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Abstract — An anadlysis is made of Maximum
Likelihood Dewmding (MLD) in a wireless Space
Division Multiplexing (SDM) link, where information
is transmitted and receved simultaneously over
several transmit and recéve antennas to achieve large
data rates and high spedral efficiencies. It is proven
that maximum likelihood ceading obtains a diversity
order equal to the number of receve atennas,
independent of the number of transmit antennas, while
conventional processng tedniques such as the
Minimum Mean Square Error (MMSE) technique
obtain a diversity order equal to the number of recave
antennas minus the number of transmit antennas plus
one. Hence, compared to conventional techniques,
maximum likelihood ceading hes a significant signal-
to-noise ratio advantage which grows with the number
of transmit antennas. Maximum likelihood decoding
even works when the number of transmit antennas is
larger than the number of receve antennas, which is
not passble for conventional techniques.

|. Introduction

The main trend in communications is more users and
higher data rates per user. Hence al new
developments are @amed at increasing both the total
system cgpadty as well as the cagadty for individual
users. For wireless communicaions with a limited
amount of bandwidth, these goals require more
spedrum efficient modulation techniques. In wireless
locd areanetworks, for example, we have seen the bit
rates go up from 2 Mbps in the first IEEE 80211
standard to 11 Mbpsin IEEE 80211b, using the same
bandwidth [1]. The recet IEEE 802.11a standard
incresses the rates even further up to 54 Mbps in
20MHz chanrels, using OFDM with variable QAM
congtellations from BPSK to 64QAM [2]. A
disadvantage of this approach to use more spedral
efficient higher order modulations is that the range
deaeases. In addition, the links bemme more
vulnerable to interference which reduces the total
system cgpadty. Hence there is ©me optimum data
rate per user that maximizes the system cgpadty. To
keep increasing the rate per user and the system
cgpadty, the most promising solution seems to be the
use of multiple antennas.

Figure 1 shows a block diagram of a Space Division
Multi plexing system, where multiple aitennas are used
to simultaneously transmit different data streams from
one particular user, as first described in [3]. Some
possble processng techniques are described in [3,4],
but till now, maximum likelihood cemding hes not
been considered. In this paper, we derive an
upperbound for the aror probability of maximum
likelihood deaoding and show several simulation
results.
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Figure 1: A SpaceDivision Multi plexing System.

I1. Upperbound for the Symbol Error
Probability

For an SDM link, the receved signal vedor for one
particular symbal is given by:

r=Hx+n (D]

where H is the channel matrix with N rows and M
columns, with N and M being the number of recave
and transmit antennas, respedively. We asume that
the dements of H are independent zero-mean complex
Gaussian variables with unt variance x is the
transmitted vector, consisting of M QAM subsymbadls.
In this paper, we will refer to x as one symbadl. The
total transmitted power P is equal to the sum of the
powers of all elements of x. Hence increasing the
number of transmit antennas reduces the power per
antenna for a fixed total power. n is a vedor with N
complex additi ve white Gaussian noise samples.

Assuming the recever knows the cannel H, The
maximum likelihood estimate of a symbal x is given

by:
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X = argmin r = Hx | 2)
|

The symbad error probability ps depends on the
Euclidean distance between different recaved vedors
Hxi. An uwper bound on ps cen be obtained by
assuming al possble wde words have the same
minimum Euclidean distance dgi,. The symbal error
probabili ty can then be written as

M _ d2. E d2. E
pg < ¢ lerfc( —min_=s ) < cM exp-—min =s))
2 4 N, 4 N,
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It has been assumed here that all transmit antennas use
the same mnstellation size ¢, so the total number of
code words is given by c". d’s, is the squared
minimum Euclidean distance between two dfferent
receved code words, with the average power per
receve aitennanormalized to one. EJ/N, isthe average
recaved signal-to-noise ratio per recéve atenna

The problem now is to find the distribution of the
minimum distance First, consider the cae where two
transmitted vectors differ only by a single of the N x
values. In this case, the recaved vedor difference Hx-
Hx' consists of H;(xj-xj) where H; denotes the jth
column of H. The squared norm of this vedor is equal
to the sum of N squared independent Rayleigh fading
variables of H;, multiplied by the squared dfference
I-x;* , which is equal to the minimum squared
distance d.#/M between two constellation paints on a
single recéve antenna. Here, d’% is the minimum
squared dstance of two constellation points with an
average onstellation power of one, which is listed in
Table 1 for afew different modulation types. Since we
assume an average recaeved power of one per receve
antenna, the average power of a single x; component is
1/M, so the minimum squared distance for M transmit
antennas is d./M.

Modulation | d%
BPSK 4
QPSK 2
16QAM 4/10
64-QAM 2/21

Table 1: Minimum squared dstancefor different
modulation types with average power normali zed to
one.

Since the single different element between two
transmitted vectors can be & any of M posdble
locdions, the minimum distance is the minimum over
al M columns of H. The probabili ty distribution of the
sguared minimum distanceq is given by:

P(g<t) :l—[l— Peni (0 < t)]M <MPpni(gst) (4

where Pgi() is a di-square distribution with 2M
degrees of freedom, which is the same distribution as

is obtained in the cae of classcd maxima ratio
combining with one transmit antenna axd M receve
antennas. From the distribution, the probability density
function can be obtained by differentiation:

p(g) = aiq (1— - P (@< t)]™ )=

ML-Pe @< O] P peri (@) < Mpeyi (@) (5)
becausdl- Py, (q<t)|M <1

Hence, for the cdculation of the upperbound on the bit
error probability, the probability density function of g
can be upperbounded as M times a di-square
probabili ty density function.

If two vedors x and x' differ by more than one
element, then the recéved vedor H(x-x') consists of
the sum of K columns of H, where eat column of H is
rotated and scaed by one of the K nonzero elements of
x-x'. Assuming the worst case situation® that all
nonzero elements of x-x' have the same minimum
squared Euclidean distance d:/M, the sum of K
independent columns of H with Gaussian distributed
variables gives another set of N Gaussian distributed
variables with a variance that is K times larger than in
the cae of a single different element in x-x'. Hence,
this again gves rise to a di-square distribution of
order 2N, but with avariancethat isK timeslarger. For
small values of q , the probability distribution for this
case can be upperbounded as pgi(Q)/K. The total
number of possble locations of K differencesin x-x' is

E\QE so for al possble vedor differences, an

upperbound on the probability density function is:

(@< Py @S %1 ©)
p(Qd) < Pchi (A E\A 6
n KZ:K K

which is nothing more than a di-square probability
density function with 2N degrees of freedom,
multiplied by some mnstant which depends on the
number of antennas. Now, the average symbadl error
probabili ty can be obtained as:

* d?q E
Ps < ICM exp(—ﬁN—s) p(a)dq =
[e]

0

4M N,

From the upperbound on the symbadl error probability,
a bit error probability upperbound can be obtained by

L 1f one or more dements have adistance larger than
the minimum Eucli dean distance, then the aror vedor
still consists of N Gaussan distributed elements, but
with alarger variance



assuming that for ead erroneous symbal, half of the
bits are in error. This leals to a bit error probability
that is half of the symbal error probability.

Some interesting observations can be made from the
derived upperbound: first, the diversity order is always
equal to the number of recdve aitennas, independent
of the number of transmit antennas. This is a major
difference with other schemes, where the diversity
order is limited to N-M+1 [5]. For relatively large
signal-to-noise ratios, the symbal error probability is
proportional to the inverse of the signal-to-noise ratio,
raised to the power of the diversity order. Hence,
maximum likelihood cdemding hes a sSignificant
advantage in signal-to-noise ratio over other
techniques because of the larger diversity order. Notice
that for a larger number of transmit antennas, the
diversity order and hence the dope of the eror
probability curve does not change, but the curve does
get multiplied by alarger constant, such that the arve
shifts towards larger signal-to-noise ratios.

Figure 2 shows me bit error ratio results comparing
MLD with MMSE processng. The MM SE technique
estimates the transmitted vedor x by transforming the
receved vedor r to an output vedor s asfollows:

M

s=(al +H*H)'1H*r, a=
Es/Ng

®)

The estimate of x is found by dicing the individual
elements of sto the neaest constell ation points.

For MM SE, the performance only depends on the
difference between the number of recave and transmit
antennas, so the arves of N=M=1, 2 and 4 are
identicd with a diversity order of 1. For MLD,
however, the diversity order grows with the number of
recave antennas, thereby creaing a huge signal-to-
noise ratio advantage over MM SE. For N=M=4 and a
bit error ratio of 107, for instance, MM SE requires 13
dB more signal-to-noise ratio than MLD. Notice that
the theoreticd upperbound for MLD is quite loose,
however, it does prove the diversity order which gves
the MLD curves a much stegper slope than the MM SE
Curves.

Notice that in al figures in this paper, we use the
normalized Ey/N, per recave aitenna, which is defined
as.

E PT, E
b Tlopy=sgl (©)
Ny, N 5 MK

where k is the number of bits per subsymbad (e.g. k=2
for QPSK) and Ty, is the bit time, which is equal to the
symbad time T divided by the total amount of bits per
symbad Mk. The E/N, per recdve antennais equal to
the SNR of eah recave atenna divided by the
number of bits per symbal per receve antenna. The
overal Ey/N, is equa to the Ey/N, per receve aitenna
divided by N. This means that for two systems that
have the same performance in terms of EJ/N, per

recave aitenna, the system with the most receve
antennas requires less total transmit power, so it has an
advantage in the link budget. In Figure 2, for instance,
all curves for MM SE are identicd, but in terms of the
link budget, the system with N=4 hasa 6 dB advantage
over the N=1 case.
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Figure 2: Bit error probability versus mean E/N, per
recave aitennain Rayleigh fading channels for a)
N=M=4, MLD simulation, b) theoreticd upperbound
for a, ¢) N=M=2, MLD simulation, d) theoreticd
upperbound for ¢, €) N=M=1, MLD and MM SE for
N=M=1, 2 and 4.

A semnd interesting fad that foll ows from the derived
upperbound is that maximum likelihood decoding even
works when the number of transmit antennas is larger
than the number of receve antennas, which is not
possble for techniques which rely on the (pseudo-)
inversion of (parts of) H. Hence, it is always posshble
to increase the data rate by increasing the number of
transmit antennas, although at the st of an increase
in the required signal-to-noise ratio. It seems
somewhat surprising that it is possible to have more
transmitters than recevers, but a similar result was
already found for the cae of narrowband multi-user
cancdlation [6]. Using more transmit antennas than
recave aitennas can be cmpared with the use of
higher order modulation. For instance, if 2 transmit
antennas with QPSK signals are used and only one
receve aitenna, then the recaved signal in genera has
a 16-point constell ation, with the location of the points
depending on the channel matrix H. Figures 3 (a) and
(b) show examples of these random 16-point
congtell ations on two dfferent recave antennas. The
numbers in the plots refer to one of the 16 passble x
inputs which led to the output shown in the figures.
The figures demonstrate that one antenna is enough to
recover al 4 hits of information, however, at the mst
of a signal-to-noise ratio penalty, since the minimum
distance of the random constellation may be quite
small. When two or more recéve antennas are used,
the minimum distance is improved significantly, as
constell ation points which are spaced close together on
one recave antenna may be spaceal much further apart
on another antenna. This is demonstrated by the



example where dose neighbors such as 1 and 8 in
Figure 3(a) are much further apart in Figure 3(b).
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Figure 3: Example of 16-paint constell ations on
recave antennas (a) and (b) in an M=N=2 SDM
system using QPSK.

Figure 4 shows the BER of BPSK with severa
multiple aitenna combinations. Curve (a) and (b) use
only one transmit antenna with one and two receve
antennas, respedively, so these arves show the
conventional diversity gain of incressing the number
of recave aitennas only. Curves (c) to (e) all have 2
receve antennas, but an increasing number of transmit
antennas. Interestingly, the increased data rates only
cost a dight incresse in Ey/N, per antenna. For
instance, thereisonly a2 dB increase by going from 1
to 4 antennas (curves (b) an (e)).

The &ove observations pose an interesting question:
for agiven datarate and number of recave aitennas, is
it better to transmit at multi ple transmit antennas or at
only one antenna & the full rate, using some higher
order QAM constellation? Figure 5 shows sme plots
for this problem with 2 recdve atennas. Three
systems are simulated that all transmit 4 hits per
symbd, ranging from 4 BPSK symbds on 4 transmit
antenas to a single 166:QAM symbad on one transmit
antenna. It can be seen that 2 transmit antennas using
QPSK is the best choice with an SNR advantage of
about 1 and 3 dB over the BPSK and 16QAM
systems, respedively.

Eb/No [dB]

Figure 4: BER versus mean E,/N,, per recaéve antenna
for BPSK and a) M=N=1, b) M=1, N=2,
¢) M=N=2, d) M=3, N=2, €) M=4, N=2.
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Figure 5: BER versus mean Ey/N, per receve antenna
for N=2 and a) BPSK with M=4, b) QPSK with M=2,
and c¢) 16-QAM with M=1.

Figure 6 shows another comparison between two
systems with the same data rate, in this case 8 hits per
symboal. Again, the system using QPSK isthe best with
an SNR advantage of about 1 dB over the system with
16-QAM on 2 transmit antennas.
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Figure 6: BER versus mean E,/N, for N=2 and a)

QPSK with M=4, b) 166:QAM with M=2.



When the number of transmit antennas is increased,
the SNR penalty for higher order QAM constell ations
grows relatively faster than the penalty for BPSK. This
is demonstreted by the curves in Figure 7 for the cae
of 166QAM with 1, 2, and 3 transmit antennas. The
growing SNR penalty is a dired consequence of the
reduced minimum Euclidean distance becaise of the
larger constellation sizes. For the cae of 3 antennas
with 16-QAM, for instance, each recave antenna sees
a4096-poaint constell ation, while for BPSK thisis only
an 8-point constell ation.

Eb/No [dB]

Figure 7: BER versus mean Ey/N, for 16-QAM, N=2
and @) M=1, b) M=2, and ¢) M=3.

[1. Complexity I ssues

One of the obvious disadvantages of maximum
likelihood cemding is that its complexity grows
exponentially with the number of transmit antennas.
However, a mgjor advantage is that the dgorithm can
be made free of relatively complex multiplicaions by
using approximations for the norm cdculation. Figure
8 shows two cases where the norm is approximated as
the sum of absolute values of al red and imaginary
components. It can be seen that this smplification
causes a degradation that is negligible for QPSK and
about half a dB for 16:QAM. With this modification,
the complexity of maximum likelihood ceaodingisin
the order of N complex additions, whereas the
complexity of the MM SE technique, for instance, isin
the order of MN complex multiplicaions. In ASIC or
FPGA implementations, an 8-bit complex multiplier is
about 16 times more complex than a complex adder, so
the MN complex multiplicaions are ejuivalent in
complexity to 18N complex additions. Using this
comparison rule, the implementation complexity of
MLD is adudly lessthan that of MMSE for a system
with M=N=4 and QPSK (c=4). For larger number of
antennas and/or constellation sizes, MLD is relatively
more @mplex than MMSE. Further simplificaions
exist, however, which make it possble to reduce the
complexity at the ast of areduced performance[7].

Il1. Conclusions

We proved that maximum likelihood decoding of an
SDM system achieves a diversity fador equal to the

number of recave antennas, independent of the
number of transmit antennas. The reasonable
implementation complexity combined with the
superior performance makes maximum likelihood
demding a highly attradive technique for SDM
systems, espedaly when combined with OFDM to
gain delay spreal robustness, as described in [8].

Eb/No [dB]

Figure 8: BER versus mean E,/N, for M=N=2,
a) QPSK exad, b) QPSK with norm approximation,
¢) 16:QAM exad, d) 16-QAM with norm
approximation.
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