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Abstract – An analysis is made of Maximum
Likelihood Decoding (MLD) in a wireless Space
Division Multiplexing (SDM) link, where information
is transmitted and received simultaneously over
several transmit and receive antennas to achieve large
data rates and high spectral eff iciencies. It is proven
that maximum likelihood decoding obtains a diversity
order equal to the number of receive antennas,
independent of the number of transmit antennas, while
conventional processing techniques such as the
Minimum Mean Square Error (MMSE) technique
obtain a diversity order equal to the number of receive
antennas minus the number of transmit antennas plus
one. Hence, compared to conventional techniques,
maximum likelihood decoding has a significant signal-
to-noise ratio advantage which grows with the number
of transmit antennas. Maximum likelihood decoding
even works when the number of transmit antennas is
larger than the number of receive antennas, which is
not possible for conventional techniques.

I. Introduction

The main trend in communications is more users and
higher data rates per user. Hence, all new
developments are aimed at increasing both the total
system capacity as well as the capacity for individual
users. For wireless communications with a limited
amount of bandwidth, these goals require more
spectrum efficient modulation techniques. In wireless
local area networks, for example, we have seen the bit
rates go up from 2 Mbps in the first IEEE 802.11
standard to 11 Mbps in IEEE 802.11b, using the same
bandwidth [1]. The recent IEEE 802.11a standard
increases the rates even further up to 54 Mbps in
20 MHz channels, using OFDM with variable QAM
constellations from BPSK to 64-QAM [2]. A
disadvantage of this approach to use more spectral
efficient higher order modulations is that the range
decreases. In addition, the links become more
vulnerable to interference, which reduces the total
system capacity. Hence, there is some optimum data
rate per user that maximizes the system capacity. To
keep increasing the rate per user and the system
capacity, the most promising solution seems to be the
use of multiple antennas.

Figure 1 shows a block diagram of a Space Division
Multiplexing system, where multiple antennas are used
to simultaneously transmit different data streams from
one particular user, as first described in [3]. Some
possible processing techniques are described in [3,4],
but till now, maximum likelihood decoding has not
been considered. In this paper, we derive an
upperbound for the error probabilit y of maximum
likelihood decoding and show several simulation
results.
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Figure 1: A Space Division Multiplexing System.

II. Upperbound for the Symbol Error
     Probability

For an SDM link, the received signal vector for one
particular symbol is given by:

nHxr +=           (1)

where H is the channel matrix with N rows and M
columns, with N and M being the number of receive
and transmit antennas, respectively. We assume that
the elements of H are independent zero-mean complex
Gaussian variables with unit variance. x is the
transmitted vector, consisting of M QAM subsymbols.
In this paper, we will refer to x as one symbol. The
total transmitted power P is equal to the sum of the
powers of all elements of x. Hence, increasing the
number of transmit antennas reduces the power per
antenna for a fixed total power. n is a vector with N
complex additive white Gaussian noise samples.

Assuming the receiver knows the channel H, The
maximum likelihood estimate of a symbol x is given
by:
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Hxrx −= minargˆ (2)

The symbol error probabilit y ps depends on the
Euclidean distance between different received vectors
Hxi. An upper bound on ps can be obtained by
assuming all possible code words have the same
minimum Euclidean distance dmin. The symbol error
probabili ty can then be written as
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It has been assumed here that all transmit antennas use
the same constellation size c, so the total number of
code words is given by cM. d2

min is the squared
minimum Euclidean distance between two different
received code words, with the average power per
receive antenna normalized to one. Es/No is the average
received signal-to-noise ratio per receive antenna.

The problem now is to find the distribution of the
minimum distance. First, consider the case where two
transmitted vectors differ only by a single of the N x
values. In this case, the received vector difference Hx-
Hx′′ consists of Hj(xj-x′′j) where Hj denotes the jth
column of H. The squared norm of this vector is equal
to the sum of N squared independent Rayleigh fading
variables of Hj, multiplied by the squared difference
|xj-x′′j|2 , which is equal to the minimum squared
distance dc

2/M between two constellation points on a
single receive antenna. Here, d2

c is the minimum
squared distance of two constellation points with an
average constellation power of one, which is listed in
Table 1 for a few different modulation types. Since we
assume an average received power of one per receive
antenna, the average power of a single xj component is
1/M, so the minimum squared distance for M transmit
antennas is dc

2/M.

Modulation d2
c

BPSK 4
QPSK 2
16-QAM 4/10
64-QAM 2/21

Table 1: Minimum squared distance for different
modulation types with average power normalized to

one.

Since the single different element between two
transmitted vectors can be at any of M possible
locations, the minimum distance is the minimum over
all M columns of H. The probabili ty distribution of the
squared minimum distance q is given by:
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where Pchi() is a chi-square distribution with 2M
degrees of freedom, which is the same distribution as

is obtained in the case of classical maximal ratio
combining with one transmit antenna and M receive
antennas. From the distribution, the probabili ty density
function can be obtained by differentiation:
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Hence, for the calculation of the upperbound on the bit
error probabilit y, the probabilit y density function of q
can be upperbounded as M times a chi-square
probabili ty density function.

If two vectors x and x′′ differ by more than one
element, then the received vector H(x-x′′) consists of
the sum of K columns of H, where each column of H is
rotated and scaled by one of the K nonzero elements of
x-x′′. Assuming the worst case situation1 that all
nonzero elements of x-x′′ have the same minimum
squared Euclidean distance dc

2/M, the sum of K
independent columns of H with Gaussian distributed
variables gives another set of N Gaussian distributed
variables with a variance that is K times larger than in
the case of a single different element in x-x′′. Hence,
this again gives rise to a chi-square distribution of
order 2N, but with a variance that is K times larger. For
small values of q , the probabilit y distribution for this
case can be upperbounded as pchi(q)/K. The total
number of possible locations of K differences in x-x′′ is
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which is nothing more than a chi-square probabilit y
density function with 2N degrees of freedom,
multiplied by some constant which depends on the
number of antennas. Now, the average symbol error
probabili ty can be obtained as:
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From the upperbound on the symbol error probabili ty,
a bit error probabilit y upperbound can be obtained by

                                                          
1 If one or more elements have a distance larger than
the minimum Euclidean distance, then the error vector
still consists of N Gaussian distributed elements, but
with a larger variance.



assuming that for each erroneous symbol, half of the
bits are in error. This leads to a bit error probabilit y
that is half of the symbol error probabilit y.

Some interesting observations can be made from the
derived upperbound: first, the diversity order is always
equal to the number of receive antennas, independent
of the number of transmit antennas. This is a major
difference with other schemes, where the diversity
order is limited to N-M+1 [5]. For relatively large
signal-to-noise ratios, the symbol error probabilit y is
proportional to the inverse of the signal-to-noise ratio,
raised to the power of the diversity order. Hence,
maximum likelihood decoding has a significant
advantage in signal-to-noise ratio over other
techniques because of the larger diversity order. Notice
that for a larger number of transmit antennas, the
diversity order and hence the slope of the error
probabili ty curve does not change, but the curve does
get multiplied by a larger constant, such that the curve
shifts towards larger signal-to-noise ratios.

Figure 2 shows some bit error ratio results comparing
MLD with MMSE processing. The MMSE technique
estimates the transmitted vector x by transforming the
received vector r to an output vector s as follows:
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The estimate of x is found by slicing the individual
elements of s to the nearest constellation points.

For MMSE, the performance only depends on the
difference between the number of receive and transmit
antennas, so the curves of N=M=1, 2 and 4 are
identical with a diversity order of 1. For MLD,
however, the diversity order grows with the number of
receive antennas, thereby creating a huge signal-to-
noise ratio advantage over MMSE. For N=M=4 and a
bit error ratio of 10-3, for instance, MMSE requires 13
dB more signal-to-noise ratio than MLD. Notice that
the theoretical upperbound for MLD is quite loose,
however, it does prove the diversity order which gives
the MLD curves a much steeper slope than the MMSE
curves.

Notice that in all figures in this paper, we use the
normalized Eb/No per receive antenna, which is defined
as:
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where k is the number of bits per subsymbol (e.g. k=2
for QPSK) and Tb is the bit time, which is equal to the
symbol time Ts divided by the total amount of bits per
symbol Mk. The Eb/No  per receive antenna is equal to
the SNR of each receive antenna divided by the
number of bits per symbol per receive antenna. The
overall Eb/No is equal to the Eb/No per receive antenna
divided by N. This means that for two systems that
have the same performance in terms of Eb/No per

receive antenna, the system with the most receive
antennas requires less total transmit power, so it has an
advantage in the link budget. In Figure 2, for instance,
all curves for MMSE are identical, but in terms of the
link budget, the system with N=4 has a 6 dB advantage
over the N=1 case.
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Figure 2: Bit error probabilit y versus mean Eb/No per
receive antenna in Rayleigh fading channels for a)

N=M=4, MLD simulation, b) theoretical upperbound
for a, c) N=M=2, MLD simulation, d) theoretical

upperbound for c, e) N=M=1, MLD and MMSE for
N=M=1, 2 and 4.

A second interesting fact that follows from the derived
upperbound is that maximum likelihood decoding even
works when the number of transmit antennas is larger
than the number of receive antennas, which is not
possible for techniques which rely on the (pseudo-)
inversion of (parts of) H. Hence, it is always possible
to increase the data rate by increasing the number of
transmit antennas, although at the cost of an increase
in the required signal-to-noise ratio. It seems
somewhat surprising that it is possible to have more
transmitters than receivers, but a similar result was
already found for the case of narrowband multi-user
cancellation [6]. Using more transmit antennas than
receive antennas can be compared with the use of
higher order modulation. For instance, if 2 transmit
antennas with QPSK signals are used and only one
receive antenna, then the received signal in general has
a 16-point constellation, with the location of the points
depending on the channel matrix H. Figures 3 (a) and
(b) show examples of these random 16-point
constellations on two different receive antennas. The
numbers in the plots refer to one of the 16 possible x
inputs which led to the output shown in the figures.
The figures demonstrate that one antenna is enough to
recover all 4 bits of information, however, at the cost
of a signal-to-noise ratio penalty, since the minimum
distance of the random constellation may be quite
small. When two or more receive antennas are used,
the minimum distance is improved significantly, as
constellation points which are spaced close together on
one receive antenna may be spaced much further apart
on another antenna. This is demonstrated by the



example where close neighbors such as 1 and 8 in
Figure 3(a) are much further apart in Figure 3(b).
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Figure 3: Example of 16-point constellations on
receive antennas (a) and (b) in an M=N=2 SDM

system using QPSK.

Figure 4 shows the BER of BPSK with several
multiple antenna combinations. Curve (a) and (b) use
only one transmit antenna with one and two receive
antennas, respectively, so these curves show the
conventional diversity gain of increasing the number
of receive antennas only. Curves (c) to (e) all have 2
receive antennas, but an increasing number of transmit
antennas. Interestingly, the increased data rates only
cost a slight increase in Eb/No per antenna. For
instance, there is only a 2 dB increase by going from 1
to 4 antennas (curves (b) an (e)).

The above observations pose an interesting question:
for a given data rate and number of receive antennas, is
it better to transmit at multiple transmit antennas or at
only one antenna at the full rate, using some higher
order QAM constellation? Figure 5 shows some plots
for this problem with 2 receive antennas. Three
systems are simulated that all transmit 4 bits per
symbol, ranging from 4 BPSK symbols on 4 transmit
antenas to a single 16-QAM symbol on one transmit
antenna. It can be seen that 2 transmit antennas using
QPSK is the best choice with an SNR advantage of
about 1 and 3 dB over the BPSK and 16-QAM
systems, respectively.
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Figure 4: BER versus mean Eb/No per receive antenna
for BPSK and a) M=N=1, b) M=1, N=2,
c) M=N=2, d) M=3, N=2, e) M=4, N=2.

5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No [dB]

B
E

R ab c

Figure 5: BER versus mean Eb/No per receive antenna
for N=2 and a) BPSK with M=4,  b) QPSK with M=2,

and c) 16-QAM with M=1.

Figure 6 shows another comparison between two
systems with the same data rate, in this case 8 bits per
symbol. Again, the system using QPSK is the best with
an SNR advantage of about 1 dB over the system with
16-QAM on 2 transmit antennas.
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Figure 6: BER versus mean Eb/No for N=2 and a)
QPSK with M=4,  b) 16-QAM with M=2.



When the number of transmit antennas is increased,
the SNR penalty for higher order QAM constellations
grows relatively faster than the penalty for BPSK. This
is demonstreted by the curves in Figure 7 for the case
of 16-QAM with 1, 2, and 3 transmit antennas. The
growing  SNR penalty is a direct consequence of the
reduced minimum Euclidean distance because of the
larger constellation sizes. For the case of 3 antennas
with 16-QAM, for instance, each receive antenna sees
a 4096-point constellation, while for BPSK this is only
an 8-point constellation.
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Figure 7: BER versus mean Eb/No for 16-QAM, N=2
and a) M=1, b) M=2, and c) M=3.

II. Complexity Issues

One of the obvious disadvantages of maximum
likelihood decoding is that its complexity grows
exponentially with the number of transmit antennas.
However, a major advantage is that the algorithm can
be made free of relatively complex multiplications by
using approximations for the norm calculation. Figure
8 shows two cases where the norm is approximated as
the sum of absolute values of all real and imaginary
components. It can be seen that this simplification
causes a degradation that is negligible for QPSK and
about half a dB for 16-QAM. With this modification,
the complexity of maximum likelihood decoding is in
the order of NcM complex additions, whereas the
complexity of the MMSE technique, for instance, is in
the order of MN complex multiplications. In ASIC or
FPGA implementations, an 8-bit complex multiplier is
about 16 times more complex than a complex adder, so
the MN complex multiplications are equivalent in
complexity to 16MN complex additions. Using this
comparison rule, the implementation complexity of
MLD is actuall y less than that of MMSE for a system
with M=N=4 and QPSK (c=4). For larger number of
antennas and/or constellation sizes, MLD is relatively
more complex than MMSE. Further simplifications
exist, however, which make it possible to reduce the
complexity at the cost of a reduced performance [7].

II. Conclusions

We proved that maximum likelihood decoding of an
SDM system achieves a diversity factor equal to the

number of receive antennas, independent of the
number of transmit antennas. The reasonable
implementation complexity combined with the
superior performance makes maximum likelihood
decoding a highly attractive technique for SDM
systems, especially when combined with OFDM to
gain delay spread robustness, as described in [8].
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Figure 8: BER versus mean Eb/No for M=N=2,
a) QPSK exact, b) QPSK with norm approximation,

c) 16-QAM exact, d) 16-QAM with norm
approximation.
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