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[1] Hydrologic analyses typically rely on a single conceptual-mathematical model. Yet
hydrologic environments are open and complex, rendering them prone to multiple
interpretations and mathematical descriptions. Adopting only one of these may lead to
statistical bias and underestimation of uncertainty. Bayesian model averaging (BMA)
[Hoeting et al., 1999] provides an optimal way to combine the predictions of several
competing models and to assess their joint predictive uncertainty. However, it tends to be
computationally demanding and relies heavily on prior information about model
parameters. Neuman [2002, 2003] proposed a maximum likelihood version (MLBMA) of
BMA to render it computationally feasible and to allow dealing with cases where reliable
prior information is lacking. We apply MLBMA to seven alternative variogram models
of log air permeability data from single-hole pneumatic injection tests in six boreholes at
the Apache Leap Research Site (ALRS) in central Arizona. Unbiased ML estimates of
variogram and drift parameters are obtained using adjoint state maximum likelihood cross
validation [Samper and Neuman, 1989a] in conjunction with universal kriging and
generalized least squares. Standard information criteria provide an ambiguous ranking of
the models, which does not justify selecting one of them and discarding all others as is
commonly done in practice. Instead, we eliminate some of the models based on their
negligibly small posterior probabilities and use the rest to project the measured log
permeabilities by kriging onto a rock volume containing the six boreholes. We then
average these four projections and associated kriging variances, using the posterior
probability of each model as weight. Finally, we cross validate the results by eliminating
from consideration all data from one borehole at a time, repeating the above process
and comparing the predictive capability of MLBMA with that of each individual model.
We find that MLBMA is superior to any individual geostatistical model of log
permeability among those we consider at the ALRS. INDEX TERMS: 1829 Hydrology:

Groundwater hydrology; 1875 Hydrology: Unsaturated zone; 1869 Hydrology: Stochastic processes; 5114
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1. Introduction

[2] Hydrologic analyses are commonly based on a single
conceptual-mathematical model. Yet hydrologic environ-
ments are open and complex, rendering them prone to
multiple interpretations and mathematical descriptions. This
is true regardless of the quantity and quality of available
hydrologic data. Focusing on only one conceptual-mathe-
matical model may lead to a type I model error, which arises
when one rejects (by omission) valid alternative models. It

may also result in a type II model error, which arises when
one adopts (fails to reject) an invalid conceptual-mathemat-
ical framework. Indeed, critiques of hydrologic analyses,
and legal challenges to them, typically focus on the validity
of the underlying conceptual (and by implication mathe-
matical) model. If severe, these may damage one’s profes-
sional credibility; result in the loss of a legal contest; and
lead to adverse environmental, economic and political
impacts [National Research Council, 2001; Neuman and
Wierenga, 2003].
[3] Analyses of model uncertainty based on a single

hydrologic concept are prone to statistical bias (by commit-
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ting a type II error through reliance on an invalid model)
and underestimation of uncertainty (by committing a type I
error through under sampling of the relevant model space).
Carrera and Neuman [1986a, 1986b] and Samper and
Neuman [1989a, 1989b] have noted that bias and uncer-
tainty resulting from an inadequate model structure (con-
ceptualization) are far more detrimental to the model’s
predictive ability than is a suboptimal set of model param-
eters. Yet most hydrologic analyses ignore structural uncer-
tainty and focus exclusively on the optimization of model
parameters. This often leads to overconfidence in the
predictive capabilities of the model, which the available
hydrologic data seldom justify [National Research Council,
2001; Neuman and Wierenga, 2003].
[4] It is argued by Beven and Freer [2001, p. 11] ‘‘that,

given current levels of understanding and measurement
technologies, it may be endemic to mechanistic modeling
of complex environmental systems that there are many
different model structures and many different parameter
sets within a chosen model structure that may be behavioral
or acceptable in reproducing the observed behavior of that
system.’’ They attribute to Hornberger and Speer [1981] the
notion that this is not simply a problem of identifying a
correct or optimal model given limited data. Instead, this is
a generic problem which Beven [1993] calls equifinality and
attributes to [Beven, 2000] limitations of current model
structures in representing heterogeneous surface and sub-
surface flow systems, limitations of measurement techni-
ques and scales in defining system characteristics including
initial and boundary conditions for a model, and the
uniqueness of individual sites. He points out that to do
detailed measurements throughout a site is both impractical
and unduly expensive. The unique characteristics of a site
are therefore inherently unknowable. All that can be done is
to constrain the model representations of the site to those
that are acceptably realistic, usually in the sense of being
consistent with the data.
[5] To address this issue, Beven and Binley [1992] have

proposed a strategy to which they refer as GLUE (general-
ized likelihood uncertainty estimation). The strategy calls
for the identification of several alternative structural models
and the postulation of a prior probabilistic model of param-
eter uncertainty for each. Each structural model, coupled
with its corresponding parameter uncertainty model, is used
to generate Monte Carlo realizations of past hydrologic
behaviors and to compare the results with monitored system
behavior during the same period. Likelihood measures are
defined to gauge the degree of correspondence between
each simulated and observed record of system behavior. If a
likelihood measure falls below a subjectively defined ‘‘re-
jection criterion,’’ the corresponding combination of model
structure and parameter set are discarded. Those combina-
tions which pass this test are retained to provide predictions
of system behavior under selected future scenarios. Each
prediction is weighted by a corresponding normalized
likelihood measure (so as to render the sum of all likelihood
measures equal to one), to produce a likelihood-weighted
cumulative distribution of all available predictions. For
recent discussions of GLUE and its applications the reader
is referred to Beven [2000] and Beven and Freer [2001].
[6] A Bayesian approach to the quantification of errors in

a single groundwater model was recently proposed by

Gaganis and Smith [2001]. Like GLUE, it relies on Monte
Carlo simulations without model calibration and on subjec-
tive criteria of ‘‘model correctness.’’
[7] James and Oldenburg [1997] and Samper and

Molinero [2000] have calibrated a number of conceptual-
mathematical models against available observational data,
retained those calibrated models that had reproduced
adequately past observations, produced a prediction using
each calibrated model, assessed the corresponding predic-
tive uncertainty due to uncertainty in the model param-
eters, and averaged the predictions as well as their ranges
of uncertainty by assigning an equal weight to the results
of each model.
[8] Other philosophies of model building under uncer-

tainty are discussedbyGauch [1993],BurnhamandAnderson
[2002], and Christakos [2000, 2002a, 2002b, 2003, 2004].
A comprehensive strategy for constructing alternative con-
ceptual-mathematical models of subsurface flow and trans-
port, selecting the best among them, and using them
jointly to render optimum predictions under uncertainty
has recently been proposed by Neuman and Wierenga
[2003]. The strategy embodies a systematic and compre-
hensive approach to hydrogeologic conceptualization,
model development and predictive uncertainty analysis. It
is comprehensive in that it considers all stages of model
building and accounts jointly for uncertainties that arise at
each of them. These stages include regional and site
characterization, hydrogeologic conceptualization, develop-
ment of conceptual-mathematical model structure, parame-
ter estimation on the basis of monitored system behavior,
and assessment of predictive uncertainty. In addition to
parameter uncertainty, the strategy concerns itself with
uncertainties arising from incomplete definitions of (1) the
conceptual framework that determines model structure,
(2) spatial and temporal variations in hydrologic variables
that are either not fully captured by the available data or not
fully resolved by the model, and (3) the scaling behavior of
hydrogeologic variables.
[9] Neuman and Wierenga [2003] discuss several de-

tailed, real-world examples of situations in which more
than one conceptual-mathematical model is supported by
available data and how to proceed when this happens. The
present paper focuses on a key element of their much
broader strategy, which concerns rendering optimum pre-
dictions by means of several competing deterministic or
stochastic models and assessing their joint predictive un-
certainty. It rests on the well-established idea of Bayesian
model averaging (BMA) [Draper, 1995; Kass and Raftery,
1995] (see Hoeting et al. [1999] for an excellent tutorial and
J. Hoeting (Methodology for Bayesian model averaging: An
update, 2004, http://www.stat.colostate.edu/�jah/papers/
ibcbma.pdf) for a recent summary of applications) to
provide an optimal way of combining the predictions of
several competing models and assessing their joint predic-
tive uncertainty. Traditional BMA rests on an exhaustive
Monte Carlo simulation of the prior parameter space, which
renders it computationally demanding. It also relies heavily
on prior information about model parameters. Neuman
[2002, 2003] suggests obviating the need for such simu-
lations and prior information by adopting a maximum
likelihood (ML) version (MLBMA) of BMA, thereby
rendering the approach computationally feasible and appli-
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cable to a wide range of real-world hydrologic problems.
MLBMA utilizes a ML approximation of model posterior
probability due to Kashyap [1982]. The approach incorpo-
rates both site characterization and site monitoring data so
as to base the outcome on an optimum combination of prior
information (scientific and site knowledge plus data) and
model predictions. Kashyap’s [1982] expression is closely
related to an ML version of the Laplace approximation [e.g.,
Draper, 1995; Kass and Raftery, 1995] used successfully in
the BMA context by statisticians [Hoeting et al., 1999]. We
prefer the former because it conforms more directly to ML-
based hydrologic model discrimination and parameter esti-
mation frameworks proposed for deterministic models by
Carrera and Neuman [1986a, 1986b], for geostatistical
models by Samper and Neuman [1989a, 1989b], and for
stochastic moment models by Hernandez et al. [2002,
2003].
[10] In this paper we expand upon the theoretical frame-

work of MLBMA, apply it to seven geostatistical models of
air permeability variation at the Apache Leap Research Site
(ALRS) in central Arizona, and use cross validation to
compare its predictive capabilities with those of each
individual model. In the process, we introduce a new way
to obtain unbiased ML estimates of variogram parameters
and drift coefficients by coupling the adjoint state maximum
likelihood cross validation (ASMLCV) method of Samper
and Neuman [1989a] with universal kriging (UK) and
generalized least squares (GLS).

2. Bayesian Model Averaging (BMA)

[11] According to Hoeting et al. [1999, p. 382], ‘‘standard
statistical practice ignores model uncertainty . . . leading to
over-confident inferences and decisions that are more risky
than one thinks they are. . . . (BMA) provides a coherent
mechanism for accounting for this model uncertainty.’’
They introduce BMA by noting that if D is a quantity one
wants to predict, then its posterior distribution given a
discrete set of data D is

p DjDð Þ ¼
XK
k¼1

p DjMk ;Dð Þp Mk jDð Þ ð1Þ

where M = (M1, . . ., MK) is the set of all models (or
hypotheses) considered. In other words, p(DjD) is the
average of the posterior distributions p(DjMk, D) under each
model, weighted by their posterior model probabilities
p(MkjD). The posterior probability for model Mk is given
by Bayes’ rule,

p Mk jDð Þ ¼ p DjMkð Þp Mkð ÞXK
l¼1

p DjMlð Þp Mlð Þ
ð2Þ

where

p DjMkð Þ ¼
Z

p DjQk ;Mkð Þp Qk jMkð ÞdQk ð3Þ

is the integrated likelihood of model Mk, Qk is the vector of
parameters associated with model Mk, p(QkjMk) is the prior

density of Qk under model Mk, p(DjQk, Mk) is the joint
likelihood of model Mk and its parameters Qk, and p(Mk) is
the prior probability that Mk is the correct model. All
probabilities are implicitly conditional on M.
[12] The posterior mean and variance of D are [Draper,

1995]

E DjD½ � ¼
XK
k¼1

E DjD;Mk½ �p Mk jDð Þ ð4Þ

Var DjD½ � ¼
XK
k¼1

Var DjD;Mk½ �p Mk jDð Þ

þ
XK
k¼1

E DjD;Mk½ �ð 	E DjD½ �Þ2p Mk jDð Þ: ð5Þ

The first term on the right-hand side represents within-
model variance; the second term represents between-model
variance. Note that the predictive probabilities (1) and
leading moments (4) and (5) are weighted by the posterior
probabilities of the individual models.
[13] Given a set of alternative models M, one formally

assumes that their prior probabilities sum up to one,

XK
k¼1

p Mkð Þ ¼ 1: ð6Þ

This implies that all possible models of relevance are
included in M, and that all models in M differ from each
other sufficiently to be considered mutually exclusive (the
joint probability of two or more models being zero). We
interpret prior model probabilities to be subjective values
reflecting the analyst’s belief about the relative plausibility
of each model based on its apparent (qualitative, a priori)
consistency with available knowledge and data.
[14] Hoeting et al. [1999] point out that (1) the number

of potentially feasible models may be exceedingly large,
rendering their exhaustive inclusion in M infeasible and
(2) the specification of prior model probabilities p(Mk)
remains challenging, having received little attention in the
statistical literature. A practical way to eliminate the first
difficulty is to adopt the idea of Occam’s window [Jefferys
and Berger, 1992; Madigan and Raftery, 1994] according
to which one considers only a relatively small set of the
most parsimonious models among those which, a priori,
appear to be hydrologically most plausible in light of all
knowledge and data relevant to the purpose of the model
and, a posteriori, explain the data in an acceptable manner
[Neuman and Wierenga, 2003]. Working with a few
plausible models is better than the usual hydrologic
practice of adopting a single model, whereas working with
many models would render the approach impractical. As
demonstrated later by example, the approach can be
further simplified by deleting models whose posterior
probability turns out to be negligibly small in comparison
to that of other models.
[15] When there is insufficient prior reason to prefer

one model over another, a ‘‘reasonable ‘neutral’ choice’’
[Hoeting et al., 1999] is to assume that all models are a
priori equally likely. Draper [1999] and George [1999]
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express concern that if two models are near equivalent as
regards predictions, treating them as separate equally likely
models amounts to giving double weight to a single model
of which there are two slightly different versions, thereby
‘‘diluting’’ the predictive power of BMA. One way to
minimize this effect is to eliminate at the outset models
that are deemed potentially inferior. Another is to retain
only models that are structurally distinct and noncollinear.
Otherwise, one should consider reducing (diluting) the prior
probabilities assigned to models that are deemed closely
related. We explore this idea later through an example.
[16] Whereas prior model probabilities must in our view

remain subjective, the posterior model probabilities are
modifications of these subjective values based on an objec-
tive evaluation of each model’s consistency with available
data. Hence the posterior probabilities are valid only in a
comparative, not in an absolute, sense. They are conditional
on the choice of models (in addition to being conditional on
the data) and may be sensitive to the choice of prior model
probabilities (as we demonstrate later by example). This
sensitivity is expected to diminish with increased level of
conditioning on data.
[17] Given the above, we see no way to assess the

uncertainty of hydrologic predictions in an absolute sense
as proposed for a single model by Gaganis and Smith
[2001], only in a relative sense considering several models.

3. Maximum Likelihood Bayesian Model
Averaging (MLBMA)

[18] Computing the integral in equation (3) requires
exhaustive Monte Carlo simulations of the prior parameter
space Qk for each model, which may be computationally and
hydrologically very demanding. Neuman [2002, 2003]
proposed obviating the need for such simulations and prior
information by adopting a maximum likelihood (ML)
version (MLBMA) of BMA. It consists of replacing Qk by
its maximum likelihood estimate Q̂k based on the likelihood
p(DjQk, Mk). Taplin [1993] suggested doing so for p(DjMk,
D) in equation (1) by adopting the approximation p(DjMk,
Q̂k, D). Hoeting et al. [1999] note that this was shown to be
useful in the BMA context by Draper [1995], Raftery et al.
[1996], and Volinsky et al. [1997].
[19] Neuman [2002, 2003] proposed further to evaluate

the weights p(MkjD) in equations (1), (4), and (5) based on a
result of Kashyap [1982]. We show in Appendix A that
Kashyap’s expression can be written as

p Mk jDð Þ ¼
exp 	 1

2
DKICk

� �
p Mkð Þ

XK
l¼1

exp 	 1

2
DKICl

� �
p Mlð Þ

ð7Þ

where

DKICk ¼ KICk 	 KICmin; ð8Þ

KICk ¼ NLLk þ Nk ln
N

2p

� �
þ ln Fk DjQ̂k ;Mk

� ���� ��� ð9Þ

KICk being the so-called Kashyap information criterion for
model Mk, KICmin its minimum value over all candidate
models, and NLLk = 	2 ln p(DjQ̂k, Mk) 	 2 ln p(Q̂kjMk) the
negative log likelihood of Mk evaluated at Q̂k. Here Nk is the
dimension of Qk (number of parameters associated with
modelMk), N is the dimension of D (number of discrete data
points), and Fk is the normalized (by N) observed (as
opposed to ensemble mean) Fisher information matrix
having components

Fk;ij ¼ 	 1

N

@2 ln p DjQk ;Mkð Þ
@qi@Qj

����
Qk¼Q̂k

ð10Þ

In the absence of prior information about the parameters,
one simply drops the term 	2 ln p(Q̂kjMk) from NLLk. This
reflects common practice in model calibration and is
illustrated later by example.
[20] Approximating p(DjMk) via equation (9) is closely

related to the Laplace approximation [Kass and Raftery,
1995] used in BMA [e.g., Draper, 1995; Hoeting et al.,
1999]. Whereas equation (9) is obtained through expansion
of p(DjQk, Mk) and p(QkjMk) in Taylor series about Q̂k, the
Laplace approximation follows from an asymptotic expan-
sion of the integral (3). As mentioned in the Introduction, we
prefer equation (9) because it conforms more directly to ML-
based hydrologic model discrimination and parameter esti-
mation frameworks proposed for deterministic models by
Carrera and Neuman [1986a, 1986b], for geostatistical
models by Samper and Neuman [1989a, 1989b], and for
stochastic moment models byHernandez et al. [2002, 2003].
[21] Previously, KICk has been used [e.g., Carrera and

Neuman, 1986a, 1998b; Samper and Neuman, 1989a,
1989b] as an optimum decision rule for the ranking of
competing models. The highest-ranking model is that
corresponding to KICmin. Increasing the number of param-
eters Nk allows 	ln p(DjQ̂k, Mk) to decrease and Nk ln N
to increase. When Nk is large, the rate of decrease does
not compensate for the rate of increase and KICk grows
while p(MkjD) diminishes. This means that a more parsi-
monious model with fewer parameters is ranked higher
and assigned a higher posterior probability. On the other
hand, 	ln p(DjQ̂k, Mk) diminishes with N at a rate higher
than linear so that as the latter grows, there may be an
advantage to a more complex model with larger Nk.
[22] The last term in equation (9) gauges the information

content of the available data. It thus allows considering
models of growing complexity as the data base improves in
quantity and quality. As illustrated by Carrera and Neuman
[1986b], KICk recognizes that when the data base is limited
and/or of poor quality, one has little justification for
selecting an elaborate model with numerous parameters.
Instead, one should prefer a simpler model with fewer
parameters, which nevertheless reflects adequately the
underlying hydrologic structure and regime of the system.
Stated otherwise, KICk may cause one to prefer a simpler
model that leads to a poorer fit with the data over a more
complex model that fits the data better.
[23] The information term in equation (9) tends to a

constant as N becomes large, so that KICk becomes
asymptotically equivalent to the Bayes information criterion

BICk ¼ NLLk þ Nk lnN ð11Þ
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derived on the basis of other considerations byAkaike [1977],
Rissanen [1978], and Schwarz [1978]. Raftery [1993]
proposed adopting the asymptotic BIC approximation,
without the prior information term 	2 ln p(Q̂kjMk), for
BMA [see also Raftery et al., 1996; Volinsky et al., 1997;
Hoeting et al., 1999]. From equation (11) it follows that
equation (7) tends asymptotically to

p Mk jDð Þ ¼
exp 	 1

2
DBICk

� �
p Mkð Þ

XK
l¼1

exp 	 1

2
DBICl

� �
p Mlð Þ

ð12Þ

where

DBICk ¼ BICk 	 BICmin ð13Þ

and BICmin is the smallest value of BICk over all candidate
models [see also Burnham and Anderson, 2002, p. 297].
[24] Since hydrologic models are often data limited, this

is less general than the nonasymptotic expression (7), which
is at the heart of Neuman’s [2002, 2003] MLBMA. Indeed,
Carrera and Neuman [1986a, 1986b] and Samper and
Neuman [1989a, 1989b] found KICk to provide more
reliable rankings of alternative groundwater flow and
geostatistical models than do BICk or two other commonly
used information criteria, AICk = NLLk + 2Nk [Akaike, 1974]
and HICk = NLLk + 2Nk ln (ln N) [Hannan, 1980]. For a
recent overview of various information criteria the reader is
referred to Burnham and Anderson [2002, p. 284].
[25] Methods to evaluate Q̂k by calibrating a deterministic

model Mk against hydrogeologic data D, which may include
prior information about the parameters, are described by
Carrera and Neuman [1986a, 1986b] and Carrera et al.
[1997]. The same can be done with a stochastic model based
on moment equations in a manner similar to that of
Hernandez et al. [2002, 2003]. The approach yields a
negative log likelihood criterion NLLk that includes two
weighted square residual terms: a generalized sum of
squared differences between simulated and observed state
variables arising from 	2 ln p(DjQ̂k, Mk), and a generalized
sum of squared differences between posterior and prior
parameter estimates arising from 	2 ln p(Q̂kjMk). The first is
weighted by a matrix proportional to the inverse covariance
matrix of state observation errors. The second is weighted
by a matrix proportional to the inverse covariance matrix of
prior parameter estimation errors. Including prior informa-
tion in the calibration criterion is an option, which allows
one to condition the parameter estimates not only on site
monitoring (observational) data but also on site character-
ization data, from which prior parameter estimates are
usually derived. When both sets of data are considered to be
statistically meaningful, the posterior parameter estimates
are compatible with a wider array of measurements than
they would be otherwise and are therefore better constrained
(potentially rendering the model a better predictor).
[26] Maximum likelihood estimation yields an approxi-

mate covariance matrix for the estimation errors of Q̂k. Upon
considering the parameter estimation errors of a calibrated
deterministic model Mk to be Gaussian or log Gaussian, one
easily determines p(DjMk, Q̂k, D) by Monte Carlo simulation

of D through random perturbation of the parameters. The
simulation also yields corresponding approximations
E[DjMk, Q̂k, D] of E[DjMk, D], and Var[DjMk, Q̂k, D]
of Var[DjMk, D], in equations (4) and (5). If Mk is a
geostatistical (as in our ALRS example below) or stochastic
moment (of the kind considered by Hernandez et al. [2002,
2003]) model, it yields E[DjMk, Q̂k, D] and Var[DjMk, Q̂k, D]
directly without Monte Carlo simulation.
[27] As shown in Appendix A, alternative models can

have different types and numbers of parameters, but the latter
must be estimated and the models compared considering
a single data set D. For a comparison of two- and three-
dimensional models, data distributed in three-dimensional
space may need to be projected onto a two-dimensional
plane as done be Ando et al. [2003] or averaged in the third
dimension as suggested by Neuman and Wierenga [2003,
Appendix B].
[28] To implement MLBMA one (1) postulates alterna-

tive conceptual-mathematical models for a site; (2) assigns
a prior probability to each model; (3) optionally assigns
prior probabilities to the parameters of each model;
(4) obtains posterior ML parameter estimates, and estima-
tion covariance, for each model by inversion (model
calibration); (5) calculates a posterior probability for each
model; (6) predicts quantities of interest using each model;
(7) assesses prediction uncertainty (distribution, variance)
for each model using Monte Carlo or stochastic moment
methods; (8) weighs predictions and uncertainties by the
corresponding posterior model probabilities; and (9) sums
the results over all models.

4. Maximum Likelihood Bayesian Averaging of
Spatial Variability Models in Unsaturated
Fractured Tuff

[29] We apply MLBMA to alternative geostatistical mod-
els of log permeability variations in unsaturated fractured
tuff at the Apache Leap Research Site (ALRS) in central
Arizona. Spatially distributed log air permeability data were
obtained by Guzman et al. [1994, 1996] based on a steady
state interpretation of 184 pneumatic injection tests in 1-m
length intervals along 6 vertical and inclined (at 45�)
boreholes at the site (Figure 1). Five of the boreholes (V2,
W2A, X2, Y2, Z2) are 30-m long and one (Y3) has a length
of 45 m; five (W2A, X2, Y2, Y3, Z2) are inclined at 45�
and one (V2) is vertical. Figure 2 shows an omnidirectional
sample variogram of corresponding log10k data. Chen et al.
[2000] fitted three variogram models to these and some
3-m-scale data using an adjoint state maximum likelihood
cross validation (ASMLCV) method developed for this
purpose by Samper and Neuman [1989a, 1989b], coupled
with a generalized least squares (GLS) drift removal
approach of Neuman and Jacobson [1984]. The three
models included (1) power (characteristic of a random
fractal), (2) exponential with a linear drift, and (3) exponen-
tial with a quadratic drift. The data did not support
accounting for directional effects by considering the
variograms to be anisotropic. The authors found that
whereas the exponential variogram model with a quadratic
drift provided a best fit to the data (as measured and implied
by the smallest negative log likelihood model fit criterion,
NLL), four model discrimination criteria (AIC, BIC, HIC,
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KIC) consistently ranked the power model as best, and the
former model as least acceptable. The reason was that
whereas all three models provided an almost equally good
fit to the data, the power model was most parsimonious with
only two parameters, and the exponential variogram model
with second-order drift was least parsimonious with twelve
parameters. They therefore adopted the power model
and discarded all other variogram models from further
consideration.
[30] For purposes of MLBMA we expand the range of

variogram models postulated for 1-m-scale log10k at the
ALRS to seven: (1) Power (Pow0), (2) exponential without
a drift (Exp0), (3) exponential with a linear drift (Exp1),
(4) exponential with a quadratic drift (Exp2), (5) spherical
without a drift (Sph0), (6) spherical with a linear drift
(Sph1), and (7) spherical with a quadratic drift (Sph2). To
estimate the parameter vector B of drift-free variogram
models (Pow0, Exp0, Sph0) we use ASMLCV as described
in Appendix B, implemented in a computer code slightly
modified after F. J. Samper (personal communication,
1998). To do the same for models with drift (Exp1, Exp2,
Sph1, Sph2), we decompose the N-dimensional data vector
D of log10k measurements into a deterministic drift vector M
and a random residual vector R,

D ¼ Mþ R ð14Þ

M xð Þ ¼
Xp
k¼0

gk xð Þak ¼ Ga ð15Þ

where a = (a0, a1, . . ., ap)
T is a vector of p + 1 drift

coefficients and G is a N 
 (p + 1) matrix of linearly
independent monomial functions gk (x) evaluated at the
data points xn, n = 1, 2, . . ., N. Assuming that D is
multivariate Gaussian with mean M and covariance matrix

CR (Vesselinov [2000] has shown that the data pass the
Kolmogorof-Smirnov test of univariate Gaussianity at a
significance level of 0.05), the joint negative log likelihood
function of drift and variogram parameters takes the form

NLL a; BjDð Þ ¼ 	 2 ln p Dja;Bð Þ ¼ N ln 2pþ ln jCR Bð Þj
þ D	Gað ÞTC	1

R Bð Þ D	Gað Þ: ð16Þ

Minimizing equation (16) jointly with respect to a and B

yields biased estimates of the variogram parameters, a
problem that can be remedied through the use of a restricted
ML (RML) approach [Hoeksema and Kitanidis, 1985;
Kitanidis and Lane, 1985; Cressie, 1991, p. 92]. We solve
the problem differently by formally decoupling the ML
estimations of a and B. First, we obtain unbiased ML
estimates B̂ of the variogram parameters using ASMLCV in
conjunction with universal kriging (ASMLCV-UK (F. J.
Samper, personal communication, 1998)), which does not
require knowledge of the drift coefficients (Appendix B).
Next, we compute corresponding unbiased ML estimates â
of the drift coefficients through minimization of

NLL a; B̂jD
� �

¼ N ln 2pþ ln CR B̂

� ���� ���
þ D	Gað ÞTC	1

R B̂

� �
D	Gað Þ ð17Þ

with respect to a by generalized least squares, a task we
accomplish using PEST-ASP [Doherty, 2002]. Our opti-
mum NLL is then given by

NLL â; B̂jD
� �

¼ N ln 2pþ ln CR B̂

� ���� ���
þ D	Gâð ÞTC	1

R B̂

� �
D	Gâð Þ: ð18Þ

[31] Figure 3 depicts profiles of NLL(a, BjD) in equation
(16) versus each parameter of model Exp1 when the
remaining parameters are fixed. It clearly demonstrates that
B̂ (the marked values of sill and integral scale [m]) does not

Figure 1. Spatial locations of 184 1-m-scale log10k data at
ALRS. See color version of this figure in the HTML.

Figure 2. Omnidirectional sample variogram of 1-m-scale
log10k data at the ALRS and numbers of data pairs.
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correspond to the minimum of NLL(a, BjD), which would
therefore yield biased estimates of variogram parameters.
[32] The estimation covariance matrix of Q̂ = (â, B̂)T is

generally represented by its asymptotic lower or Cramer-
Rao bound, given by the inverse Fisher information matrix
[e.g., Carrera et al., 1997]. Components of the observed
Fisher information matrix (10) are proportional to those of
the Hessian matrix H which, in turn, can be approximated
as [Kitanidis and Lane, 1985]

Hk;ij ¼ 	 @2 ln p DjQk ;Mkð Þ
@Qi@Qj

����
Qk¼Q̂k

’ 1

2
Tr C	1

R

@CR

@Qi
C	1

R

@CR

@Qj

� �

þ @RT

@Qi
C	1

R

@R

@Qj

����
qk¼Q̂k

: ð19Þ

This approximation obviates the need to calculate second-
order derivatives of the log likelihood function, which
would be computationally more demanding than computing

first-order derivatives of CR and R. In our case, the latter are
easy to obtain analytically as done for exponential and
spherical variogram models with drift in Appendix C. An
alternative, which in our case yields very similar results, is
to compute the observed Fisher information matrix
numerically using methods such as the Ridder algorithm
[Press et al., 1992, p. 180].
[33] Table 1 confirms that increasing the number of param-

eters associated with a given class of variogram model
(exponential or spherical) brings about an improvement in
model fit, as indicated by a reduction in the negative log
likelihood criterion NLL. Whereas the exponential vario-
gram model with a quadratic drift (Exp2) fits the data best
(ranks first in terms of fit due to its smallest NLL value), it is
ranked second by AIC and sixth by BIC and KIC. Whereas
the power model (Pow0) shows a relatively poor fit with the
data (rating fifth), it is ranked highly (first through third) by
all three information criteria. The reason is that the
difference in fit between the two models is not enough to

Figure 3. Negative log likelihood functions (NLL) as function of each variogram parameter and drift
coefficient for exponential model with linear drift (Exp1). Vertical lines indicate unbiased ML estimates.
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compensate for the much more parsimonious nature of
Pow0 (with 2 parameters) than that of Exp2 (with 12
parameters).
[34] The rankings of the seven models by AIC, BIC and

KIC are not entirely consistent. None of these information
criteria provide justification for retaining one model while
discarding all other models as is commonly done in
practice. Nor do they provide clear justification for retaining
some models while discarding the rest. We therefore
consider all seven models to be valid initial candidates for
MLBMA.
[35] Upon assigning an equal prior probability of 1/7 to

each model, we find on the basis of KIC via equation (7)
that the first three models (Pow0, Exp0, Exp1) have much
higher posterior probabilities than do the rest. Three of the
models (Exp2, Sph0, Sph2) have zero probabilities (to three
significant figures) and can therefore be eliminated (con-
sidering the low posterior probability of Sph1, there is
almost equal justification for eliminating it too, but we
retain it at this stage for the sake of illustration). Doing so
and assigning an equal prior probability of 1/4 to each of the
retained models is seen to have no impact on their posterior
probabilities. In both cases the posterior probabilities are
markedly different from their prior values, reflecting the
strong impact of conditioning on data.
[36] To investigate the influence of prior probability

selection on the outcome, consider assigning an equal
probability of 1/3 to each of the three classes of
models (power, exponential and spherical) and also
assigning equal probability to models within each class.
This results in a prior probability of 1/3 for Pow0 and
of 1/9 for each of the other six models. Though this brings
about a marked increase in the posterior probability of
Pow0 and a decrease in those of Exp0 and Exp1, once
again the posterior probabilities of Exp2, Sph0 and Sph2
are zero while that of Sph1 is very close to zero.
Eliminating the three models with zero posterior prob-
ability and redistributing the prior probabilities among the
remaining models as shown in the eighteenth row of
Table 1 brings about a decrease in the posterior

probability of Pow0 and an increase in the posterior
probabilities of Exp0 and Exp1. We conclude that
posterior model probabilities exhibit some degree of
sensitivity to the choice of prior probabilities but expect
this sensitivity to diminish with improved conditioning.
[37] We continue our analysis by retaining four (Pow0,

Exp0, Exp1, Sph1) of the seven models (with the
corresponding ML parameter estimates) and assigning to
each of them an equal prior probability of 1/4. Using each of
these models, we project the available log10k data by
ordinary (in the case of drift-free models) or universal
(otherwise) kriging onto a grid of 50 
 40 
 30 1-m3 cubes
contained within the coordinate ranges 	10 � x � 40 m,
	10 � y � 30 m and 	30 � z � 0 m in Figure 1. If one
thinks of D as a random value of log10k in a given grid block
then our kriging estimates represent E[DjMk, Q̂k, D] and
their variances stand for Var[DjMk, Q̂k, D], the ML
approximations of E[DjMk, D] and Var[DjMk, D] in
equations (4) and (5), respectively. Figures 4–7 show the
kriged estimates and variances of log10k on a vertical plane
y = 6.5 m for the four models. Conditioning on borehole
data is evident to a lesser degree in the images of log10k
estimates than in those of their variances. Averaging the
kriging results across all models using an ML approxima-
tion of equations (4) and (5) yields corresponding MLBMA
estimates and variances of the kind depicted for y = 6.5 m in
Figure 8. Figure 9 shows a decomposition of the MLBMA
estimation variance in Figure 8b into its within- and
between-model components. The largest values of these two
components throughout the three-dimensional grid are 1.1
and 0.38, respectively. Whereas the within-model MLBMA
variance in Figure 9a reflects conditioning on borehole
measurements, it is difficult to discern such conditioning in
the image of between-model variance (Figure 9b) due to the
faint reflection of such conditioning in the underlying
images of log10k estimates.
[38] Figure 10 shows univariate cumulative distributions

of kriging estimates corresponding to each of the four
models and MLBMA. The distributions are seen to be
sensitive to the choice of model with MLBMA providing

Table 1. Quality Criteria, Rankings, and Prior/Posterior Probabilities Associated With Alternative Geostatistical Models of log10k at the

ALRS

Model Pow0 Exp0 Exp1 Exp2 Sph0 Sph1 Sph2

Number of parameters 2 2 6 12 2 6 12
Sill/coefficient 0.286 0.718 0.514 0.501 0.749 0.664 0.662
Correlation/power 0.460 1.840 1.240 1.198 3.184 2.849 2.835
NLL 352.186 361.006 341.565 330.350 379.059 349.596 338.803
NLL Rank 5 6 3 1 7 4 2
AIC 356.186 365.006 353.565 354.350 383.059 361.596 362.803
AIC Rank 3 6 1 2 7 5 4
BIC 362.616 371.436 372.855 392.929 389.489 380.886 401.382
BIC Rank 1 2 3 6 5 4 7
KIC 369.581 370.148 369.454 416.654 390.535 378.072 424.619
KIC Rank 2 3 1 6 5 4 7
P(Mk) 1/7 1/7 1/7 1/7 1/7 1/7 1/7
p(MkjD), % 35.298 26.584 37.612 0 0 0.506 0
p(Mk) 1/4 1/4 1/4 - - 1/4 -
p(MkjD), % 35.298 26.584 37.612 - - 0.506 -
p(Mk) 1/3 1/9 1/9 1/9 1/9 1/9 1/9
p(MkjD), % 62.073 15.583 22.047 0 0 0.297 0
p(Mk) 1/3 1/6 1/6 - - 1/3 -
p(MkjD), % 51.984 19.575 27.696 - - 0.745 -
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a weighted compromise. The same is reflected in the
variances of these kriged estimates, listed in Table 2.

5. Assessment of Predictive Performance

[39] To assess the predictive performance of MLBMA,
we cross validate the above results by (1) splitting the data
D into two parts, DA and DB; (2) obtaining ML estimates of
model parameters and posterior probabilities conditional on
DA; (3) using these to render MLBMA predictions D̂B of
DB; (4) and assessing the quality of the predictions. We do
so by eliminating from consideration all log10k data from
one borehole at a time and predicting them with models
conditioned on the remaining data. The number and
corresponding percentage of data in DA for each cross-
validation case are listed in Table 3. As Sph1 has a very
small posterior probability in comparison to Pow0, Exp0
and Exp1 (Table 1), we limit the cross validation to the latter
three geostatistical models and recalculate their posterior
probabilities by assigning to each of them a prior probability
of 1/3.
[40] Figure 11 shows that eliminating data from one

borehole at a time may, but need not, have a significant
impact on the omnidirectional sample variogram of log10k.
The impact that such elimination has on parameter estimates
and model quality criteria associated with Pow0 is indicated
in Figure 12. Figure 13 demonstrates that posterior model
probability is sensitive to the choice of conditioning data.
This sensitivity is greater when posterior probability is

computed using KIC in equation (7) than BIC in
equation (12). This illustrates that the nonasymptotic
criterion KIC is more informative than the asymptotic
criterion BIC, supporting the choice of the former as the
basis for MLBMA [Neuman, 2002, 2003].
[41] One way to compare the predictive capabilities of

alternative models is through their log scores, 	ln
p(DBjMk, DA) [Good, 1952; Volinsky et al., 1997]. The
lower the predictive log score of model Mk based on data
DA, the smaller the amount of information lost upon
eliminating DB from the original dataset D (i.e., the higher
the probability that Mk based on DA would reproduce the
lost data, DB). The predictive log score associated with
BMA is

	 ln p DBjDA
� 	

¼ 	 ln
XK
k¼1

p DBjMk ;D
A

� 	
p Mk jDA
� 	

: ð20Þ

Approximating p(DBjMk, DA) by p(DBjMk, Q̂k, DA), and
computing p(MkjDA) via equation (7) after replacing D by
DA, yields a corresponding log score for MLBMA.
[42] Let D̂B be kriged estimates of log10k data D

B along a
borehole obtained using variogram model Mk with ML
parameters Q̂k based on log10k data DA in other boreholes.

Figure 4. Kriged (a) estimate and (b) variance of log10k at
y = 6.5 m obtained using the power model (Pow0). See
color version of this figure in the HTML.

Figure 5. Kriged (a) estimate and (b) variance of log10k
at y = 6.5 m obtained using the exponential model
without drift (Exp0). See color version of this figure in
the HTML.
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Then in analogy to equation (B4), the ML log score for
drift-free models Pow0 and Exp0 is

	 ln p DBjMk ; Q̂k ;D
A

� �
¼ Nd

2
ln 2pð Þ þ 1

2

XNd

i¼1

s2i

þ 1

2

XNd

i¼1

D̂
B

i 	 DB
i

� �2

s2i
ð21Þ

where Nd is the dimension of DB, Di
B are its components, and

si
2 is given by equation (B5). In analogy to equation (17), the

ML log score for Exp1 is

	 ln p DBjMk ; Q̂k ;D
A

� �
¼ Nd

2
ln 2pð Þ þ 1

2
ln jCR B̂k

� �
j

� �
þ 1

2
DB	Gk âk
� 	T

C	1
R B̂

� �
DB	Gk âk
� 	

:

ð22Þ

[43] Predictive log scores were obtained for each model
upon eliminating data from one of six boreholes at a time.
Table 4 lists the average of these six scores for each model,
as well as the average of corresponding MLBMA scores
equation (20). The average predictive log score of MLBMA
is seen to be lower than that of any individual model,

indicating that MLBMA is a better predictor than any of
these models.
[44] Another measure of model performance is its pre-

dictive coverage [Hoeting et al., 1999]. This is the percent
of measurements Di

B that fall within a given prediction
interval about D̂i

B. In our case, this interval was generated
by conducting Monte Carlo simulations of log10k condi-
tioned on DA. We used a simulated annealing code [Deutsch
and Journel, 1998, p. 183] to allow generation of
statistically nonhomogeneous random fields characterized
by a power variogram. Figures 14a–14c show 90%
prediction intervals (dashed) defining the 5% and 95%
limits of 500 simulations along borehole X2 using
individual models with ML parameter estimates conditioned
on measurements in the remaining five boreholes. Figure
14d shows averages of these intervals over the three models,
weighted by their posterior probabilities. The percent of
measurements (triangles) lying within these and similar
intervals, associated with all six boreholes, defines
predictive coverage as listed in Table 4. The predictive
coverage of MLBMA is larger than that of any individual
model, attesting once again to its superior performance.
[45] Figure 15 depicts the cumulative distributions of

simulated values at two measurement locations in boreholes
V2 and Y3 obtained using individual models and MLBMA,
while eliminating data from the corresponding boreholes.
The measured values are indicated by vertical lines. In both

Figure 6. Kriged (a) estimate and (b) variance of log10k at
y = 6.5 m obtained using the exponential model with first-
order drift (Exp1). See color version of this figure in the
HTML.

Figure 7. Kriged (a) estimate and (b) variance of log10k at
y = 6.5 m obtained using the spherical model with first-
order drift (Sph1). See color version of this figure in the
HTML.
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cases the MLBMA distribution is strongly influenced by
that of Pow0 and weakly affected by Exp1. Figure 16 shows
sample predictive variances obtained using individual
models and MLBMA at measurement points along each
of the two boreholes. Along V2, Pow0 with a posterior
probability of about 83% exerts an overwhelming influence
on the predictive variance of MLBMA, which is however
lower (closer to those of Exp0 and Exp1). Along Y3,
individual models tend to be associated with a somewhat
lower predictive variance than MLBMA.
[46] Overall, MLBMA is a more reliable predictor than

any individual model, as indicated by its relatively low log
score and high predictive coverage.

6. Conclusions

[47] 1. Analyses of model uncertainty based on a single
hydrologic concept are prone to statistical bias (by commit-
ting a type II error through reliance on an invalid model)
and underestimation of uncertainty (by committing a type I
error through under sampling of the relevant model space).
Bias and uncertainty resulting from an inadequate model
structure (conceptualization) are often more detrimental to a
model’s predictive reliability than are suboptimal model
parameters.
[48] 2. Bayesian model averaging (BMA) provides an

optimal but computationally demanding way of combining
the predictions of several competing models and assessing

their joint predictive uncertainty. The maximum likelihood
(ML) version (MLBMA) of BMA proposed by Neuman
[2002, 2003], and implemented in this paper, renders the
approach computationally feasible and applicable to real-
world hydrologic problems. It applies to both deterministic
and stochastic models.
[49] 3. Whereas BMA requires specifying a prior distri-

bution for model parameters, MLBMA accepts but does not
require such prior information. This is so because, contrary
to BMA, MLBMA relies on ML model calibration against
observational data.
[50] 4. There appears to be no valid way to assess the

uncertainty of hydrologic predictions in an absolute sense
for a single model, only in a relative sense for several
models conditioned on the choice of models and data.
[51] 5. MLBMA is based on Kashyap’s [1982] informa-

tion criterion, KIC, more commonly used as an optimum
decision rule for the ranking of competing models. Like
KIC, MLBMA favors models which, among a given set of
alternatives, are least likely to be incorrect. It honors the
principle of parsimony by favoring the least complex among
models which, otherwise, fit observational data equally
well. Among models of equal complexity, MLBMA favors
those exhibiting the best fit. It additionally contains an
information term which allows one to consider models of
growing complexity as the dataset improves in quantity and
quality. Stated otherwise, MLBMA recognizes that when

Figure 8. Kriged (a) estimate and (b) variance of log10k at
y = 6.5 m obtained using MLBMA. See color version of this
figure in the HTML.

Figure 9. (a) Within- and (b) between-model variance of
MLBMA log10k estimates at y = 6.5 m. See color version of
this figure in the HTML.
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the dataset is limited and/or of poor quality, one should
assign relatively low weights to elaborate models with
numerous parameters. One should weigh more heavily
simpler models with fewer parameters that nevertheless
reflect adequately the underlying hydrologic structure and
phenomena.
[52] 6. Our example confirms that the nonasymptotic

criterion KIC is more informative than its asymptotic limit
BIC, supporting the choice of the former as the basis for
MLBMA [Neuman, 2002, 2003].
[53] 7. Models considered in MLBMA may have differ-

ent types and numbers of parameters, but the latter must be
estimated and the models weighted based on a single
dataset. As an example, to analyze jointly two- and three-
dimensional models via MLBMA, a given set of three-
dimensional data must be used and either projected onto a
two-dimensional plane or averaged in the third dimension
for inclusion in the two-dimensional model(s).
[54] 8. Application of MLBMA to alternative geostatis-

tical models of log air permeability variations in unsaturated
fractured tuff has shown it to be a better predictor of spatial
variability than any individual model.
[55] 9. It is possible to obtain unbiased ML estimates

of variogram parameters and drift coefficients by cou-
pling the adjoint state maximum likelihood cross valida-
tion (ASMLCV) method of Samper and Neuman [1989a]

with universal kriging (UK) and generalized least squares
(GLS).

Appendix A

[56] Kashyap [1982] used asymptotic expansion to show
that for linear or nonlinear, Gaussian or non-Gaussian
models under some fairly standard conditions,

ln p Mk jDð Þ ¼ lnCk þ ln p DjMkð Þ ðA1Þ

where Ck = cp(Mk), c is a constant determined so as to
insure that

XK
l¼1

p MljDð Þ ¼ 1; ðA2Þ

Figure 10. Cumulative distribution of kriged log10k
estimates obtained using various models and MLBMA.

Table 2. Variance of Kriged Estimates Across Grid Obtained With

Alternative Models and MLBMA

Model Variance

Pow0 0.334
Exp0 0.134
Exp1 0.467
Sph1 0.404
MLBMA 0.405

Table 3. Number of log10k Data in DA of Each Cross-Validation

Case and Their Percentage of the Entire Data Set

Well Number Percentage

V2 163 89.1
X2 154 83.7
Y2 156 84.8
Y3 144 78.3
Z2 156 84.8
W2A 147 79.9

Figure 11. Omnidirectional sample variograms of all data
and all but data from boreholes (a) V2, X2, and Y2 and
(b) Y3, Z2, and W2A.
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ln p DjMkð Þ ¼ ln p DjQ̂k ;Mk

� �
þ ln p Q̂k jMk

� �
þ Nk

2
ln

2p
N

� �

	 1

2
ln jFk D Q̂k ;Mk

��� �� ���þ R Nð Þ; ðA3Þ

and NR(N) tends to a constant almost surely as N ! 1. For
a given N, it is possible to write ln a = R(N) and make a
part of the normalizing constant c (see below). Hence
equation (A1) can be expressed with the aid of equation (9)
as

p Mk jDð Þ ¼ cp Mkð Þ exp 	 1

2
KICk

� �
ðA4Þ

where, by virtue of equation (A2),

c ¼ 1XK
l¼1

exp 	 1

2
KICl

� �
p Mlð Þ

: ðA5Þ

To avoid having large arguments in the exponent, we
rewrite equations (A4) and (A5) as equation (7) in terms of
the difference (equation (8)).

[57] For the purpose of dimensional analysis we combine
and rewrite equations (A1) and (A3) as

p Mk jDð Þ ¼ cp Mkð Þp DjQ̂k ;Mk

� �
p Q̂k jMk

� � 2p
N

� �Nk
2

� Fk DjQ̂k ;Mk

� ���� ���	1=2

a: ðA6Þ

We note that p(MkjD) is the posterior (discrete, dimension-
less) probability of model Mk; p(Mk) is the prior (discrete,
dimensionless) probability of Mk; p(DjQ̂k , Mk) is the
probability density function (continuous, having inverse
dimensions of D, i.e., (d1d2d3. . .dN)

	1 where di is the
dimension of Di) of the data vector D under model Mk with
parameters Q̂k ; p(QkjMk) is the prior probability density of Qk
under model Mk (continuous, having inverse dimensions of
Qk, i.e., (t1t2t3. . .tNk

)	1 where ti is the dimension of
qi)); jFk (DjQ̂k, Mk)j	1/2, by virtue of equation (10),
is continuous with dimensions of Qk, i.e., (t1t2t3. . .tNk

));
a is dimensionless; and hence the normalizing constant
c (whether or not one absorbs a into it) has dimensions of
D, i.e., (d1d2d3. . .dN). As the dimensions of p(QkjMk) and
jFk(DjQ̂k, Mk)j	1/2 cancel, it is legitimate to add p(MkjD)
corresponding to models Mk having different types and

Figure 12. Dependence of power variogram (Pow0)
(a) parameters and (b) quality criteria on data. In
Figure 12a, symbols designate parameter estimates obtained
without data from designated borehole; long- and short-
dashed line and dashed line designate estimates with all data.

Figure 13. Posterior model probabilities based on (a) BIC
and (b) KIC upon eliminating data from designated
borehole.
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numbers of parameters Qk. On the other hand, p(MkjD)
must contain the same data D for this addition to be valid
across all models.

Appendix B

[58] Following Samper and Neuman [1989a], let D = (D1,
D2, . . ., DN)

T be a vector of measurements at N points x1, x2,
. . ., xN. A kriged estimate, D̂i, of Di is given by

D̂i ¼
X
m2Ni

limDm ðB1Þ

where Ni is the number of measurements included in the
kriging neighborhood of xi and lim are kriging coefficients.
Assuming that the vector e = (e1, e2, . . ., eM)

T of M cross-
validation errors

ei ¼ D̂i 	 Di ðB2Þ

is Gaussian with zero mean and covariance matrix C, the
negative log likelihood of variogram parameters B given D
is

NLL BjDð Þ ¼ 	2 ln p DjBð Þ ¼ M ln 2pþ ln jCj þ eTC	1e: ðB3Þ

In practice, it is convenient to replace C by a diagonal
matrix with terms Cij = dij si

2 where dij is the Kronecker delta
and si

2 the kriging variance, so that equation (B3) simplifies
to

NLL BjDð Þ ¼ 	2 ln p DjBð Þ ¼ M ln 2pþ
XM
i¼1

ln s2i þ
XM
i¼1

e2i
s2i

: ðB4Þ

The corresponding kriging variance is given by

s2i ¼
X
m2Ni

limgmi 	 vi ðB5Þ

in the case of ordinary kriging (drift-free models) and by

s2i ¼
X
m2Ni

limgmi 	
Xp
k¼0

vkgki ðB6Þ

in the case of universal kriging with polynomial drift
equation (15) where gmi is the variogram of Dm and Di, vk

Table 4. Average Predictive Log Score and Predictive Coverage

of Individual Models and MLBMA

Model Pow0 Exp0 Exp1 MLBMA

Predictive log score 34.1 35.2 34.0 31.4
Predictive coverage, % 86.5 80.8 83.7 87.5

Figure 14. The 5% (bottom dashed line) and 95% (top dashed line) limits of simulated prediction
interval of log10k along borehole X2. Triangles designate measured values.
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are Lagrange multipliers and gki = gk (xi). The kriging
coefficients L and Lagrange multipliers v are obtained by
solving a linear system of algebraic universal kriging
equations which require knowing the functional form of
the drift function G but not its coefficients a [e.g., Cressie,
1991, p. 153; Deutsch and Journel, 1998, p. 67].

Appendix C

[59] Let B = (s2, l)Twhere s2 is the sill and l the integral
scale or range of a variogram. Given a separation distance sij
between two points xi and xj, @CR/@bi for a corresponding
exponential covariance

CR hij
� 	

¼ s2 exp 	 hij

l

� �
ðC1Þ

is given by

@CR;ij

@s2
¼ exp 	 hij

l

� �

@CR;ij

@l
¼ s2hij

l2
exp 	 hij

l

� � ðC2Þ

and for a spherical covariance

CR hij
� 	

¼
s2 	 s2

hij

l
	 0:5

hij

l

� �3
" #

hij � l

0 hij > l

8>><
>>: ðC3Þ

by

@CR;ij

@s2
¼

1	 1:5
hij

l
þ 0:5

hij

l

� �3

hij � l

0 hij > l

8><
>:

@CR;ij

@l
¼

1:5
s2hij
l2

1	 hij

l

� �2
" #

hij � l

0 hij > l

8>><
>>:

ðC4Þ

By virtue of equations (14) and (15) the derivatives of
residuals with respect to drift coefficients are

@Ri

@ak
¼ 	gki ðC5Þ

where gki = gk (xi).
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Figure 15. Cumulative distribution of simulated log10k
values at a measurement location in boreholes (a) V2 and
(b) Y3. Vertical line indicates measured value.

Figure 16. Sample variances of log10k values simulated
using various models and MLBMA along boreholes (a) V2
and (b) Y3 while eliminating the corresponding data.
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