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SUMMARY

The maximum tikKelihood equations for a
multivariate normal model with structured mean and
structured covariance matrix may not have an explicit
solution. In some cases the model’s error term may be
decomposed as the sum of two independent error terms,
each having a patterned covariance matrix, such that if
one of the unobservable error terms is artificially
treated as "missing data", the EM algorithm can be used
to compute the maximum liKelihood estimates foﬁ the
original problem. Some decompositions produce
likelihood equations which do not have an explicit
solution at each iteration of the EM algorithm, but
within-iteration explicit solutions are shown for two
general classes of models including covariance
component modets used for analysis of longitudinal

data.

Some Key words: Covariance components, EM algorithm,
linear models, longitudinal data analysis, maximum
likelihood, mixed models, random effects, repeated

measures, two-stage models.
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1. INTRODUCTION

There are many situations in which one is willing
to assume that data represent a sample of N
independent, idenfically distributed random vectors y..
from a p-variate normal distribution with structured
mean U=XB and a covariance matrix Eowith linear

~ A

m .
pattern I ?MZTT G (Anderson, 1973), where the 99
g=1 7~
are Known, constant, p x P matrices which are linearly

independent, i.e. = implies atl a = 0. The
i pendent, i.e., Egaggg 9 implie g
parameters B and T= (Tl, coe e 8T are assumed to

be unknown constants and X is a p x g Known matrix of
rank g £ p. The vector Y; can be represented by the

linear modei
'yi = X§+n_i, -i = ]g 2, * - . 5 N (‘l)

where V(ni) = Ig.
The maximum 1ikelihood estimators of'B and T are

the solutions of these likelihood equations:

8= o0t T ly (2)
2 =[(rriz V6 2716, ) etz le 278 ] (3)
~ Zo ~g~o ~h"'gh ~0 ~G~0 ~ 9
g,h=1, . . . m
where:
~ _ -~ 4’
s = rly; - ) (g - N (5)
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z = (21!1)/N, [ ¢ )gh] denotes a matrix with
(g,h)——element displayed in the parentheses, and
[( )g] is similar notation for a column vector,.

In general the likelihood equations (2,3) do not
have an explicit solution and must be solved by
iterative techniques such as Fisher’s method of scoring
or the Newton—-Raphson method {(Anderson, 1970,1973),
neither of which is guaranteed to converge.

Szatrowski (1980) gives necessary and sufficient
conditions on the structure of { and Lp; such that there
exist explicit, noniterative solutions to the
1ikelihood. We shall use the phrase "S-explicit
representation® to represent Szatrowski‘s (1980)
rigorous defintion of "an estimator has explicit
representation” under the assumption that I, has "normal
fofm“. In the present context, é has S-explicit
representation if and only if changing go to 1 in (2>
does not change the value of the expression on the
right hand side of (2). %o (or, equivalently, E > has
S—exﬁlicit representation if and only if (a) é has
S—explicit representation and (b) changing %0 to £~in
(3) does not change the value of the right hand side of
(3). Clearly, if both E and gg have S—-explicit

representation the likelihood equations have an

explicit noniterative solution.
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The EM algorithm (Dempster, Laird, and Rubin, 1977), .
an iterative algorithm for maximum likelihood
estimation for “incomplete data” situations, is usualily
not directly applicable to the "complete data® model
(1. However, Dempster, Rubin, and Tsutakawa (1981},
and Laird and Ware (1982), have used the idea of
letting an unobservable random term in a mixed linear
model be "missing data”. The EM algorithm is then
applied to this artificial incomplete data problem to
compute maximum likelihood estimates of parameters in
the original problem. Rubin and Szatrowski (1982},
used a similar strategy on a model similar to (1} but

with no structure in B. In the next section we show

how this strategy may be applied to the model (1) by
first inuenting partitions of the error term and

covariance matrix.
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2. APPLICATION OF THE EM ALGORITHM.
Consider the situation in which Xo can be written

as the sum of two patterned matrices, £0= Zl+ Ez,

where each X, has linear pattern, EjzszjkEjk’ where
- T
T (le, ey ijj)

independent. Let Gi and €5 be artificial random vectors such that

and for fixed j the Gj are linearly

Var(§i)=§1, Var(gi)=§2, and the random term in (1) has the
structure n;= §i+ €5 » i=1, 2, . . . , N. Although
the vectors éi are unobservable, forAthe purpose of
applying the EM algorithm let {xi, Qi}T denote the
"complete data® and {!i}T denote the observeq,

"incompitete data". 1In this context the complete-data

sufficient statistic is

T.y.8), I.8., £.6.81).

T
i? Tinidi isi P D

(235> 23949

The r—th iteration of the EM algorithm has two
steps, the "E step® and the “M step”. The details of
these steps for this problem are given in the following

paragraphs.

2.1 E Step

At the r-th iteration, the "E step” is the
computation of the conditional expectation of the
complete—-data sufficient statistic given: (1) the
observed data, Y1 =evs Yl and (2> the estimated

values of the parameters from the r-i{ iteration. 1In.
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this context the squations are:

T ) (1) e T |
By Ly - o 8 S E I Ry (O :
ELzyy; 1 # ] = 2394 (7
EZ.y6) | #1=12 5(r)T (8)

iZi%4 i¥i%4
_ s alr)
B[z, 1 #1 =28 (9)
L

T -y yir) {r)(r)

E[z;8;8; | # 1= NVIT+ 3,85770; (10)

where the superscript (r) denotes the value of a
parameter estimator computed in the r—th iteration,

# is a typographical abbreviation for

(l"-]) . Z(r;'l ) s Z(r'1 )u
~1 :

~2

,y 3 ¢+ + 3 .yN’; §

~1 *

S S D

and

y(r) g(r-1) _ §£r-1)[§£r-1) + Egr-1)]-1§(r—1). (12)

~ ~1 1

2.2 ™M Step
Bt the r—th iteration the "M Step” is the
maximization of the "complete—data likelihood function®
in which the complete-data sufficient statistic has E

been repiaced by its conditional expectation obtained

in the E Step. Setting derivatives of the
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complete~data likeiihood function to zero and
manipulating the results produces the likelihood

equations:

s -1 8-l
87 - o) U ey (13)

| -1 -1
(r) . (r) (r) -]
T s KTz G s 6 ) T x

-1 -1
[(Tr{§fr) §1k§fr) ¢!y, 1 (14)

1

-1 -1
- (r) (r) -1
T, = HTriz 0 6 20" 6y ) 0] X

-] -1
[(Tr{ggr) §2k§£r) (§(r) + Esr)' ZEEr))}’k] (15)

k! k' = ]: 2; my
where:
§(r) = zi(X'i - Eg(!")) (Z1 _ fﬁ(r))T/N (16)
T
e = v a6y - ez s 6T | g 1 (17)
T
Eir) = Lly; - fﬁ(r))§§r) /N (18)

and'S(r) is the mean of the 5$r).
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In general these likelihood equations do not have

an explicit solution. The necessity to use an

iterative technique to solve the equations, at each H

i teration of the EM algorithm, would render the entire

me thod unusabile.

{r)

Notice in these equations that it is possible for B

and Tgr)to have S-explicit representation when Igr)

does not, i.e., regardless of the form of El. This

point leads to some impor tant special cases for which

these likelihood equations can be solved directivy.




o
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3. A SPECIAL CASE: Ez = wl

When the model (1) is used for longitudinal data
the term Ei is often used to represent measurement
errors, which may be assumed to be homoscedastic and
uncorrelated, i.e. Var (g;) = Ez = wl. For the EM
algorithm the complete—data sufficient statistic

. T T T L
is (I,did;s Z.X'dy,s 2;6.6;) where d. =y, - 6;.

E Step. The conditional expectation of the sufficient
statistic at the r—th iteration, given the observed

data and the values of the parameters from iteration

E[E.de. | Yo oo Yy ?'(Y‘-'I)’ _Z_Er-]); w(r_]))

= sy - 84Ty, - slthe vy (19

1 1
T - T . (r)
Efz, X'dy | # 1= 2;X 0 (y, - 8577) (20)
T (r) (r) ()]
E[Z.6.6; | #1 =NV + D648, (21)

where §gr)and !(r)are given by ¢i1) and (12) with

gir']) = m(r_1)1 respectively.

M Step. At the r—th iteration the complete-data

likelihood equations are equation (14) for Tgr) .

~
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o7 = oMo - 3, (22)
and

w(r) = '1Tr(§(r) + EET) - ZEgr)) (23)
In these equations both g(r) and m(r) have S—-explicit
representation regardless of the form of El. Whe ther Tgr)‘

has explicit representation depends solely upon the

structure of §1 and does not depend upon 5.

(r).

It is interesting that W is the unweighted
average of the diagonal elements of S(r) + C(r) ZC(P)-
in fact, the off-diagonal elements of S(r) and C(r) need

not be computed.




a
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4. EXAMPLES WITH R-TH ITERATE EXPLICIT SOLUTIONS
D1Kin and Press (1%949) studied the model
Y{ungs ny v NID(0, Z,), where zo has circular, symmetry

pattern, i.e.,

-
g g g - g
1 2 3 p
. .. O
§0 - ap 01 02 ] (24)
o g o ag
2 3 & 1
bt -
where 0. = 0_ ...
J p-j+2

They showed that when there are no restrictions on Uu
this model has S-explicit representation for both y and

-~

ZD. They also showed some situations in which this model
provides a good fit for actual data.
Consider the model above generalized so that
has an assumed structure, E=§E s which implies that
nei ther E nor %o will have explicit representation
except for very special combinations of Eu and X.
Thus, an iterative technique will be required to
compute maximum likelihood estimators. We can use an

artifice to put this model into the framework of the

previous section: let



M

i £ 0
~NID | O, ~ ,
i 0 z
~ ~2
Tl Tz Ts -Tp
TP Tl T2 Tp—]
e
T T T T
2 3 4 i
: |
= il
2 w"p
=71 +t W
1 1
i Tj,j =2, 3, s P
MNote that Tj= Tp_j+2 so that El
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has circular

(25)

symmetry pattern and therefore the vector Ilhas only

INT[(p + 2)/2] elements.

This model

is a special

case of

the model of

section 3 in which §1 has the circular symmetry

patte

rn, which

is a special

case ofF

Jinear structure.

We can use the EM algorithm as described in section 3

to obtain maximum liKelihood estimates of

there

fore, of B

~

and G=(01, o)

,0 =10

B, T
b S

and, ®

T .
>. At the r-th

P

~iteration, by the results of section 3, B, and w have

r

o
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S-explicit representation regardiess of the structure of

L . Since z! {eg.25) has circular symmetry pattern, 1

~ 1 ~1

has S-explicit representation. At the r—th iteration of

the EM algorithm, the E step is exactly as given in the

preceeding section. The M step computations of B(r),uﬁr)

and C(r)are given by equations (22), (23>, and ¢(17) and
~1

(r). p-1 (r)
T = DTr{e el ) (] (26)
where

Diag(p, 2p, 2p, . . . , 2p) if'p is odd

Qp Diag{p, 2p, 2p, . . . , 2p, p) if p is even.

This problem is overparame ter.ized; Tl and ware not

separately identifiable. However, the parameter‘being
estimated is g;= Tl+m, which is identifiable. The
practical consequence is that one should check for

convergence of G(PL:T(P)4_m(r) rather than separately

) (r)

checking convergence of T1 and w = After

convergence,

(; ~

T + w, j=1
Gj ﬁe ;j’ J=2, . . ., INT[(p+2)/2]
LTp_j+2, JZINTE(pt2)/2].

As an illustration consider the case p=&, in which
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T T T T T T
1 2 3 4 3 2
T T T T T T
2 1 2 3 L 3
T T T T T T
3 2 1 2 3 4
Z =
1 T T T T T T
Iy 3 2 1 2 3
T T T T T T
3 N 3 2 1 2
T T T T T T
2 3 4 3 2 1
T et
(r).
i

Notice that E s a symmetric matrix with the same

1

r
dimensions as §1 and that each Tg )is the unweighted

C(r)

~ 1

mean of those elements in which are in the same

r
row ahd column of EE ) as a Tj'in £

T-(-lr)= Tr(g(f’)/s = (zic(” )/6

144 ,1

Tir)= (C%E%,e ¥ zic§§%,1+1)/6

(27)

r}_ (elr) (r) olr)
Tg - (C351,5 * Cis2.6 7 501,40/

Tir)= (4{1) 143)/3

: (r) .
we have proven that this pattern——that Tj is the

o(r)

unwe ighted mean of the eléments of -, in

"corresponding positions“—-holds for integers 25<p=<8

and we conjecture that the pattern holds for aill

integers p_zZ. wWe chose an even value of p for the

example because for even P, T(g+2)/2A is a mean of p/2

-
i

(s

i~




r
terms while each other T(

J
(r)

is a mean of p terms.

is odd every T: is a mean of p terms.

J

The computations for this special case are

straightforward.
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I+ p
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5. A COVARIANCE COMPONENTS EXAMPLE

Dempster, Rubin, and Tsutakawa (1981 and Laird
and Ware (1982) have shown that the EM algorithm can e 4
applied to find maximum likelihood estimates of the

parameters in the covariance components model

i= XB+~ZG + g,

(&

©3

where
* *
S h 0
~ ~]
n  NID 0,
&5 0 mzp

Z is a Known p x q2 matrix of rank qzj P,

* m; *
El -SZ]TsGs
§1 - Z§1
_ _ T
~1 ~ 1 ~~1~

From Section 3 results we see that the EM algorithm can
*

be applied to this problem by letting 6; be the part of

the complete data which is not available in the

incomplete data. At the r-th iteration let

791 =ys - 8.ty g§1 the first two expectations of

sufficient statistics are given by (19) and (20),
with 6{7= 257(") | the third by:

~i

E[zg;87 | # 1= NV *r) g, 5*(r)§:(“) (28) o
where (r)
§: r) ~’:(r I)ZT[gEI(r I)ZT+ (r- ])I] [y (r 1)] s

= [Tzl "D (1)) J"gT[gi-§g(”"’] 29)

~ 1



[
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!*(r)= Z*(r-I) (r ])ZT[ZX (r- 1)2T+ (r- ])I] 1,-*(r-1)

~1 ~a1

w(r-])[gTZ . w(r—l)(aj(r—i))-l]-

~ ]

(30)

The latter forms of (29) and (30) are obtained using a

matrix identity from'Dempster, Rubin, and Tsutakawa

(1981). For the M step 8'")is given by (22>, w(Mpy

(r)

(23>, 31 by (14) modified by adding a superscript

asterisk to each instance of Z(r),
~1

E]k » and E(r), and

E*.I?(r) () g gt g (r)T/N

i<i i
Either of the following conditions

to have explicit representation:

1) There are no restrictions

*
positive definite symmetric Ex or

- .
(2> Zl = 1 ® Awhere there are

is sufficient for T
~1

on the form of the

no restrictions on

the form of the positive definite symmetric A.

One of these two conditions is commonly assumed in

covariance components models. If T

representation, '

(r) = [(Tr{G) T

Gy k8 lk'})kk'

has S-explicit

(r)
1

(Tr{G]kcI(f)})kj;-

which is a straightforward computation.

{(r)
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