
Maximum-Likelihood Decoding
of Reed-Solomon Codes is NP-hard

Venkatesan Guruswami
Department of Computer Science & Engineering

University of Washington
Box 352350, Seattle, WA 98195, U.S.A.
venkat@cs.washington.edu

Alexander Vardy
Department of Electrical and Computer Engineering

Department of Computer Science
Department of Mathematics

University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093, U.S.A.

vardy@kilimanjaro.ucsd.edu

April 28, 2004

Abstract

Maximum-likelihood decoding is one of the central algorithmic problems in cod-
ing theory. It has been known for over 25 years that maximum-likelihood decoding
of general linear codes is NP-hard. Nevertheless, it was so far unknown whether
maximum-likelihood decoding remains hard for any specific family of codes with
nontrivial algebraic structure. In this paper, we prove that maximum-likelihood
decoding is NP-hard for the family of Reed-Solomon codes. We moreover show
that maximum-likelihood decoding of Reed-Solomon codes remains hard even
with unlimited preprocessing, thereby strengthening a result of Bruck and Naor.

The work of Venkatesan Guruswami was supported by an NSF Career Award. The work of Alexander Vardy
was supported in part by the David and Lucile Packard Foundation and by the National Science Foundation.

Electronic Colloquium on Computational Complexity, Report No. 40 (2004)

ISSN 1433-8092




1. Introduction

Maximum-likelihood decoding is one of the central (perhaps, the central) algorithmic prob-
lems in coding theory. Berlekamp, McEliece, and van Tilborg [4] showed that this problem
is NP-hard for the general class of linear codes. More precisely, the corresponding decision
problem can be formally stated as follows.

Problem: MAXIMUM-LIKELIHOOD DECODING OF LINEAR CODES
�
MLD-Linear �

Instance: An m � n matrix H over � q , a target vector s ��� m
q , and an integer w � 0.

Question: Is there a vector v ��� n
q of weight � w, such that Hvt 	 st?

Berlekamp, McEliece, and van Tilborg [4] proved 
 in 1978 that this problem is NP-complete
using a reduction from THREE-DIMENSIONAL MATCHING, a well-known NP-complete
problem [9, p. 50]. Since 1978, the complexity of maximum-likelihood decoding of general
linear codes has been extensively studied. Bruck and Naor [5] and Lobstein [16] showed
in 1990 that the problem remains hard even if the code is known in advance, and can
be preprocessed for as long as desired in order to devise a decoding algorithm. Arora,
Babai, Stern, and Sweedyk [1] proved that MLD-Linear is NP-hard to approximate within
any constant factor. Downey, Fellows, Vardy, and Whittle [7] proved that MLD-Linear re-
mains hard even if the parameter w is a constant — it is not fixed-parameter tractable unless
FPT 	 W � 1 � . Recently, the complexity of approximating MLD-Linear with unlimited pre-
processing was studied by Feige and Micciancio [8] and by Regev [19] — this work streng-
thens the results of both [5, 16] and [1] by showing that MLD-Linear is NP-hard to approx-
imate within a factor of 3  ε for any ε � 0, even if unlimited preprocessing is allowed.

While the papers surveyed in the foregoing paragraph constitute a significant body of work,
all these papers deal with the general class of linear codes. This leads to a somewhat in-
congruous situation. On one hand, there is no nontrivial useful family of codes for which
a polynomial-time maximum-likelihood decoding algorithm is known (such a result would,
in fact, be regarded a breakthrough). On the other hand, the specific codes used in the re-
ductions of [1, 4, 5, 7, 8, 16, 19] are unnatural, and the problem of showing NP-hardness
of maximum-likelihood decoding for any useful class of codes with nontrivial algebraic
structure remains open, despite repeated calls for its resolution. For example, the survey of
algorithmic complexity in coding theory [22] says:

Although we have, by now, accumulated a considerable amount of results on the hardness
of MAXIMUM-LIKELIHOOD DECODING, the broad worst-case nature of these results is still
somewhat unsatisfactory. [...] Thus it would be worthwhile to establish the hardness of MAX-
IMUM-LIKELIHOOD DECODING in the average sense, or for more narrow classes of codes.

The first step along these lines was taken by Alexander Barg [2, Theorem 4], who showed
that maximum-likelihood decoding is NP-hard for the class of product (or concatenated)

�
Note that MAXIMUM-LIKELIHOOD DECODING OF LINEAR CODES is NP-complete over all finite fields �q .
Berlekamp, McEliece, and van Tilborg [4] only proved this result for the special case q � 2. The easy
extension to arbitrary prime powers can be found, for instance, in [2, Proposition 2].
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codes, namely codes of type � 	������ , where � and � are linear codes over � q . Barg
writes in [2] that this result is

... the first statement about the decoding complexity of a somewhat more restricted class
of codes than just the “general linear codes.”

Observe, however, that the code � 	������ does not have any algebraic structure unless� and � are further restricted in some manner. Furthermore, it is intuitively clear that the
decoding problem for this code cannot be much simpler than the decoding problem for its
factors � and � , which are, again, general linear codes.

In this paper, we prove that maximum-likelihood decoding is NP-hard for the family of
Reed-Solomon codes. Let q 	 2m and let � q �X � denote the ring of univariate polynomials
over � q . Reed-Solomon codes are obtained by evaluating certain subspaces of � q �X � in
a set of points 	 	�
 x1, x2, . . . , xn � which is a subset of � q . Specifically, a Reed-Solo-
mon code  q � 	 , k � of length n and dimension k over � q is defined as follows:

 q � 	 , k � def	 � � f � x1 � , . . . , f � xn � � : x1, . . . , xn ��	 , f � X � � � q �X � , deg f � X ��� k �
Thus a Reed-Solomon code is completely specified in terms of its evaluation set 	 and
its dimension k. As in [4], we assume that if a codeword of  q � 	 , k � is transmitted and
the vector y ��� n

q is received, the maximum-likelihood decoding task consists of comput-
ing a codeword c �� q � 	 , k � that minimizes d � c, y � , where d ��� , � � denotes the Hamming
distance. The corresponding decision problem can be formally stated as follows.

Problem: MAXIMUM-LIKELIHOOD DECODING OF REED-SOLOMON CODES

Instance: An integer m � 0, a set 	 	�
 x1, x2, . . . , xn � consisting of n distinct el-
ements of � 2m , an integer k � 0, a target vector y ��� n

2m , and an integer w � 0.

Question: Is there a codeword c �� 2m � 	 , k � such that d � c, y � � w?

We will refer to this problem 
 as MLD-RS for short. Our main result herein is that MLD-RS
is NP-complete. Note that the formulation of MLD-RS is restricted to Reed-Solomon codes
over a field of characteristic 2. However, our proof easily extends to Reed-Solomon codes
over arbitrary fields: we use fields of characteristic 2 for notational convenience only. The
key idea in the proof is a re-interpretation of the result that was derived in [23, Lemma 1]
in order to establish NP-hardness of computing the minimum distance of a linear code.

It is particularly interesting that the only nontrivial family of codes for which we can now
prove that maximum-likelihood decoding is NP-hard is the family of Reed-Solomon codes.
Decoding of Reed-Solomon codes is a well-studied problem with a long history. There are
well-known polynomial-time algorithms that decode Reed-Solomon codes up to half their
minimum distance [3, 10, 18], and also well beyond half the minimum distance [12, 21].

�
In the definition of MLD-RS, the field elements of �2m are assumed to be represented by m-bit vectors.
Therefore the input size of an instance of MLD-RS is polynomial in n and m.
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Nevertheless, all these algorithms fall in the general framework of bounded-distance de-
coders [22]. Our result shows that assuming a bound on the number of correctable errors,
as these algorithms do, is necessary, since maximum-likelihood decoding is NP-hard.

In terms of work with related results, Goldreich, Rubinfeld, and Sudan [11] considered
a problem similar to MLD-RS in the context of general polynomial reconstruction prob-
lems. Thus it is shown in [11, Section 6.1] that given n pairs � x1, y1 � , � x2 , y2 � , . . . , � xn, yn �
of elements from a large field, determining if a degree k polynomial passes through at least
k � 2 of them is NP-hard. However, this formulation does not include the essential re-
striction that the evaluation points x1, x2, . . . , xn are all distinct (in fact, the proof of [11]
crucially exploits the fact that xi

	 x j for some i �	 j), and therefore does not yield any
hardness results for Reed-Solomon decoding. We show that a problem very similar to the
one considered in [11] remains NP-hard when the evaluation points x1, x2, . . . , xn are dis-
tinct. Thus our result can be viewed as resolving one of the main questions left open by [11].

The proof of our main result (Theorem 5) is presented in the next section. In Section 3,
we further strengthen this result by showing that maximum-likelihood decoding of Reed-
Solomon codes remains hard even if unlimited preprocessing is allowed, and only the re-
ceived vector y is part of the input. This is a well-motivated scenario, since the code
(namely, the evaluation set 	 and the dimension k) is usually known in advance. Thus
one-time preprocessing, even if computationally expensive, would be attractive if it leads
to efficient decoding. We prove in Section 3 (assuming NP does not have polynomial-size
circuits) that for some Reed-Solomon codes no such preprocessing procedure can exist.
This strengthens the main result of Bruck and Naor [5] in the same way that Theorem 5
strengthens the main result of Berlekamp, McEliece, and van Tilborg [4]. We conclude
the paper in Section 4 with a brief discussion, pointing out several simple corollaries of
Theorem 5 and suggesting a number of interesting open problems related to our results.

2. MLD-RS is NP-complete

As in Berlekamp, McEliece, and van Tilborg [4], we reduce from THREE-DIMENSIONAL

MATCHING. Let � 	 
 1, 2, . . . , t � and let � be a set of ordered triples over � , that is
����� ��� ��� . A subset 	 of � is called a matching if 
�	�
 	 t and every two triples
in 	 differ in all three positions. As shown by Karp in his seminal paper [13] back in 1972,
the following decision problem is NP-complete.

Problem: THREE-DIMENSIONAL MATCHING

Instance: A set of ordered triples �� 
 1, 2, . . . , t � � 
 1, 2, . . . , t � � 
 1, 2, . . . , t � .
Question: Is there a matching in � , namely a subset 	���� consisting of exactly t

triples such that d � s, s � � 	 3 for all distinct s, s � ��	 ?

We shall write an instance of THREE-DIMENSIONAL MATCHING as 
 t, � � . We hence-
forth assume w.l.o.g. that 
���
 � t � 1 (otherwise, the problem is trivially solvable in poly-

3



nomial time). The following deterministic procedure converts any such instance 
 t, � �
into an instance 
 m, 	 , k, w, y � of MLD-RS.

A. COMPUTING THE INTEGER PARAMETERS: Set m 	 3t, k 	 
���
  � t � 1 � ,
and w 	 t. Let n 	 
�� 
 .

B. COMPUTING THE EVALUATION SET: Let q 	 2m. First, construct the finite
field � q — that is, generate a primitive irreducible (over � 2 ) binary poly-
nomial of degree m which defines addition and multiplication in � q . Let α
denote a root of this polynomial. Thenα is a primitive element of � q and the
set 
 1,α,α2, . . . ,αm � 1 � is a basis for � q over � 2 . Now, convert each triple� a, b, c � � � into a nonzero element of � q as follows:

� a, b, c � � � x 	 αa � 1 � αt � b � 1 � α2t � c � 1 (1)

This produces n 	 
�� 
 distinct nonzero elements x1, x2, . . . , xn ��� q . Set the
evaluation set 	 to 
 x1, x2, . . . , xn � .

C. COMPUTING THE TARGET VECTOR: Compute γ 	 1 � α � � � � � αm � 1

in � q . Thus γ is the element of � q that corresponds to the binary m-tuple� 1, 1, . . . , 1 � in the chosen basis. Now, for each j 	 1, 2, . . . , w � 1, compute

z j
def	

γ 
w � 1

∑
i � 1
i �� j

xi

w � 1

∏
i � 1
i �� j

� x j  xi �
and ϕ j

def	 ∏
β �	� q 
��

� x j  β � (2)

Note thatϕ1,ϕ2, . . . ,ϕw � 1 are all nonzero by definition. Set the target vec-
tor y 	 � y1, y2, . . . , yn � to � z1  ϕ1, z2  ϕ2, . . . , zw � 1  ϕw � 1, 0, 0, . . . , 0 � . In
other words: y j

	 z j  ϕ j for j 	 1, 2, . . . , w � 1, and y j
	 0 otherwise.

We will refer to the foregoing computation as the 3-DM  MLD-RS conversion procedure.
It is not immediately clear that this procedure runs in polynomial time (note that the con-
version procedure has to run in time which is polynomial in the size of the THREE-DI-
MENSIONAL MATCHING instance 
 t, � � , and therefore in time that is polynomial in the
logarithm of the field size). This fact is, therefore, established in the following lemma.

Lemma 1. The 3-DM  MLD-RS conversion procedure runs in time and space that are bo-
unded by a polynomial in the size of the instance 
 t, � � .

Proof. Step A is trivial. The only thing that is not immediately obvious in Step B is whe-
ther a primitive irreducible binary polynomial of degree m 	 3t can be generated in deter-
ministic polynomial time. However, Shoup [20] provides a deterministic algorithm for this
purpose, whose complexity is O � m5 � operations in � 2 . Clearly, γ and z1, z2, . . . , zw � 1 in
Step C can be computed in polynomial time and space. However, it is not clear whether this
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is also true for ϕ1,ϕ2, . . . ,ϕw � 1. Indeed, a straightforward evaluation of the expression
forϕ j in (2) takes 2m  n additions and multiplications in � q . Thus we now show how to
computeϕ j in polynomial time. Define the polynomials

M � X � def	 ∏
β �	� q

� X  β � 	 Xq  X (3)

D � X � def	 ∏
β � �

� X  β � 	 n

∑
i � 0

diXi (4)

and let G � X � denote the rational function M � X �  D � X � . Thenϕ j
	 G � x j � in view of (2).

It is easy to see from (3) and (4) that x j is a simple root of both M � X � and D � X � . Hence

G � x j � 	 M � � x j �
D � � x j �

where M � � X � and D � � X � are the first-order Hasse derivatives of M � X � and D � X � , respec-
tively. Note that M � � X � 	 1 in a field of characteristic 2. It follows that

ϕ j
	 1

n
�

∑
i � 0

d2i � 1x2i
j

for j 	 1, 2, . . . , w � 1 (5)

where n � 	 � � n  1 �  2 � and the coefficients d0, d1, . . . , dn are elementary symmetric func-
tions of x1, x2, . . . , xn. These coefficients can be computed from (4) in time O � n2 � . Given
d0, d1, . . . , dn, the computation in (5) clearly requires at most O � wn � operations in � q .

Let H 	 � hi, j � be the � w � 1 � � n matrix over � q defined by hi, j
	 xi � 1

j for j 	 1, 2, . . . , n
and i 	 1, 2, . . . , w � 1, where x1, x2, . . . , xn are given by (1). Explicitly

H def	

������
�

1 1 � � � 1
x1 x2 � � � xn

x2
1 x2

2 � � � x2
n

...
...

...
xw

1 xw
2 � � � xw

n

�	�����

 (6)

The following lemma is a key step in our reduction from THREE-DIMENSIONAL MATCH-
ING to MLD-RS. This lemma owes its general idea to [23, Lemma 1].

Lemma 2. The set � has a matching if and only if there is a vector v ��� n
q of weight � w

such that Hvt 	 � 0, 0, . . . , 0, 1,γ � t.
Proof. Following Berlekamp, McEliece, and van Tilborg [4], we first construct the m � n

(or 3t � 
���
 ) binary matrix V having the binary representations of x1, x2, . . . , xn as its
columns. As noted in [4], � has a matching if and only if there is a set of w 	 t columns
of V that add to the all-one vector. The latter condition can be equivalently stated over � q
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as follows: there is a subset 
 xi1 , xi2 , . . . , xiw � of 	 such that xi1 � xi2 � � � � � xiw
	 γ.

Suppose that � has a matching, so that such a set 
 xi1 , xi2 , . . . , xiw ��� 	 exists, and con-
sider the matrix

A 	

������������
�

1 1 � � � 1 0
xi1 xi2 � � � xiw 0
x2

i1
x2

i2 � � � x2
iw

0
...

...
...

...
xw � 2

i1
xw � 2

i2 � � � xw � 2
iw

0

xw � 1
i1

xw � 1
i2 � � � xw � 1

iw
1

xw
i1

xw
i2 � � � xw

iw
γ

� �����������



(7)

It was shown in [23, Lemma 1] that

det A 	 � γ  xi1  xi2  � � �  xiw � ∏
1 � a � b � w

� xib  xia � (8)

Hence A is singular, so there exists a nonzero vector u 	 � u1 , u2, . . . , uw � 1 � � � w � 1
q such

that Aut 	 0. We claim that uw � 1 �	 0. To see this, replace the last column of A by the
vector � 1, 1, . . . , 1 � t to obtain the � w � 1 � � � w � 1 � matrix A � . If uw � 1

	 0 then A � ut 	 0,
which is a contradiction since det A � is clearly nonzero (as x j �	 1 for all j by (1), it is the
determinant of a Vandermonde matrix with distinct columns). We can now construct a vec-
tor v 	 � v1, v2, . . . , vn � ��� n

q of weight � w as follows

v j
	
�  uir

uw � 1
x j
	 xir for some r � 
 1, 2, . . . , w �

0 otherwise

It should be obvious from (6), (7) and the fact that Aut 	 0 that Hvt 	 � 0, 0, . . . , 0, 1,γ � t.
Conversely, assume that there is a vector v ��� n

q such that Hvt 	 � 0, 0, . . . , 0, 1,γ � t and
wt � v � � w. Write δ 	 wt � v � and let 
 i1, i2, . . . , iδ � be the set of nonzero positions of v.
Let 
 iδ � 1, iδ � 2, . . . , iw � be an arbitrary subset of 
 1, 2, . . . , n � of size w  δ, that is disjoint
from 
 i1, i2, . . . , iδ � . Then, as in (8), we have

0 	

�����������������

1 1 � � � 1 0
xi1 xi2 � � � xiw 0
x2

i1
x2

i2 � � � x2
iw

0
...

...
...

...
xw � 2

i1
xw � 2

i2 � � � xw � 2
iw

0

xw � 1
i1

xw � 1
i2 � � � xw � 1

iw
1

xw
i1

xw
i2 � � � xw

iw
γ

�����������������

	 � γ  xi1  xi2  � � �  xiw � ∏
1 � a � b � w

� xib  xia � (9)

since the fact that Hvt 	 � 0, 0, . . . , 0, 1,γ � t implies that the matrix in (9) is singular. Since
x1, x2, . . . , xn are all distinct, it follows from (9) that xi1 � xi2 � � � � � xiw

	 γ. This, in
turn, implies that there is a matching in � , and we are done.
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Recall that k 	 
���
  � t � 1 � 	 n  � w � 1 � in our conversion procedure, and let � be the� n, k � linear code over � q having the matrix H in (6) as its parity-check matrix. Further, let
z 	 � z1, z2, . . . , zw � 1, 0, 0, . . . , 0 � ��� n

q , where z1, z2, . . . , zw � 1 are defined by (2).

Corollary 3. The set � has a matching if and only if the code � def	 � v ��� n
q : Hvt 	 0 �

contains a codeword at Hamming distance � w from z.

Proof. In view of Lemma 2, it would suffice to show that the syndrome of z with respect
to H is � 0, 0, . . . , 0, 1,γ � t. Explicitly, we need to prove that

Hzt 	

������
�

1 1 � � � 1
x1 x2 � � � xw � 1

x2
1 x2

2 � � � x2
w � 1

...
...

...
xw

1 xw
2 � � � xw

w � 1

� �����



������
�

z1
z2
z3
...

zw � 1

� �����

 	

������
�

0
0
...
0
1
γ

� �����

 (10)

The easiest way to see that the second equality in (10) holds is to regard this as a system of
linear equations in the indeterminates z1, z2, . . . , zw � 1. Let M denote the � w � 1 � � � w � 1 �
matrix in (10). Since M is clearly nonsingular, the system admits a unique solution, given
by z j

	 det M j  det M for j 	 1, 2, . . . , w � 1, where M j is the matrix obtained from M
by replacing the j-th column with � 0, 0, . . . , 0, 1,γ � t. Now

det M j
	 �

��
� γ  w � 1

∑
i � 1
i �� j

xi

���
	 ∏

1 
 a � b 
 w � 1
a,b �� j

�
xb  xa � for j 	 1, 2, . . . , w � 1

as in (8), while det M is the Vandermonde determinant ∏1 � a � b � w � 1 � xb  xa � . From this,
the expression for z j in (2) easily follows.

The last observation we need is that the code � defined in Corollary 3 is just a generalized
Reed-Solomon code. Specifically, let us extend the definition ofϕ1,ϕ2, . . . ,ϕw � 1 in (2) to
all j 	 1, 2, . . . , n and consider the mappingsϕ : � n

q
� � n

q andϕ
� 1: � n

q
� � n

q defined by

ϕ � u1 , u2, . . . , un � def	 � ϕ1u1,ϕ2u2, . . . ,ϕnun �
ϕ
� 1 � u1 , u2, . . . , un � def	 � u1  ϕ1, u2  ϕ2, . . . , un  ϕn �

Note thatϕ
� 1 is well-defined sinceϕ1,ϕ2, . . . ,ϕn are all nonzero. Also note that bothϕ

andϕ
� 1 are bijections and isometries with respect to the Hamming distance.

Lemma 4.
ϕ
� 1 � � � 	  q � 	 , k �

Proof. We will prove the equivalent statement that � is the image of  q � 	 , k � underϕ.
Let G 	 � gi, j � be the k � n matrix over � q defined by gi, j

	 xi � 1
j for all i 	 1, 2, . . . , k and

j 	 1, 2, . . . , n. It is well known (and obvious) that G is a generator matrix for  q � 	 , k � .
7



Hence a generator matrix for the image of  q � 	 , k � underϕ is given by G � 	 � g �i, j � where
g �i, j

	 ϕ jxi � 1
j . It would therefore suffice to prove that G � is a generator matrix for the

code � , which is equivalent to the statement that B 	 G � HT is the k � � w � 1 � all-zero ma-
trix. By definition, a generic entry of B 	 � br,s � is given by

br,s
	 n

∑
j � 1

g �r, j hs, j
	 n

∑
j � 1
ϕ j xr � 1

j xs � 1
j

	 n

∑
j � 1
ϕ j xr � s � 2

j (11)

for r 	 1, 2, . . . , k and s 	 1, 2, . . . , w � 1. Now, let � 
q denote the set of nonzero elements
in � q , and define the polynomials�

� X � def	 ∏
β � ���q 
 � � X  β �

	 q � n � 1

∑
j � 0
ψ j X j (12)

� � X � def	 X

�
� X � 	 ∏

β �	� q 
 �
� X  β � (13)

By the definition ofϕ j in (2), we haveϕ j
	 � � x j � 	 x j

�
� x j � for all j 	 1, 2, . . . , n. Sub-

stituting this in (11), we obtain

br,s
	 n

∑
j � 1

x j

�
� x j � xr � s � 2

j
	 ∑

β � ���q

�
� β � βr � s � 1 	 ∑

β � ���q
q � n � 1

∑
j � 0
ψ jβ

j βr � s � 1 (14)

where the second equality follows from the fact that

�
� β � 	 0 for all β ��� 
q � 	 . Finally,

interchanging the order of summation in (14), we obtain

br,s
	 q � n � 1

∑
j � 0
ψ j ∑

β � ���qβ
j � r � s � 1 	 q � n � 1

∑
j � 0
ψ j

q � 2

∑
i � 0

�
αi � j � r � s � 1 	 q � n � 1

∑
j � 0
ψ j

q � 2

∑
i � 0
ξ i (15)

where α is a primitive element of � q and ξ 	 α j � r � s � 1. The last summation in (15) is
a geometric series which evaluates to � ξq � 1  1 �  � ξ  1 � 	 0 provided ξ �	 1. However,
since 2 � r � s � n, it is easy to see that we will always have 1 � j � r � s  1 � q  2.
Hence ξ 	 α j � r � s � 1 �	 1. Thus br,s

	 0 for all r and s, and the lemma follows.

We are now ready to prove our main result in this paper. Indeed, all that remains to be done
to establish that MLD-RS is NP-complete is to combine Lemma 4 with Corollary 3.

Theorem 5. MLD-RS is NP-complete.

Proof. Note that y 	 ϕ � 1 � z � in the 3-DM  MLD-RS conversion procedure. Sinceϕ
� 1

is an isometry, it follows from Lemma 4 that there is a codeword c �� q � 	 , k � such that
d � c, y � � w if and only if � contains a codeword at distance � w from z. By Corollary 3,
this happens iff the set � has a matching. Hence the 3-DM  MLD-RS conversion procedure
is a polynomial transformation from THREE-DIMENSIONAL MATCHING to MLD-RS.
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3. Hardness of MLD-RS with preprocessing

As noted in [5, 16], the formulation of MLD-RS in the previous two sections might not be
the relevant one in practice. In coding practice, the code to be decoded is usually known
in advance; moreover, this code remains the same throughout numerous decoding attempts
wherein only the target vector y changes. Thus it would make sense to assume that the
code is known a priori and can be preprocessed for a long time (essentially, unlimited
time) in order to devise an efficient decoding algorithm.

In the special case of Reed-Solomon codes, the general observation above reduces to the
following assumption: the Reed-Solomon code  q � 	 , k � — namely, the set of evaluation
points 	 	�
 x1, x2, . . . , xn � � � q and the dimension k — is known in advance (and can
be preprocessed for as long as desired) and only the target vector y ��� n

q is part of the input.
The corresponding decision problem can be formally phrased as follows.

Problem: MLD-RS WITH PREPROCESSING

Instance: A target vector y ��� n
2m .

Question: Is there a codeword c �� 2m � 	 , k � such that d � c, y � � w?

Observe that the above defines not one problem, but a whole set of problems — one for each
realization of m, 	 , k, and w. We shall henceforth refer to a specific problem in this set as
MLD-RSwP � m, 	 , k, w � . Asking whether a given problem MLD-RSwP � m, 	 , k, w � is
computationally hard makes no sense, since the size of the input y ��� n

2m to this problem
is at most mn bits, while both m and n 	 
 	 
 are fixed. Thus asymptotic complexity ques-
tions concerning a specific problem MLD-RSwP � m, 	 , k, w � are ill-posed.

So what can we do in order to show that maximum-likelihood decoding of Reed-Solomon
codes is computationally hard even with unlimited preprocessing? Here is a sketch of the
answer to this question. We can prove that:

There is an infinite sequence � 1, � 2, . . . of MLD-RSwP � � , � , � , � � prob-
lems such that m1 � m2 � � � � and 
 	 1 
 � 
 	 2 
 � � � � with the follow-
ing property: under a certain assumption that is widely believed to be true,
there does not exist a constant c � 0 such that for all sufficiently large i,
each problem � i can be solved in time and space at most � mi � 
 	 i 
 � c.

(� )

The precise meaning of “ � i can be solved in time and space at most � mi � 
 	 i 
 � c ” in (� )
is that there exists a circuit Ci of size at most � mi ��
 	 i 
 � c that solves � i for every possible
input y ��� n

q , where q 	 2mi and n 	 
 	 i 
 . Observe that we allow different circuits for
different problems — that is, the circuit Ci solving � i

	 MLD-RSwP � mi, 	 i, ki, wi � may
depend on mi, 	 i, ki, and wi. This corresponds to the “nonuniform” version of the class P
of polynomial-time decidable languages, where one can use different programs for inputs
of different sizes. The resulting complexity class is usually denoted as P  poly. Thus the
“assumption that is widely believed to be true” in (� ) is that NP �� P  poly or, in words,
that not every language in NP has a polynomial-size circuit. It is indeed widely believed

9



that NP �� P  poly. In fact, it was shown by Karp and Lipton [14] that if NP � P  poly
then the polynomial hierarchy collapses at the second level, namely ���i � 1

� p
i
	 � p

2 . For
more details on this and more rigorous definitions of the terms used in this paragraph, we
refer the reader to Bruck-Naor [5] and to Papadimitriou [17].

How can one prove a statement such as (� )? The usual way (cf. [5, 8, 16]) to do this is as
follows. Start with an NP-complete problem � . Then devise a deterministic procedure that
converts every instance � of � into m, 	 , k, w, and y with the following properties:

P1. The parameters m, 	 , k, w depend only on size � � � , the size of the instance � ,
and are constructed in time and space that are polynomial in size � � � .

P2. The target vector y is also constructed in time and space that are polynomial
in size � � � , but may depend on the instance � itself rather than only on its size.

P3. The target 
 y � is a YES instance of the constructed MLD-RSwP � m, 	 , k, w �
problem if and only if � is a YES instance of � .

For an explanation of this method and for precise definition of size � � � , we again refer the
reader to [5, 17]. Here, we take � to be the THREE-DIMENSIONAL MATCHING problem
introduced in the previous section. In this case, we can assume, as in [16], that the size of
an instance 
 t, � � of THREE-DIMENSIONAL MATCHING is simply t.

The following deterministic procedure combines the ideas of the previous section with
a suitably modified version of a reduction due to Lobstein [16]. Incidentally, Lobstein’s
reduction [16] is by far the simplest way known (to us) to prove that MLD-Linear remains
hard with unlimited preprocessing (cf. [5, 8, 19]). Given an instance 
 t, � � of THREE-DI-
MENSIONAL MATCHING, we proceed as follows.

A. COMPUTING THE INTEGER PARAMETERS: Set m 	 3 � t3 � t � , w 	 t3 � t,
and k 	 3t3  � t � 1 � . Let n 	 4t3.

B. COMPUTING THE EVALUATION SET: As in the previous section, let q 	 2m

and construct the finite field � q . Let α be an arbitrary primitive element of � q
and fix a basis 
 1,α,α2, . . . ,αm � 1 � for � q over � 2 . Let � 	 
 1, 2, . . . , t � ,
and impose an arbitrary order on the t3 triples in � ��� ��� , say � a1 , b1, c1 � ,� a2 , b2, c2 � , . . . , � at3 , bt3 , ct3 � . Define 


x j
	

������ ����	
αa j � 1 � αt � b j � 1 � α2t � c j � 1 � α3t � j � 1 for 1 � j � t3

α3t ��
 j � t3 � � 1 � α3t � j � 1 � α3t �
 j � t3 � � 1 for t3 � j � 2t3

α3t ��
 j � t3 � � 1 � α3t � j � 1 for 2t3 � j � 3t3

α3t ��
 j � t3 � � 1 for 3t3 � j � 4t3

(16)

This produces n 	 4t3 distinct nonzero elements x1, x2, . . . , xn ��� q . Set the
evaluation set 	 to 
 x1, x2, . . . , xn � .

�
The evaluation points x1, x2, . . . , xn may be better understood in terms of the matrix W, defined in (19),
whose columns are binary representations of x1, x2, . . . , xn with respect to the basis � 1,α,α2, . . . ,αm � 1 � .
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C. COMPUTING THE TARGET VECTOR: Let χ � 	 � χ1 , χ2, . . . , χt3 � be the char-
acteristic vector of � � � � � � � . That is χ j

	 1 if the j-th triple � a j, b j, c j �
of � ��� ��� belongs to � , and χ j

	 0 otherwise. Compute

γ
def	 3t

∑
j � 1
α j � 1 � α3t � 1 � αt3 � 1 � t3

∑
j � 1
χ jα

j � α2t3 � 3t � 1
t3

∑
j � 1
α j (17)

Thusγ is an element of � q that corresponds to the binary m-tuple � 1, χ � , χ � , 1 �
in the chosen basis, where the first 1 in � 1, χ � , χ � , 1 � is the all-one vector of
length 3t while the second 1 is the all-one vector of length t3. From here, pro-
ceed exactly as in the previous section: for each j 	 1, 2, . . . , w � 1, compute

z j
def	

γ 
w � 1

∑
i � 1
i �� j

xi

w � 1

∏
i � 1
i �� j

� x j  xi �
and ϕ j

def	 ∏
β �	� q 
��

� x j  β � (18)

Set the target vector y to � z1  ϕ1, z2  ϕ2, . . . , zw � 1  ϕw � 1, 0, 0, . . . , 0 � . In other
words: y j

	 z j  ϕ j for j 	 1, 2, . . . , w � 1, and y j
	 0 otherwise.

We will refer to the foregoing computation as the 3-DM  MLD-RSwP conversion proce-
dure. It should be evident from Lemma 1 that this procedure runs in time and space that are
polynomial in t. Furthermore, it is clear that m, k, w in Step A and 	 in Step B depend only
on t. Thus properties P1 and P2 above are satisfied, and it remains to prove property P3.

To this end, consider the m � n
�
or 3 � t3 � t � � 4t3 � binary matrix W having the binary rep-

resentations of x1, x2, . . . , xn as its columns. By construction — compare with the defini-
tion x1, x2, . . . , xn in (16) — this matrix has the following structure:

W 	

�����
�

U 0 0 0
I I 0 0
0 I I 0
0 I I I

� ����

 (19)

where I is the t3 � t3 identity matrix and U is the 3t � t3 matrix consisting of the binary rep-
resentations of the t3 triples in � ��� � � — that is, the j-th column of U is the binary rep-
resentation ofαa j

� 1 � αt � b j
� 1 � α2t � c j

� 1 where � a j, b j, c j � is the j-th triple in � ��� � � .

Lemma 6. The set � has a matching if and only if there is a set of exactly w 	 t3 � t
columns of W that add to the vector � 1, χ � , χ � , 1 � t, which is the binary representation ofγ.

Proof. Since the order imposed on the triples of � ��� � � is arbitrary, we may assume
w.l.o.g. that the triples in � correspond to the first 
 � 
 columns of the matrix U. ��� � Sup-
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pose there is a vector v ��� n
2 with wt � v � 	 t3 � t such that Wvt 	 � 1, χ � , χ � , 1 � t. Write

v 	 � v1, v2, v3, v4 � , where v1, v2, v3, v4 are vectors of length t3. For i 	 1, 2, 3, 4, let

ηi
def	 the weight of the first 
 ��
 positions of vi

η̄i
def	 the weight of the last t3  
���
 positions of vi

The structure of the matrix W in (19) along with the fact that Wvt 	 � 1, χ � , χ � , 1 � t imply
the following relationships

η2
	 
�� 
  η1 and η̄2

	 η̄1
�
since v1 � v2

	 χ � � (20)

η3
	 
�� 
  η2 and η̄3

	 η̄2
�
since v2 � v3

	 χ � � (21)

η̄4
	 t3  
���
 and η4

	 0
�
since v4

	 1  � v2 � v3 � 	 1  χ � � (22)

among η1, η2, η3, η4 and η̄1, η̄2, η̄3, η̄4. Using (20), (21), (22) in conjunction with the fact
that wt � v � 	 η1 � η2 � η3 � η4 � η̄1 � η̄2 � η̄3 � η̄4

	 t3 � t, we obtain

η1 � 3η̄1
	 t (23)

But wt � v1 � 	 η1 � η̄1 � t, since Uvt
1
	 1t and the weight of each column of U is 3. In

conjunction with (23), this implies that

η1
	 t and η̄1

	 0

This means that there are some t columns among the first 
���
 columns of U (corresponding
to the triples in � ) that add (mod 2) to the all-one vector. Hence, there is a matching in � .��� � Conversely, suppose there is a matching in � . We then take v1 to be the binary vector
of length t3 and weight t whose nonzero positions are given by the corresponding t columns
of U. Setting

v2
	 χ �  v1, v3

	 v1, and v4
	 1  χ � (24)

it is easy to verify that the vector v 	 � v1, v2, v3, v4 � satisfies Wvt 	 � 1, χ � , χ � , 1 � t and
has weight t � � 
�� 
  t � � t � � t3 �
 ��
 � 	 t3 � t.

To prove that 3-DM  MLD-RSwP conversion procedure satisfies property P3, it remains
to combine Lemma 6 with the results of the previous section.

Lemma 7. The set � has a matching if and only if there is a codeword c �� q � 	 , k � such
that d � c, y ��� w, where q 	 2m and m, k, 	 , w, y are the values computed from 
 t, � �
in the 3-DM  MLD-RSwP conversion procedure.

Proof. Let H be the � w � 1 � � n parity-check matrix in (6), but with x1, x2, . . . , xn now
defined by (16). Using Lemma 6 and proceeding exactly as in Lemma 2, we conclude that
� has a matching if and only if there is a vector v ��� n

q of weight � w such that

Hvt 	 � 0, 0, . . . , 0, 1,γ � t
where γ is given by (17). By Corollary 3 and Lemma 4 of the previous section, this happens
if and only if there is a codeword c �� q � 	 , k � such that d � c, y � � w.
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Theorem 8. There is an infinite sequence of Reed-Solomon codes 
  2mi � 	 i , ki � � i � 1, that
can be explicitly specified in terms of the underlying fields �2m1 , � 2m2 , . . . , evaluation sets	 1 � � 2m1 , 	 2 � � 2m2 , . . . , and dimensions k1, k2, . . . , such that the following holds: un-
less NP � P  poly and the polynomial hierarchy collapses at the second level, there is no
polynomial-size family of circuits 
 Ci � i � 1 so that Ci solves the maximum-likelihood decod-
ing problem for the code  2mi � 	 i, ki � , for all i 	 1, 2, . . . .

Proof. Lemma 7 proves that the 3-DM  MLD-RSwP conversion procedure satisfies prop-
erties P1, P2, and P3. Since THREE-DIMENSIONAL MATCHING is NP-complete, this im-
mediately implies the theorem (see the discussion at the beginning of this section).

Theorem 8 is our main result in this section. In plain language, this theorem says that there
exist Reed-Solomon codes for which maximum-likelihood decoding is computationally
hard even if unlimited preprocessing of the code is allowed.

4. Discussion and open problems

We begin this section with a disclaimer, which also leads to an interesting open problem.
The 3-DM  MLD-RS conversion procedure of Section 2 produces a specific class of Reed-
Solomon codes, and Theorem 5 says that there exist codes in this class that are hard to de-
code (unless P 	 NP). However, since 
 	 
 	 
���
 � t3 while 
 � 2m 
 	 23t in our convers-
ion procedure, all the codes in this class use only a tiny fraction of the underlying field as
evaluation points. Thus our hardness results do not apply if, say, all the field elements (or
all the nonzero field elements) are taken as evaluation points, as is often the case with Reed-
Solomon codes. On the other hand, the algebraic decoding algorithms for Reed-Solomon
codes [3, 12, 21, 24] do not take advantage of this fact and work just as well for arbitrary
sets of evaluation points (such as those produced by our conversion procedure).

Nevertheless, it remains an intriguing open question whether a similar hardness result can
be established for Reed-Solomon codes that use the entire field (or a large part thereof)
as their set of evaluation points. The proof of this (if it exists) will probably require new
techniques, and might also pave the way for establishing NP-hardness of maximum-like-
lihood decoding for primitive binary BCH codes. We observe that such a proof would
immediately imply hardness with unlimited preprocessing, since in this situation the code
is essentially fixed: only its rate and the received syndrome are part of the input.

We next record a simple corollary to our main result. It is well known [6, Chapter 10,
p. 281] that the covering radius ρ of an � n, k � Reed-Solomon code  q � 	 , k � is given by
ρ 	 n  k. A vector y ��� n

q is said to be a deep hole of  q � 	 , k � if the distance from y to
(the closest codeword of) this code is exactly ρ. We observe that the value of w in the reduc-
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tion of Section 2 is n  k  1 	 ρ  1, so that we are asking whether there exists a code-
word c �� q � 	 , k � such that d � c, y � � ρ  1. This is equivalent to the question: is y a deep
hole of  q � 	 , k � ? Hence, Theorem 5 immediately implies the following result.

Corollary 9. It is NP-hard to determine whether a given vector y ��� n
q is a deep hole of

a given Reed-Solomon code  q � 	 , k � .
In fact, it is easy to see from the proof of Lemma 2 that the distance from the vector y con-
structed in the 3-DM  MLD-RS conversion procedure to  q � 	 , k � is at least w 	 ρ  1.
Thus an even more specialized task is NP-hard: given a vector which is either at distance ρ
or at distance ρ  1 from  q � 	 , k � , determine which is the case. Note that the reduction in
Section 3 still has the property that w 	 n  k  1 	 ρ  1. Thus identifying deep holes
of a Reed-Solomon code (or deciding whether a given vector is at distance ρ or ρ  1 from
the code) is computationally hard even if unlimited preprocessing of the code is allowed.

Concerning the results of Section 3, we observe that a polynomial-time maximum-likeli-
hood decoding algorithm for some specific Reed-Solomon codes (if it exists) must make
essential use of the structure of the evaluation sets for these codes. Section 3 shows that,
assuming NP does not have polynomial-size circuits, there is no generic representation of
the evaluation points that would permit polynomial-time maximum-likelihood decoding.

We conclude the paper with two more open problems. First, it would be interesting to estab-
lish NP-hardness of maximum-likelihood decoding for a nontrivial family of binary codes.
Straightforward concatenation of Reed-Solomon codes over � 2m with � 2m  1, m, 2m � 1 �
simplex (Hadamard) codes does not work, since the length of the concatenated code would
be exponential in the length of the Reed-Solomon code for our reduction.

Another important open problem is this. As discussed in Corollary 9, maximum-likelihood
decoding of Reed-Solomon codes becomes hard when the number of errors is large — one
less than the covering radius of the code. It is an extremely interesting problem to show
hardness of bounded-distance decoding of Reed-Solomon codes for a smaller decoding ra-
dius. At present, there remains a large gap between our hardness results and the decoding
radius up to which polynomial-time decoding algorithms are known [12, 15].
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