

U- fu(ujD) 
(1) 

Here 17; = x;p + z;u with x; being the ith row of X, the model matrix for the fixed 

effects, and likewise with z; being the ith row of Z, the model matrix for the random 

effects. The likelihood for (1) is given by 

n 

L({J,r/J,Diy) = JTI/y1lu (y; ju,fJ,rjJ)fu (ujD)du, (2) 
i=l 

which cannot usually be evaluated in closed form and has an integral with dimension equal 

to the number of levels of the random factors, u. Our goal is to develop algorithms to 

calculate fully parametric ML estimates based on the likelihood (2). 

3. THREE ALGORITHMS 

In this section we develop the three main algorithms for ML in model ( 1): 

MCEM, MCNR, and SML. 

3.1 Monte Carlo EM 

To set up the EM algorithm we consider the random effects, u, to be the missing 

data. The complete data, W, is then W=(Y,u) and the complete data loglikelihood is given 

by 

(3) 
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This choice of missing data has two advantages. First, upon knowing the u's, the Y/s are 

independent. Secondly, TheM step of the EM algorithm maximizes (3) with respect top, 

<P, and D. Since P and <P only enter the first term, theM step with respect to p and <P uses 

only fylu (the generalized linear model portion of the likelihood) and so it is similar to a 

standard generalized linear model computation with the values of u treated as known. 

Maximizing with respect to D is just }..Jl using the distribution of u after replacing 

sufficient statistics (in the case where fu is in the exponential family) with their 

conditional expected values. The EM algorithm then takes the following form. 

1. Choose starting values p<oJ, ¢<01 • and D<OJ. Set m=O. 

2. Calculate (with expectations evaluated under p<mJ, ¢<ml, and D(mJ ). 

a. p<m-l) and ¢<m-l) which maximize E[ln fv:u (ylu, /3, ¢)1y], 

b. D<m-IJ which maximizes E[ln fu ( ul D)ly ], 

c. Set m=m+ 1. 

3. If convergence is achieved, declare p<m+l), ¢<m+JJ, and n<m+l) to be MLEs, 

otherwise return to step 2. 

In general, neither of the expectations in 2a. or 2b. can be computed in closed form 

for the model (1 ). This is because the conditional distribution of uly involves fv, i.e., the 

likelihood which we are trying to avoid calculating directly. 

However, it is possible to produce random draws from the conditional distribution 

of uly by using a Metropolis algorithm (Tanner, 1993), which does not require 

specification of fv. One can then form Monte Carlo approximations to the required 

expectations. 

To specify the Metropolis algorithm we specify the candidate distribution, hu ( u), 

from which potential new values are drawn and the acceptance function which gives the 

probability of accepting the new· value (as opposed to keeping the previous value). If we 

choose fu as the candidate distribution then the acceptance function takes a particularly 

neat form. Let u denote the previous draw from the conditional distribution of uly and 

generate a new value, uk *, for the kth component of u using the candidate distribution. If 

we denote u*=(u1,u2, ... Uk-t,Uk * ,Uk+J, ... ,uq), then we accept u* as the new value with 

probability ~(u,u*) and otherwise we retain u. Here Ak(u,u*) is given by: 

A.( *)= . {1 fuly(u*ly,{3,¢,D)hu(u)} 
~ u,u min , . 

, fuly ( uly, {3, ¢, D)h" ( u*) 
(4) 

Upon choosing hu = fu, the second term in braces in (4) simplifies to 
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n 

[JJY;Iu (y; ju,p,fjJ)fu (u*jD)fu (ujD) 
fuJy (u*jy,/3, rjJ,D)hu (u) i=l =___.!:::_:..___ __________ _ 

fuJy (ujy,p, r/J,D)hu (u*) n 

[JJy;lu (yi ju* ,p, r/J)fu (ujD)fu (u*jD) 
i=l 

n 

[JJY;Iu (Y; ju* ,p, r/J) 
i=l 

n 
(5) 

IT fY;Iu (y; iu,p, ¢) 
i=l 

This calculation only involves the specification of the generalized linear model portion of 

the model, namely the conditional distribution of yju. 
Incorporating the Metropolis step into the EM algorithm gives an MCEM 

algorithm as follows: 

1. Choose starting values p<o>, rp<o>, and n<o> . Set m=O. 

2. Generate N values, u<1> ,u<2> , ... ,u<N>, from fuiY(uly,p<m> ,rp<m> ,n<m>) using the 

Metropolis algorithm described above. 

a. Choose p<m+I) and rp<m+I) to maximize a Monte Carlo estimate of 

E[lnfy1u(Yiu,p,fjJ)jy], i.e., maximize_!_ ±tnjy1u(yiu(k) ,p,fjJ), (6) 
N k=l 

b. Choose n<m+l) to maximize _!_fIn fu ( u<k> I D) , 
N k=l 

c. Set m=m+l 

3. If convergence is achieved, declare p<m+l), rp<m+l), and n<m+I) to be MLEs, 

otherwise return to step 2. 

While computationally intensive, this approach remains feasible for a variety of data 

configurations. We demonstrate its performance in Section 6. 

3 .2 Monte Carlo Newton-Raphson 

EM is a standard technique to use for linear mixed models, but generalized linear 

models are usually fit using a Newton-Raphson or scoring algorithm. It thus makes sense 

to develop a simulation analog of the Newton-Raphson approach for fitting GLMMs. We 

start by noting that whenever the marginal density of Y is formed as a mixture as in (2) 

with separate parameters for /yJu andfu then the ML equations for 8=(J3, cp) and D take 

the following form: 
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olnf I (yl u, B) 
Vll 

E[ - ly]=O 
cB 

clnf (CID) 

E[ u ly]=O. 
cD 

(7a) 

(7b) 

Equation (7b) only involves the distribution of u and is often fairly easy to solve, e.g., 

when the distribution is normal. On the other hand, (7a) is amenable to a Newton­

Raphson or scoring approach exactly as it is for a standard generalized linear model. 
oln f I (yJU. B) 

Expanding Y u · as a function of 13 around the value j30 gives: 
ofJ 

olnfyJu(yJU,B) _ olnfylu(yJU,B) 

ofJ = cfJ 
B=B 

0 

o 2InfyJu (yJU ,B) 
+ ----=--=-----1 

o fJofJ' 
B=B 

(/3- fJ 0) . 

0 

Specializing this to model ( 1 ), and noting that one term has a conditional expected value 

of zero just as in the generalized linear model derivation (McCullagh and Neider, 1989, 

p.42), the formula for a scoring type algorithm becomes: 

yJu = X 'W (B 0 , U) I a(¢) 01J (Y- !-l(B 0 ,U))- X 'W (8 0 , U) I a(¢)X (/3- /3 o ), 
olnf (yJU,B) I 

o fJ OJ-l e=e, 

(8) 

where /-l;(B,u) = E[Y;Iu], W(B.u)- 1 = diag{(01J; I OJ-l;) 2 var(I;Ju)} and Or,/ OJl = 

diag{Or,; I OJl;}. Using this approximation in (7a) leads to an iteration equation of the 

form: 

fJ(m+l) = fJ(m) + 

I 
(9) 

E[X 'W(B<'"' ,U)XIyr 1 X'(E[W(e<m) ,U) ~1] (y- J-l(fJ<ml ,U))Jy]). 

'f-l e=e, 

This analog of scoring would proceed by iteratively solving (7b ), (9), and an equation for 

<j). An advantage of the scoring approach over MCEM is that it makes automatic the 

maximization step in 2a. of (6). 

Again, the expectations cannot typically be evaluated in closed form which leads to 

our Monte Carlo Newton-Raphson (MCNR) approach: 

1. Choose starting values f3< 0J, ¢Pl, and n<oJ. Set m=O. 
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2. Generate N values, u<I) ,u<z) , ... ,u<N), from fuiY(uJy,p<m) ,rp<m) ,n<m))using the 

Metropolis algorithm described above and use them to form Monte Carlo 

estimates ofthe expectations (denoted below as E[·]). 

a. Calculate 

fJ(m+l) =: fJ(m) + 

E[X 'W(B(m) ,U)XIyr 1 X'(E[W(B(m) ,U) ~;Le. (y- f.J(fJ(m) ,U))Iy]), 
(10) 

81nf (yl U, B) 

b. Calculate rp<m+I) to solve E[ ylu IY] = 0 or a scoring equation, 
8¢ 

c. Choose n<m+t) to maximize -1 ±lnfu(u<t)JD) , 
N t=t 

d. Set m=m+ 1. 

3. If convergence is achieved, declare p<m+l), rp<m+t), and n<m+t) to be MLEs, 

otherwise return to step 2. 

3.3 Simulated Maximum Likelihood 

While both MCEM and MCNR work on the log of the likelihood, Geyer and 

Thompson (1992) and Gelfand and Carlin (1993) have suggested simulation to estimate 

the value of the likelihood directly. Starting from (2), 

(11) 

where the u's are selected from the importance sampling distribution, hu (u), and N is the 

number of simulated values. This gives an unbiased estimate of the likelihood no matter 

the choice of hu ( u ). The simulated likelihood is then numerically maximized, either after a 

single simulation, or using multiple simulations in an iterative process where the 

importance sampling distribution is allowed to depend on the current parameter values. 

6 



4. ILLUSTRATION USING A LOGIT-NORMAL MODEL AND A HYBRID 

ALGORITHM 

In this section we give some computational details using a model chosen to be as 

simple as possible, yet retaining the GLMM structure. These lead to consideration of a 

hybrid algorithm which begins with MCNR and concludes with SML. 

4.1 A simple logit-normal model. 

Consider a logit-normal model with a single, normally distributed random effect 

and a single fixed effect: 

Y;1 lu ~ indep Bernoulli(p!i ), i = 1 ,2, ... , n; j = 1 ,2, ... , q, 

ln(pij I (1- piJ. )) = fJxij + u1 , 

u1 ~ iidN(O,a2 ). 

(12) 

With a single random effect the likelihood is relatively easy to evaluate numerically (and 

hence maximize) and for this example it is given by 

q { (fJx )} -u2!2a2 

L(/3 2 ! ) = TI Jco Tin exp y if if + u 1 e 1 d . 
' (J y . 2 112 u] . 

J=l -COl=!}+ exp{y!ifJx!i + u1 } (2na ) 
(13) 

This can be evaluated by Gauss-Hermite quadrature (Abramowitz and Stegun, 1959) and 

we can thus compare MCEM, MCNR, SML and the MLE. 

For the Metropolis algorithm we chose the candidate distribution, hu(u), in (4) to 

be N(O,cr2) and the acceptance function is thus 

where Y+k=LiYik· To find f3(m+I) in step 2a. of(6) we maximize 

__!_ ~ ~y x + 2: .y. u<k> - 2: . ln(1 + exp{fJx .. + u<k> }) 
N L...J }JkJ I ,j I] I] j 7 j j I ,j I] j 

k=l 

while the Newton-Raphson iteration in step 2a. of(10) is 

p<m~I) = p<mJ + E[X'W(p<mJ ,U)Xiyr1 X'(y- E[.u(J3(m) ,U)iy]), 

where !l; (j],u) = 11 (1 + exp{-fJx!i -u1 }) and W(j], u) = diag{f..l; (fJ,u)(l- fJ; (fJ,u))}. 

For both MCEM and MCNR the update for cr2 (2b. of either (6) or (10)) is 
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N 

2(m+l) = _1 "(" . (k)2) j 
(} ~ t...]ll] q. 

N k=l 

For SML there is the question as to what to use as the importance sampling 

distribution. Though perhaps giving SML an unfair advantage we chose the importance 

sampling distribution as N(O,cr\ with cr2 set equal to the true value. This seemed like it 

would make a good importance sampling distribution and matches with a common 

suggestion in simulation based methods (e.g., Tanner, 1993). 

Figure I shows a plot of the three methods of calculating the MLE for a 

representative data set simulated from model (12) with P=5, cr2=0.5, Xij=i/I5, n=15, and 

q=IO. The MLE of P was found to be 3.50 by direct numerical maximization of the 

likelihood using the routine OPTMUM from GAUSS (Aptech Systems, 1992). This is 

indicated in Figure I by a solid line. All the methods were started at P=2. Several facts 

are clear from the plot and are representative of samples from this model: 

I. SML using the true distribution as the importance sampling distribution performs 

poorly. Using a large number of replications in an attempt to achieve accuracy, SML is 

much slower than either MCEM or MCNR, but converges to a value much farther from 

the MLE. The optimal importance sampling distribution (optimal in the sense it estimates 

the value of the likelihood with zero variance at the MLE) is ful.v , evaluated at the MLEs. 

Clearly this is impossible to use since we do not know the value of the MLE and we 

cannot calculate the conditional distribution. Unfortunately, importance sampling 

distributions which are far from optimal usually lead to erroneous estimates as in the 

example. This has also been noticed by Geyer (1994). 

2. MCEM and MCNR reach the neighborhood of the MLEs very quickly (in about a 

minute), but continue to show random variation. The number of replications required to 

get MCEM or MCNR to converge with four or three decimal accuracy would be very 

large. 

4.2 A Hybrid Algorithm 

The preceding observations suggest that a hybrid algorithm would be 

advantageous. A preliminary stage of MCEM or MCNR can be run which yields both 

rough estimates of the MLEs and a sample of observations from ful.v at those estimates. 

These can also be used to approximate the optimal importance sampling distribution for 

SML. The added advantage of such a hybrid approach is that an estimate of the value of 

the likelihood is a byproduct of the final SML round. This would not be available from 

either MCEM or MCNR. 

5. COMPARISON OF ML WITH JOINT MAXIMIZATION METHODS 

In this section we use equation (9) of the NR algorithm (exact, not Monte Carlo 

version) and the ML equation, (7b ), to compare ML methods with ')oint maximization" 
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algorithms. These have arisen via several justifications: as an approximation to and by 

analogy with the mixed model equations of Henderson, et a/ (1959), as penalized quasi­

likelihood estimators (Breslow and Clayton, 1993), and as Laplace approximations 

(Wolfinger, 1993). The quasi-likelihood justification is attractive because it suggests that 

it is "not necessary to specify the distribution of the random effects beyond weak 

assumptions on the expectation and variance ... " (Schall, 1991). 

To understand the performance of the joint-maximization (JM) methods it is 

instructive to compare them in the case of a GLMM with a logit link. In such a case the 

NR iterations for~ (irrespective of the random effects distribution) are: 

p<m+l) = p<ml + E[X 'W(p<ml ,u)XJyr1 X '(y- E[,u(p<ml ,u)Jy]), (14) 

where f.J.i({J,u) = 11(1+exp{-x;p-z;u}) and W({J,u) =diag{pi({J,u)(1- f.J.i({J,u))}. 

The iterations for JM (e.g., Schall, 1991) are similar and are given by: 

p<m+i) = p<m) +(X 'W(p<m) ,u)X)-1 X'(y- f.J(p<m) ,u))' (15) 

where u is the solution to the approximate joint-maximization equations (presumably an 

attempt to approximate E[uly]). The equations for random effects parameters are a bit 

different. In our version ofNR we use the full ML equation, (7b ), to form an iteration. If 

the random effects distribution is u-N(O,Id) then (7b) is given by: 

cr2<m+I) = E[u'ujy]l q, (16) 

while Schall ( 1991) uses 

cr2<m+I> = u'ii I (q- v*), (17) 

with v* being the trace of a matrix defined therein. The form of ( 17) is based on 

calculations using formulas for E[u'ujy] assuming u andY are jointly normal. This can be 

a poor approximation for non-normal data and/or non-normally distributed random 

effects. In fact, for non-normally distributed random effects equation (7b) would take a 

completely different form, suggesting that neither (16) nor (17) will perform well. 

So, if we think of JM techniques as approximating the ML equations, we can see 

that JM techniques involve two sorts of approximations. First, they depend on joint 

normal theory calculations for the form of E[u'ujy] and second, they assume that u 
corning from the JM equations will suffice in simultaneously deriving approximations 

(comparing (14) to (15)) to E[u'ujy], E[X'W(p(m) ,u)XJyJ, and E[f.J(p(m) ,u)Jy]. For 

large variances of u it is unlikely that the same value of u , no matter how derived, will be 

sufficient for all these approximations. 

By comparison, in the linear mixed model, equation (7a) for~ is linear in u. Hence 

the only conditional expectation needed is E[ujy] which is found exactly by solving 

oln /y,u I ou = 0, i.e., one of the JM equations. For GLMMs in general, not only does 
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solving cln f .. u I ou = 0 not give E[u:y], but, even if we could easily calculate E[ujy], it 

is not the needed ingredient to use in solving (7a). 

Of course, as pointed out by Breslow and Clayton (1993), it may be best to 

consider JM algorithms merely as new methods (rather than as approximations to the ML 

equations) and evaluate their merit directly. This is done in the next Section. 

6. TWO SIMULATION STUDIES 

To evaluate the performance of these estimators we ran two small simulation 

studies. The first compared all of the estimators, while the second focused on the 

performance of JM estimators as compared to ML estimation when the random effects 

distribution was not normal 

The first simulation (with 100 replications) compared MCEM, MCNR, SML, JM, 

MCNR+SML (i.e., a round ofSML to follow MCNR) and MCNR+SML+SML (to see if 

a second round of SML would further improve the estimates). Since SML with a simple 

importance sampling distribution performed so poorly (Figure 1 ), we approximated the 

optimal importance sampling distribution in the SML routines by assuming it was iid 

normal and by using the Metropolis algorithm to estimate the means and variances. The 

iid normality assumption was decided upon after looking at a large number of histograms 

and scatterplots of fuly. The simulated data were generated from model (12), but with an 

intercept term, a, estimated. The true values of the parameters were a=O, t3=5, and 

cr2= 1. 5. There were q= 15 levels of the random effect and n=8 observations per level of 

the random effect for a total sample size of 120. All the methods were started at a=1, 

t3=4, and cr2= 1. 

Figure 2 shows plots of the estimates of t3 from the six methods against the MLEs. 

If the methods were all perfect, all the estimates would fall exactly on the y=x line. The 

JM and SML methods performed poorly, with JM underestimating the true values 

consistently (due to underestimation of cr2 - see Figure 3) and SML showing a very large 

variance, despite the improved importance sampling distribution over that used in Figure 

1. MCEM and MCNR performed quite well and generally the SML methods with a start 

of MCNR performed well, though every once in a while they gave stray values. Figure 3 

shows the estimated versus calculated values of the estimate of the variance component 

with results being very similar to the estimates of t3. Figure 4 shows the estimated versus 

calculated values of the negative of the loglikelihood for the various methods using SML. 

SML was quite likely to give stray values, but the other methods were virtually always 

correct; the mean square difference between the calculated and estimated values was 0.12 

for MCNR+SML and 0.15 for MCNR+SML+SML. This shows that the values in Figure 

3 which gave values different from the MLEs corresponded to nearly equivalent values of 

the likelihood. 

Table 1 gives a numerical summary of the simulation and confirms the graphs. The 

JM method is badly biased in estimating both the fixed effect and the variance component. 

The others give approximately the correct value for t3 on the average. In terms of MSE 

the JM and SML methods performed poorly but the other four methods were quite good. 

To get a more detailed idea of which methods were better, we ranked the six methods for 
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estimating B and cr2 and the three methods for estimating -loglikelihood for each 

replication based on their closeness to the Ml.£s (lower ranks are closer). This shows that 

the follow-up rounds of SML generally improved the estimates over the preliminary 

MCNR round to give closer estimates. 

The second study focused more on the JM method and its performance as a 

method of estimation compared to ML when the random effects distribution was non­

normal. In order to have a distribution which was highly non-normal and yet easy to 

perform calculations we used an exponential distribution for the random effects. The 

layout was chosen to mimic a matched cases, binary data analysis with four treatments and 

100 blocks for a total of 400 observations. The model was: 

Y,1 lu ~ indep Bernoulli(py), i = 1,2,3,4; j = 1,2, ... , 100, 

ln(pii I (1- Py)) =a; +u1 , 

111 ~ iid Exponential(.A), 

(18) 

with a=(0,0,-5,-5) and /..,=3. Numerical ML was used to form the estimates using 20 point 

Gauss-Hermite quadrature to approximate the integrals when assuming normally 

distributed random effects and using 15 point Laguerre quadrature (Abramowitz and 

Stegun, 1959) for the exponentially distributed random effects. The OPTMUM procedure 

in GAUSS (Aptech Systems, 1992) was used to maximize the likelihoods. 

We focus on the estimates of the variance components and correlation structure, 

since the marginal means in this simple, balanced setup will be very close to the observed 

proportions for all three methods. As shown in Table 2, 1M performed exceedingly 

poorly, with the estimates of the variance of the random effect being badly biased 

downward. Full ML assuming a normal distribution for the random effects performed a 

bit better. This and the previous simulation shows that the approximations involved in JM 

perform poorly when the random effects variances are not extremely small. This is not a 

case with an excessively large random effects variance: the marginal correlations between 

observations on the four treatments within a block vary between 0.2 and 0.5. Both normal 

ML and JM perform poorly in estimating the marginal correlation structure with the MSE 

of 1M being as much as 20 times larger than ML using the correct model and with ML 

using the incorrect (normal) model being as much as 9 times worse. Interestingly, in 

estimating cr2, ML assuming the (incorrect) normal model gave a smaller mean square 

error. This was due to an extremely skewed sampling distribution for the estimate of cr2 

under the exponential model which occasionally gave very large values. 

7. DISCUSSION AND CONCLUSIONS 

A natural question concerns the convergence properties of these algorithms. For 

sufficiently large simulation sample sizes, MCEM or MCNR would inherit the properties 

of the exact versions. So MCEM would inherit the likelihood increasing properties of EM 

and would, under suitable regularity conditions (e.g., Wu, 1983), converge to a local 

maximum. Newton-Raphson algorithms do not have guaranteed convergence properties 

when the surfaces to be maximized are not concave. 
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Unfortunately, in variance components problems, the likelihood surfaces need not 

be even unimodal (Searle, Casella, and McCulloch, 1992), hence even exact EM 

algorithms may converge to local, rather than global, maxima and Newton-Raphson 

algorithms may not converge at all. However, if they do converge, they solve the ML 

equations (7) and hence converge to a solution of the ML equations. Of course, 

simulation sample sizes of the order necessary to make MCEM or MCNR essentially 

deterministic are usually not feasible. In such cases, they clearly will not converge in the 

usual sense. They will instead get "close" to the correct answer and then vary in the 

neighborhood of the correct answer (Chan and Ledholter, 1994). This is one reason for 

suggesting a follow-up round of SML, in order to avoid the complications of deciding 

whether the stochastic versions of EM or NR have converged. 

The variability associated with the estimates from SML can be evaluated directly 

by repeating the maximization with a new simulation. This could also be used to 

determine the required simulation sample size. For our simulation studies we conducted a 

preliminary components of variance analysis to determine sample sizes for both SML and 

the preliminary Metropolis step which was needed to estimate the optimal importance 

sampling distribution. 

All of the methods seemed robust to the starting values (though they did not 

always converge to an accurate answer) and only SML (without a preliminary MCNR 

round) exhibited some convergence problems. Even though the JM methods performed 

poorly in general, they are fast and might be used to provide starting values for the ML 

methods. Being based on a linearization which becomes more accurate as the variances 

become smaller they can be expected to perform well when the variance components are 

small. This is a well-known case where methods like EM can have problems since the 

parameter estimate lies on or near the boundary of the parameter space. 

In conclusion, we have demonstrated that calculating ML estimates for generalized 

linear mixed models is feasible using either a Monte Carlo EM algorithm or a Monte Carlo 

Newton-Raphson algorithm. To make convergence issues clearer, to achieve a slightly 

more precise estimator and to estimate the value of the maximized likelihood (e.g. for 

likelihood ratio tests) MCEM or MCNR can be followed by a round of SML. This usually 

refines the estimates and also gives accurate estimates of the maximized value of the 

likelihood. Further iteration of SML did not show much improvement over a single round 

of SML. SML by itself and JM (or penalized quasi-likelihood) methods did not perform 

well in our simulations. Some reasons for the poor performance of JM were suggested by 

comparing them to the NR algorithm. 
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Table Captions 

Table 1: Estimated average difference from (SEs in parentheses), mean square difference 

from (SEs in parentheses) and ranking of closeness to (SEs in parentheses) the l\.1LE for 

six different methods of estimation for the model given by equation (12) - see text for 

details. JM is the joint-maximization (or penalized quasi-likelihood) method, MCEM is 

Monte Carlo EM, MCNR is Monte Carlo Newton-Raphson. Sl\.1L is simulated l\.1L and 

"+Sl\.1L" denotes a follow-up round (or two rounds) of Sl\.1L. MCEM and MCNR used 

50, 200, and 5000 replications for iterations 1-19, 20-39, and 40-50 and were stopped 

after the 50th iteration. Sl\.1L used 5000 replications and was preceded by a Metropolis 

step of 250 replications to estimate the optimal importance sampling distribution. 104 

replications were performed in all, however, four replications were excluded from 

consideration because Sl\.1L did not converge for three and all the methods failed to 

converge for the fourth. 

Table 2: Estimated bias (SEs in parentheses) and mean square errors (SEs in parentheses) 

of three methods of estimation for data simulated using exponentially distributed random 

effects from model (18) - see text for details. JM is the joint-maximization (or penalized 

quasi-likelihood) method, ML exponential is l\.1L assuming exponentially distributed 

random effects and ML normal is l\.1L assuming normally distributed random effects. 
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Table 1: Estimated average difference from (SEs in parentheses), mean square difference 
from (SEs in parentheses) and ranking of closeness to (SEs in parentheses) the MLE for 
six different methods of estimation for the model given by equation (12). 

Average difference 

13 

c1 

-loglik 

Method ofEstimation 

JM MCEM MCNR SML MCNR+SML MCNR+SML+SML 

-0.37 -0.01 -0.01 -0.08 -0.004 
(0.05) (0.01) (0.02) (0.05) (0.02) 

-0.54 -0.09 -0.11 -0.36 -0.09 
(0.13) (0.07) (0.09) (0.15) (0.09) 

0.32 -0.07 
(0.10) (0.03) 

-0.007 
(0.02) 

-0.08 
(0.10) 

-0.08 
(0.04) 

Mean square difference 

13 0.36 0.02 0.05 0.25 0.04 0.03 
(0.09) (0.01) (0.05) (0.08) (0.02) (0.02) 

cr2 1.87 0.59 0.87 2.45 0.81 0.95 
(0.88) (0.45) (0.59) (1.00) (0.54) (0.55) 

-loglik 1.03 0.11 0.15 

Average rank of difference 

13 4.6 3.0 3.1 
(0.2) (0.1) (0.1) 

cr2 3.6 3.1 3.2 
(0.2) (0.1) (0.1) 

-loglik 

16 

(0.29) (0.07) (0.11) 

5.0 2.8 
(0.1) (0.1) 

5.4 3.0 
(0.1) (0.1) 
2.7 1.8 
(0.06) (0.06) 

2.6 
(0.1) 

2.7 
(0.1) 
1.5 

(0.07) 



Table 2: Estimated bias (SEs in parenthesis) and mean square errors (SEs in parentheses) 

of three methods of estimation for the model given by equation (18). 

Method ofEstimation 

Bias 

ML Exponential 

cr2 0.19 (0.05) 

Corr(Y1j,Y2j) 0.005 (0.003) 

Corr(Y3j,Y4j) -0.017 (0.005) 

Mean Square Error 

~ 0.93 (0.14) 

Corr(Ytj,Y2j) 0.003 (0.0005) 

Corr(Y3j,Y4j) 0.006 (0.0006) 

17 

MLNormal 

-0.58 (0.03) 

0.204 (0.004) 

-0.183 (0.004) 

0.56 (0.03) 

0.047 (0.002) 

0.039 (0.002) 

JM 

-1.53 (0.01) 

0.047 (0.002) 

-0.346 (0.002) 

2.35 (0.03) 

0.003 (0.0002) 

0.121 (0.002) 



Figure Captions 

Figure 1: Convergence of Monte Carlo EM, Monte Carlo Newton-Raphson and 

simulated ML to the MLE of f3. The SML method used 7000 replications from an 

importance sampling distribution which was N(0,0.5). MCEM and MCNR used 50, 200, 

and 5000 replications for iterations 1-19, 20-39 and 40+. All the methods were started 

using f3=2. The value of the MLE for this dataset was 3.50. 

Figure 2: Plot of the estimated f3 s versus the ML estimates for six different methods of 

estimation. JM is the joint-maximization (or penalized quasi-likelihood) method, MCEM 

is Monte Carlo EM, MCNR is Monte Carlo Newton-Raphson. SML is simulated ML and 

"+SML" denotes a follow-up round (or two rounds) of SML. MCEM and MCNR used 

50, 200, and 5000 replications for iterations 1-19, 20-39, and 40-50 and were stopped 

after the 50th iteration. SML used 5000 replications and was preceded by a Metropolis 

step of 250 replications to estimate the optimal importance sampling distribution. All the 

iterations were started at f3=4. 

Figure 3: Plot of the estimated CJ 2 s versus the ML estimates for six different methods of 

estimation. JM is the joint-maximization (or penalized quasi-likelihood) method, MCEM is 

Monte Carlo EM, MCNR is Monte Carlo Newton-Raphson. SML is simulated ML and 

"+SML" denotes a follow-up round (or two rounds) of SML. MCEM and MCNR used 

50, 200, and 5000 replications for iterations 1-19, 20-39, and 40-50 and were stopped 

after the 50th iteration. SML used 5000 replications and was preceded by a Metropolis 

step of 250 replications to estimate the optimal importance sampling distribution. All the 

iterations were started at if=l. 

Figure 4: Plot of the estimated -loglikelihoods versus actual values at the MLEs for three 

different methods of estimation. MCNR is Monte Carlo Newton-Raphson, SML is 

simulated ML and "+SML" denotes a follow-up round (or two rounds) of SML. MCNR 

used 50, 200, and 5000 replications for iterations 1-19, 20-39, and 40-50 and was stopped 

after the 50th iteration. SML used 5000 replications and was preceded by a Metropolis 

step of 250 replications to estimate the optimal importance sampling distribution. 

18 



0 

l[} 

LCJ 

0:}_ '1' 

'J-.1 

0 
0 

Q) 7 
~ 

(lj 

s l[} 
-~ 

~ ("J 
lf1 

~ 

~ 0 

0 ("J 
....... 

lf1 

Q) 
l[} I 

~ 

(lj N I 
~ 
Q) 

I 
~ ,...... 0 

_ .. 
N 

l[} 

rl 

0 5 

Figure 1: Convergence of MCEM,MCNR, and SML 

to the MLE of f3 ( =3.50 for this data set). 
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Figure 2: Plot of estimated $s vs ML estimates 
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Figure 4: Plot of estimated -loglikelihoods vs ML estimates 
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