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MAXIMUM LIKELIHOOD AND LEAST SQUARES ESTIMATION IN
LINEAR AND AFFINE FUNCTIONAL MODELS'

By C. VILLEGAS

Simon Fraser University

In a linear (or affine) functional model the principal parameter is a
subspace (respectively an affine subspace) in a finite dimensional inner product
space, which contains the means of n multivariate normal populations, all
having the same covariance matrix. A relatively simple, essentially algebraic
derivation of the maximum likelihood estimates is given, when these estimates
are based on single observed vectors from each of the n populations and an
independent estimate of the common covariance matrix. A new derivation of
least squares estimates is also given.

1. Introduction. The problem of making inferences concerning linear relations when
all the observed vectors are contaminated with errors or fluctuations has a long history
and important applications, particularly in Factor Analysis and Econometrics. Tradition-
ally, two different versions of this problem have been considered. In one version, called by
Malinvaud (1970) the functional model, the corresponding “true” vectors are considered
as unknown parameters, whereas in the other version, called the structural model, they
are considered as independent random vectors.

More recently, Villegas (1976) and Villegas and Rennie (1976) introduced another
version in which the true vectors constitute an autoregressive process. From a Bayesian
viewpoint, the differences among these versions are not so important and perhaps it might
be better if all of them were called linear functional models. The maximum likelihood
(ML) estimation of linear functional models was considered in the general multivariate
case by Anderson (1951) and Nussbaum (1976), using differential calculus. Villegas (1961)
gave a relatively simple, essentially algebraic derivation for the case in which the linear
relation is a hyperplane, i.e., an affine (p — 1)-dimensional subspace of a p-dimensional
space. An algebraic derivation for a general model has been given by Healy (1980). Least
squares (LS) estimation of functional models has been considered recently by Eckart and
Young (1936), Rao (1964) and Hoschel (1978).

In the present paper, relatively simple, essentially algebraic derivations of LS and ML
estimators are given for the general case in which the linear (or affine) relation is an r-
dimensional subspace (resp. affine subspace) of a p-dimensional space.

2. The model. In the present paper, R” is the space of p-dimensional row vectors.
Assume that we are given n observed vectors y € R?, i =1, - - -, n, independently drawn
from n multivariate normal distributions having the same p X p covariance matrix 2 and
unknown mean vectors x’ belonging to an unknown r-dimensional subspace H. (Unless
otherwise specified, we use superscripts to distinguish between vectors x and the
components x; of a single vector x.) The p X p triangular deviation A is defined as the
positive lower triangular square root of =, i.e., the lower triangular matrix with positive
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LINEAR FUNCTIONAL MODEL 257

diagonal elements uniquely defined by

(2.1) Y =AAN.

The linear functional model is then, symbolically,
2.2) PN yP —xD):i=1,...,n} =N,
(2.3) xP€eH, (i=1,---,n),

where H is an unknown r-dimensional subspace and .#"; denotes the joint distribution of
n independent p-dimensional standard normal vectors. In the affine functional model, the
only difference is that the vectors x are assumed to belong to an affine subspace.

In the usual case where 3 (and therefore A) is unknown, we assume that we are also
given a p X p matrix W drawn from a Wishart distribution with covariance matrix = and
v degrees of freedom. This matrix W may be obtainable from a preliminary statistical
analysis, which is possible, for example, when replications are available, or when certain
econometric models are analyzed (Anderson, 1976). In other cases, as in factor analysis for
instance, the matrix W may still be available as a fictitious data matrix representing
personal, subjective knowledge. ,

Let Y and AY be the n X p matrices whose ith rows are, respectively, y© and Ay = y©
— ¥, where 7 = n™' Y2, y . If the model is linear, we shall assume that Y'Y is nonsingular,
and, if the model is affine, we shall assume that AY’AY is nonsingular. These assumptions
imply that, in the linear case, n = p, and, in the affine case, n — 1 = p (in which case the
above assumptions will be satisfied with probability 1).

3. Least squares. The LS (least squares) estimates £ are the vectors that minimize
the sum of squares

(3.1) > "x(z‘) _ y(z) "2
under the restriction x € H. This restriction is equivalent to X € %, where X is the
matrix whose ith row is x® and % is the set of all n X p matrices which have rank at most

r.
According to the Singular Value Decomposition (SVD) Theorem,

(32) Y= 25’:1 )\iuiv,-
where the u; are orthonormal vectors in R”", the v; are orthonormal vectors in R”, and A,

= ... = A, > 0. Furthermore, A%, ..., A are the eigenvalues and vi, ---, v, are the

eigenvectors of Y'Y.
According to a result of Eckart and Young (1936) (see also Marshall and Olkin, 1979;
Rao, 1964, 1979; and problem 10, page 70 in Rao, 1973), the LS estimate of X is

(3.3) , X =Y Aubv,.
Obviously, the LS estimate of H is
(3.4) A= span{vi, « -+, Ur}.

In other words, the least squares estimate of H is the subspace spanned by the r
eigenvectors of Y'Y corresponding to the r larger eigenvalues.

An alternative, more geometric derivation of the LS estimators is as follows. Let || y@,
H || denote the orthogonal distance from the point y“ to a subspace H. Use the Pythagorean
Theorem to show that the LS estimate H is the subspace that minimizes Y71 || ', H||?,
and that the LS estimates £ are the orthogonal projections of the points y on H. Let B
be a ¢ X p matrix whose g rows are an orthonormal basis in H*, the orthogonal complement
of H. Then

Yiilly® H|? = S | By | = tr BY'YB' = Ei-i e,

where e} = ... = e’ are the eigenvalues of BY'YB’, indexed in decreasing order. Let e;
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= ... = e, be the eigenvalues of Y'Y, also indexed in decreasing order. By the Cauchy-
Poincaré Separation Theorem (Beckenbach and Bellman, 1965, page 76), ep—j+1 < e}_;1
forj =1, ..., q. Therefore

illy?, HI? = Bi-1 p-ju1,
and the minimum is reached iff
(35) ep—j+1 = e:]k—j+1’ (] = 1) ct q)'

We shall consider only the case, which happens with probability 1, in which e, > e,+;.
Then, by Theorem 1 of Appendix A, the equalities (3.5) hold iff H is the subspace spanned
by the g eigenvectors of Y'Y corresponding to the g smaller eigenvalues, or, equivalently,
iff H is given by (3.4).

Given a positive definite symmetric matrix W, we can define, as in Eaton (1970), a W-
inner product (., .)w by (x, y)w= (x', W™y") and a W-norm || - |lwby || x |y = (x, x) w. The
estimators that minimize Y7-; | x® — y©|%v, subject to the testrictions x” € H, (i = 1,
.+, n), are called generalized least squares (GLS) estimators.

The problem of finding GLS estimators may be reduced to the previous problem by a
preliminary linear transformation with matrix L™, where L is the positive lower triangular
matrix uniquely defined by the triangular decomposition W= LL’. It follows that the GLS
estimate H is the image under L of the subspace spanned by the eigenvectors corresponding
to the r largest eigenvalues of. L™'Y’YL’™", and that the GLS estimates £ are the W-
projections on H of the points y. Note that, if we denote by | M| the determinant of a
matrix M, the eigenvalues of L™'Y’YL’™" are the solutions of the equation | Y'Y — eW| =
0 in the scalar variable e.

To any r-dimensional subspace H associate an r X p matrix I'(H) whose rows are an
orthonormal basis in L™'H. Then LT'(H)'T(H)L ™! is the matrix of the W-projection on H.
Therefore, the GLS estimator of X’ is

(3.6) X =LT@YT@E)LY'.

Note the similarities of this estimator with the Gauss-Markov estimators in the case of
a fixed design matrix (Eaton, 1970).

4. The likelihood function. In the usual case when the positive definite covariance
matrix X is unknown, we assume the availability of a matrix W that has been drawn from
a Wishart distribution with parameter 2 and v = p degrees of freedom. The probability
density of W is proportional to

4.1) | |72 W| PV 2exp(— % tr Z7'W),

when W is positive definite and zero otherwise. ‘
The joint probability density of the observed vectors y® is proportional to

(4.2) || ~exp(— % tr ZH(Y — X)"(Y - X)}.

The likelihood function is proportional to the product of (4.1) and (4.2), or equivalently,
to

(4.3) | 2| 2exp[— % tr S{W + (Y — X)"(Y — X)}],

where N=n+v»
From Lemma 5.1.1 of Giri (1977, page 74), it follows that, for a given X, the value of =

that maximizes (4.3) is
4.4) 2(X) = N"Y{W+ (Y - X) (Y - X)}.
The corresponding maximum value of (6.3) is proportional to

(4.5) | W+ (Y - X)' (Y - X)|™?,
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and, when considered as a function of X, is called the ML (maximum likelihood) function
for X.

5. The ML function for H. The ML estimate of X is the value X that maximizes the
ML function (4.5), or, equivalently, the value that minimizes

(5.1) | W+ (Y -X)(Y-X)]|.
We shall first minimize (5.1) subject to the conditions x’ € H, for a given r-dimensional
subspace H.

Let L be the positive lower triangular matrix uniquely defined by the triangular
decomposition

(5.2) W=LL’
and consider new vectors x , y ) defined by .
y;i)/ = L—ly(i)l’ x*(i)/ — L*lx(i)l’
i=1, .-+, n. Then the problem of minimizing (5.1), subject to the conditions x* € H, is

equivalent to the problem of minimizing
(5.3) | L, + i (v = 2 (0.7 — 29|

subject to the conditions xY € L™'H, i = 1, --., n. By Lemma 1 of Appendix B, the
minimizing x ” are the orthogonal projections of the points y,” on the subspace L™'H.
Equivalently, the matrix X (H) that minimizes (5.1) for a given H, is the matrix whose ith
row £ (H) is the W-projection of y® on the subspace H.

Let B, ---, B, be an orthonormal basis in (L'H)™“, the orthogonal complement of
L7'H, and let B be the ¢ X p matrix whose ith row is 8;. Then B’B is the matrix of the
orthogonal projection on (L™'H)*, and

L7'%£“(H)’ = (I, — B'B)L™'y"".
Therefore
LY - X(H))' = B'BL'Y’
and the minimum value of (5.1), considered as a function of B, is proportional to
(5.4) |I, + BPBL™'Y’YL'"'B’B|.
Since BL™'Y’YL’7'B’ is a positive definite ¢ X ¢ matrix, it has a triangular decomposition
(5.5) BL'Y'YL''B’' =TT,

where T is a uniquely defined ¢ X g positive lower triangular matrix. Therefore, (5.4) is
equal to

|I, + BTT'B|=|I,+ T'BB'T|=|I,+ T'T|= |1, + TT'|,
or, equivalently, to
(5.6) |B(I, + L'Y’YL'™) B’|.

This determinant depends on B only through H™, the subspace spanned by the rows of B.
Therefore the maximum value of (4.5), subject to the conditions x> € H, and considered
as a function of H, is proportional to

(5.7) |B(I, + L'Y’YL'™) B’| ™2

This function of H, defined up to an arbitrary scalar factor by (5.7), is the ML function for
H.
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6. The ML estimates. The ML estimate of H is the r-dimensional subspace A that
maximizes the corresponding ML function (5.7), or, equivalently, the subspace that
minimizes (5.6).

Let e, = ... = e, be the eigenvalues of L™'Y’YL’"", indexed in decreasing order.
Assuming that e, > e,+1, by Theorem 2 of Appendix A, the orthogonal complement of
L7'A is the subspace spanned by the eigenvectors corresponding to the g smaller eigen-
values of L™'Y' YL’

It follows therefore that the ML estimate H of H is the image under L of the subspace
spanned by the eigenvectors corresponding to the r larger eigenvalues of L'Y'YL'™". A
comparison with the results of Section 3 shows that H is the GLS estimate that minimizes
the sum of squares of W-distances to the points y*.

The ML estimate of X is the matrix X = X(H) that minimizes (5.1) subject to the
conditions x® € H. Clearly X is the matrix whose ith row £ is the W-projection of y” on
H. According to the results of Section 3, the ML estimate X is the GLS estimate
corresponding to the matrix W, and is given by (3.6). *

Finally, from (4.4) it follows that the ML estimate of X is

(6.1) S=NY{W+ (Y -X)(Y-X)}

and is therefore a weighted average of » W and n=(Y — X)’(Y — X) with weights » and
n.

7. GLS estimation in the affine model. The image of an r-dimensional subspace H
under a translation v — v + « is an r-dimensional affine subspace H + «. In general, the
vector «a is not uniquely determined by the affine subspace H + a. However, the vector «
is uniquely determined by H + a if it is known that a is W-orthogonal to H, for a given
positive definite symmetric matrix W, and to emphasize this the affine subspace will be
denoted by H ®w a or by H® a if W= 1. ‘

We assume as before that we have n observations y® € RP having multivariate
distributions with means p® ‘belonging to an unknown r-dimensional affine subspace
H®w a. We shall denote by x® the unknown W-projection of > on H. Therefore, we can
write
(7.1) u(i) = x9Dya.

The GLS estimates /i are the vectors that minimize the sum of squares of W-distances
(7.2) ;z=1 "y(i) - ,u(i) "%V,

subject to the restrictions (7.1) and x® € H.

Let ||y, H ®wa||w denote the W-distance from the point y to the affine subspace
H @®wa. By the Pythagorean Theorem, the sum of squares of W-distances (7.2) can be
partitioned as the sum of two components,

(7.3) i lly®, H®wa|w
and
(7.4) YEx© = £9H) |3,

where £9(H) is the W-orthogonal projection of y* on H. It is clear that, for a given
H ®wa, the £9(H) are the values that minimize (7.4), and the corresponding minimum of
(7.2) is (7.3).

But (7.3) is the W-moment of inertia, with respect to H ©wa, of a system of unit masses
placed at the points y ). Therefore, the sum of squares (7.3) can be partitioned as the sum
of two components. The first component,

(7.5) 2y, H+ 7w,

is the W-moment of inertia of the same system of masses, with respect to H + y, the affine
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subspace parallel to H that goes through the baricenter y = n™' ¥ y“.. The second
component,

(7.6) n||y, H Owa| %,

is the W-moment of inertia, with respect to H ©wa, of the total mass n placed at the
baricenter y. The second component (7.6) is also equal to

(7.7 nl|y - a— Pwyl,

where Py is the W-projection on H. It is clear, then, that for a given H, the value of a that
minimizes (7.2) is

(7.8) a(H) =y — Pwy,

or, in other words, the W-projection of ¥ on the W-orthogonal complement of H, say Hw
The corresponding minimum of (7.2) is (7.5) or, equivalently,

(7.9) SElly? =7, Hw.

The GLS estimate H is simply the r-dimensional subspace that minimizes (7.9). This
problem was solved in Section 3, the only difference being that y > — 7 has to be substituted
for y. The GLS estimate & is obtained by substituting A for H in (7.8), and the GLS
estimates £ are obtained by substituting H for H in £ (H).

8. ML estimation in the affine model. We assume now that the observed vectors
y®@ are independent, and have multivariate normal distributions with common covariance
matrix 2 and means u” belonging to an r-dimensional affine subspace. We assume that
= and the means ¥, as well as the affine subspace to which they belong, are unknown. We
also assume, as in Section 4, that an independent positive definite symmetric matrix W is
available, having a Wishart distribution with covariance matrix 3 and » degrees of freedom.
If u is the n X p matrix whose ith row is u?, the joint likelihood function is proportional
to
(8.1) |Z| ™2 exp[— $ = H{W+ (Y — )’ (Y —p)}],
where N = n + » and the p¥’ are assumed to belong to an r-dimensional affine subspace.
Because of this restriction, we have to choose convenient coordinates for the points .
We shall choose a coordinate system that depends on W. As in Section 7, we shall denote
the affine subspace by H ©wa, where H is an r-dimensional subspace and a is a row vector
W-orthogonal to H, and we shall write p® = x*’ ®wa, so that x is the W-projection of
1 on H.

Let X be the n X p matrix whose ith row is x . Then the likelihood function (10.1) may
be written

8.2) || ™2 exp[— % tr W+ (Y—X-1a)’ (Y- X-1"a)}],

where 1 is a row vector of ones. As in Section 4, for fixed X and «, the value of X that
maximizes (8.2) is ‘

(8.3) SX =N {W+(Y-X-1a (Y -X-1a),
and the corresponding maximum is proportional to
84) | W+ (Y =X ~1a) (Y~ X~ Va)| ™

This is the ML function for X and a. The problem of maximizing (8.4) for a fixed H is
equivalent to the problem of minimizing the determinant
(8.5) [ W+ 35 (39 —a— 29 (y9 —a—xD)]|.

By the Corollary of Appendix B, the minimizing & (H) is the W-projection of y on H;
the W-orthogonal complement of H, and the minimizing £ (H) is the W-projection of y*
on H. Therefore, y) — &(H) — £)(H) is the W-projection of Ay® = y® — 5 on Hi.
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Let L be defined as in (5.2), and let us associate with any subspace H a ¢ X p matrix B
= B(H) whose rows are an orthonormal basis in (L "'H)*, the orthogonal complement of
L7'H. Then B’B is the matrix of the orthogonal projection on (L 'H)*, and the W-
projection of Ay® on Hiy is LB’ BL™'Ay .

The corresponding maximum value of (8.4) for a given H, when considered as a function
of H, is proportional to

(8.6) |I, + B’BL'AY’AYL''B’B| ™/,

where AY is the n X p matrix whose ith row is Ay®.

The ML estimate H is the r-dimensional subspace whose coordinate matrix B maximizes
(8.6). The determinant in (8.6) is similar to (5.4) the only difference being that AY has to
be substituted for Y. Therefore, as was shown in Section 5, the ML function for H is
proportional to

8.7 ' |B(I, + L'AY’AYL')B’| ™2

The problem of maximizing (8.7) was solved in Section 6. It follows that the ML
estimate H is the image under L of the r-dimensional subspace spanned by the eigenvectors
corresponding to the r largest eigenvalues of AY’AY.

The ML estimate & is the W-projection of 7 on H# The ML estimates £ are the W-
projections of the y* on H, and the ML estimate £ is obtained from (8.3) by substitution
of the ML estimates of X and a. .

A comparison with the results of Section 7 shows that the ML estimates of H ®wa and
X are also GLS estimates corresponding to the W-metric.

APPENDIX A

Let M be a g-dimensional subspace of R”, and let P be the orthogonal projection on M.
Let A be a positive definite transformation of R”. Assume that the eigenvalues of A, A\; =
+ = A, are indexed in decreasing order. Clearly, if A,_, > A,_,+1 there is a unique
subspace M, spanned by any orthonormal set of g eigenvectors of A corresponding to the

q smaller eigenvalues.
Let T:M — M be a restriction of the transformation PA. For any vector v € M,

(1) (Tv, v) = (Av, v),

and therefore T is positive definite. Let yp; = - .- = y, be the eigenvalues of T, indexed in
decreasing order.

THEOREM 1. IfA,—; > A\p—g+1, then
(2) Ap—j+1 = flg—j+1
forj=1, ..., q,if and only if M = M,.

ProoF. Suppose that M = M,. Let vi, - - - , v, be an orthonormal basis in My, whose
elements are eigenvectors of A corresponding to the q smaller eigenvalues. From (1) it
follows that these vectors are also q orthonormal eigenvectors of T, and (2) follows
immediately.

Conversely, suppose that (2) holds. Let vy, - - - , v, be an orthonormal set of eigenvectors
of T, corresponding to the eigenvalues i, - -, .

We shall prove by induction that they are also eigenvectors of A. Suppose that v,_j+1,
Jj=1,---,k (k<q), are eigenvectors of A, and let H;, be the orthogonal complement of
the subspace spanned by these vectors. Then, because of (1), v,—x—1 minimizes (v, Av)/
[|[v|? for all v € H; and is therefore an eigenvector of A. [

Suppose that, to each g-dimensional subspace M, we have assigned a g X p matrix
X (M) such that g rows of X (M) are an orthonormal basis for the subspace M.
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Clearly | X (M)A X (M)’| is independent of the particular choice of X (M) and therefore
there is a function f defined by

® ‘ f(M) = | X(M)A X(M)'|.

THEOREM 2. If Ap_g > Ap—g+1, then M, is the unique q-dimensional subspace that
minimizes the function f defined by (3).

ProoF. The g rows of X(M) are an orthonormal basis for M. The matrix X(M)A
X (M)’ is simply the matrix, with respect to this orthonormal basis, of the restriction
T: M — M of the transformation PA. Therefore

| X(M)AXM)' | =11 pss

where y; = - - - =y, are the eigenvalues of T. By the Cauc':hy-f"oincaré Separation Theorem
(Beckenbach and Bellman, 1965, page 76)

Ap—jr1 = flg—j+1
forj=1, ..., q and therefore
| X(M)A X(M)'| = [T51 Ap—jr1-

(This inequality is due to Fan, 1950; see also Marshall and Olkin, 1979, page 512).
The conclusion follows immediately by Theorem 1.

APPENDIX B

Let H be a given r-dimensional subspace in R?, and let y, € R?(i=1, -- -, n) be n given
1 X p vectors. We shall find the 1 X p vectors « € H* and x; € H that minimize the
determinant

(1) | L + Yi: (yi—a—x) (yi—a—x)|.

LEmMMA 1. If a € H* is fixed, then the determinant (1) is minimized, subject to the
conditions x; € H, if and only if x; is the orthogonal projection of y; on H.

PrOOF. By an orthogonal transformation in R”, the problem can be transformed into
a similar problem with H = H;, the subspace spanned by the first r elements of the
canonical basis. Therefore we assume, without losing generality, that H = H;.

The proof will be by induction in n. Suppose the result is true for n — 1. Let T be the
positive upper triangular matrix uniquely defined by

@) (T'T) 7' =L+35 (y—a—x) (yi—a—x)
The determinant (1) is then equal to
| T'T| 7 L+ T(yn — @ — %) (3o —a — %) T,
or, equivalently, to
3) [ T'T| ™M1+ | T(yn — @ = x)"[|”}.
Let x,, (1), y.(1) be the 1 X r vectors defined by the partitions
Xn = (%2(1),0),  yn=(2n(1),5(2)),
and let « and T be partitioned accordingly as a = (0, a(2)) and

_JTu T
T—{O T}
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Then
4 [T (yn = &= x2)" | = || Tea( 2 (2) = (2)) |
and
(T2Te) ™' = I, + T {7:(2) — a(2)} {5:(2) — a(2)},

where q¢ = p — r. Therefore, the right side of (4) does not depend on the x; and is a lower
bound for || T(y» — a — x.)’||. By the induction assumption, the first factor in (3), namely
| 77 T|", is minimized if and only if x; is the orthogonal projection of y; for i = 1, - ..,
n — 1. This implies the vanishing of the first » components of the vectors y; — a — x;, i =
1, .- -, n — 1. Substitution in T}; and T2 gives T1; = I, and T2 = 0. Under these conditions,
the second factor in (3) is
1+ [lya(1) = 2 (1) 17 + | To2 {3 (2) — a(2)}'||%

Therefore, the two factors of (3) are simultaneously minimized when the x; are the

orthogonal projections of the y;(i =1, - .. , n).

THEOREM 1. Under the conditions x; € H, a € H", the determinant (1) is minimized
if and only if a is the orthogonal projection of ¥y = n™* X y; on the subspace H*, and the
x; are the orthogonal projections of the y,on Hyi =1, ... , n.

Proor. We start by fixing « € H*. By Lemma 1, the determinant is then minimized
if and only if the x; are the orthogonal projections of the y; on H. If P is the matrix of the
orthogonal projection on H, we have x} = Py/. The corresponding minimum is

(5) | L, + Y21 {(I, — P)yi — «’}{yil, — P) — a} |.
Let T be the positive upper triangular matrix defined by
(T'T)'=1I,+ (I, - P)AY'AY (I, — P),

where AY is the n X p matrix whose ith row is y; — y. A bit of algebra shows that (5) is
equal to

|T'T| L+ n T{a' — (I, — P)5"}{a — (I, — P)}T'|
or, equivalently, to
IT'T|7[1 + n| T{«' = (I, = P)7} ),
and the conclusion follows immediately.
COROLLARY. If W is a positive definite symmetric matrix, then the determinant
(6) W+ Yhi(yi—a—x) ' (yi—a—x)|

is minimized, subject to the conditions x; € H, a € Hw, if and only if a is the W-projection
of y on the subspace Hw (the W-orthogonal complement of H), and the x; are the W-
projections of the y; on H.

Proor. The problem of minimizing (6) is reduced to the problem of minimizing (1) by
the transformation L™, where L is the positive lower triangular matrix uniquely defined
by (5.3).
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