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I. INTRODUCTION

LI. Background

Many papers have over the last few years been devoted to the estitnation and
testing of long-run relations under the heading of cointegration. Granger
(1981), Granger and Weiss (1983), Engle and Granger (1987), Stock (1987),
Phillips and Oullaris (1986), (1987), Johansen(1988b), (1989), Johansenand
Juselius (1988), canonical analysis. Box and Tiao (1981), Velu, Wichem and
Reinsel (1987), Pena and Box (1987). reduced rank regression, Velu, Reinsel
and Wichem (1986), and Ahn and Reinsel (1987), common trends. Stock
and Watson (1987), regression with integrated regressors, Phillips (1987),
Phillips and Park (1986a), (1988b), (1989), as weU as under the heading test-
ing for unit roots, see for instance Sims, Stock, and Watson (1986). There is a
special issue of this BULLETIN (1986) dealing mainly with cointegration and
a special issue of the Journal of Economic Dynamics and Cotitrol (1988)
deeding with the same problems.

We start with a vector autoregressive model (cf. (1.1) below) and formulate
the hypothesis of cointegration as the hypothesis of reduced rank of the long-
run impact matrix II = afi'. The main purpose of this paper is to demonstrate
the method of maximum likelihood in connection with two examples. The
results concern the calculation of the maximum likelihood estimators and
likelihood ratio tests in the model for cointegration under linear restrictions
on the cointegration vectors 0 and weights a. These results are modifications
of die procedure ^ven in Johansen (1988b) and apply the multivariate tech-
nique of partial canonical correlations, see Anderson (1984) or Tso (1981).

For ii^erence we apply the results of Johamen (1989) on the asymptotic
distribution of thelikelUuKxl ratio test. These disttibutiom are givai in terms
of a multivmate Brownian motion process and are tabidated in the
Appendix. Inferences on a aiyd fi imder linear restrictions can be amducted
using the usual x^ distribution as an approximation to the distribution of
likelihood ratio test. We also apply the limiting distribution of the tnaximum
liketifaood estimator to a Wald test for hypotheses about a and 0.
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170 BULLETIN

I.I The Statistical Model

Consider the model

H,:X,=n,X,_,-l-... + ntX,_,-l-^ + 4»D,+e,,(/ = l , . . . , r ) , (1.1)

where £,,...,6^ are IINp(O, A) and X_ji.n,...,Xo we fixed. Here the
variables D, are centered seasonal dummies which sum to zero over a full
year. We assume that we have quarterly data, such that we include three
dummies and a constant term. The unrestricted parameters (^, * , II,,..., n;t,
A) are estimated on the basis of T observations from a vector autoregressive
process. For a /ndimensional process with quarterly data this gives Tp
observations and /> -I- 3p + Arp̂  +/'(p +1 )/2 parameters.

In general, economic time series are non-stationary processes, and VAR-
systems like (1.1) have usually been expressed in first differenced form.
Unless the difference operator is also applied to the error process and
explicitly taken account of, differencing implies loss of information in the
data. Using A = 1 - L, where L is the lag operator, it is convenient to rewrite
themodd(l.l)as

AX, = r,AX,_| + ...-l-rk_,AX,_4 + i + IIX,_t-l-/( + *D,-l-e,, (1.2)

where

r ,= - ( i - n , - . . . - n , ) , {i=i,...,k-\),

and

Notice that model (L2) is expressed as a traditional first difference VAR-
model except for the term IIX,_^. It is the main purpose of this paper to
investipte whether the coefficient matrix II contains information about
long-run relationships between the variables in the data vector. There are
thr^ possible cases:

(i) Rank(Il)=p, i.e. the matrix II has full rank, indicating that the vector
process X, is stationary.

(ii) Rank(Il)=0, i.e. the matrix 11 is the null matrix Mid (1.2) corresponds to
a traditional differenced vector time series modd.

(iii) 0 < rank(n) = r < p implying that there are p x r matrices o and fi such

The cointegration vectors fi have the property that fi'^, is stationary even
though X, itself is non-stationary, in this case (1.2) esR be interpreted as an
error correction moctel, see Ett^e and Granger (19S7), Davidson (1986) or
Jcdiansen {1988a). Thus the main hypothesis we sttl£ consider here is the
hjpotl^is of rcoint^-ati(Hi vectors

H j : n = a ^ ' , : (14)

where o and jP are p X r matrices.
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We further invest%ate linear hypotheses expressed in terms of the coef-
ficients fi, a and fi, and in particular the relation between the constant term
and the reduced rank matrix II. If D is restricted as in H^, see (1.4) and / ( # 0
the non-stationary process X, has linear trends with coefficients which are
functions of/J only through a\fi, where a^ is a/? x(j? - r) matrix of vectors
chosen orthogonal to a. Thus the hypothesis /i = aP[f, or alternatively
o V /* = 0, is the hypothesis about the absence of a linear trend in the pr(x;ess.
Note that when ft = a^(, we can write

where /?* = (/»', fi'o)' and Xf_t==(X;_4, 1)'. This is useful for the calculations.
Since the asymptotic distributions of the test statistics and estimators depend
on which assumption is maintained, it is important to choose the appropriate
model formulation. This has been pointed out for instance by West (1989),
Dolado and Jenkinson (1988). The mathematical results for the multivariate
model (1.2) are given in Johansen (1989).

}.3. The Data

We have chosen to illustrate the procedures by data from the Danish and
Finnish «;onomy on the demand for money.' The relation m=f{y,p,c)
expresses money demand m as a function of real income y, price level p and
the cost of holding money c. Price homogeneity was first tested and since it
was clearly accepted by data the empirical analysis here will be for real
money, real income and some proxies measuring the cost of holding money.
Money, income and prices were measured in logarithms, since multiplicative
effects are assumed.

The two data sets differ both as to which variables are included and the
length of the sample. More interestingly, however, the institutional relations
in the two economies have been quite different in the sample period. In
Denmark, financial markets have been much less restricted tfeui in Finland,
where both interest rates and prices have been subject to regulation for most
of tiie sample period. One would expect this to show up in the empirical
results and it does.

For the Danish data the sample is 1974.1-1987.3. As a proxy for money
demand ml was chosen because the data available on a quarterly basis are
based on more homc^eneous defimtions for ml than for ml . The cost of
holding money w ^ assiimed to be approximately measured by the difference
between the bank deposit rate, i'', for interest bearing deposits (whidi are the
main part of ml) and the bond rate, i'', which plays an important role in the
Danish &xmomy. The two interest rat^ were included unrestrktedly in the
aimlysis, but subsequently tested for equal coefficients with o{^K)site sipis.
The inflation rate. A/?, was also inclwled as a po^ible proxy for tt^ cost of

' For a general review erf theoretical aed emprical results on the demand for money, see for
instance LakBCT(1985).
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holding money, but since it did not enter si^iificantly into the cointegration
relation for money demand it was omitted from the present analysis.

For the Finnish data the sample is 1958.1-1984.3. In this case ml was
chosen since the m 1 cointegratitMi relation was found to enter the demand
for money equation more significantly and hence illustrated the methodology
better. Since interest rates have been regulated, a good proxy for the actual
costs of holding money is difficult to find. The inflatk>n rate, Ap, is a natural
candidate and therefore is included in the data set. Moreover, the marginal
rate of interest, /'", of the Bank of Finland is included in spite of the fact that
the marginal rate measures restrictedness of money rather than the cost of
holding money. It has, however, been chosen as a determinant of Finnish
money demand in other studies and therefore is also included here. AU series
are graphed in Figure 3 and Figure 4 in Section IV. The data are available
from the authors on request.

The p^jer is structured as follows: Section II discusses the various
hypotheses we shall investigate and in Section III the notation is introduced
for the maximum likelihood procedure. The next section derives the
estimates of a and fi under-the assumption of cointegration and the last two
sections investigate estimates and tests for fi and a under linear restrictions.

Throu^out, the two examples are used to motivale the statistical analysis
and to illustrate the mathematically deriv^l concepts.

n. A CLASSIFICATION OF THE VARIOUS HYPOTHESES

The hypotheses we consider consists of the hypothesis Hj on the existence of
cointegrating relations combined with linear restrictions on either the
cointegrating relations or their weights:

'(or j8 =

and Hf is /fy augmented by/* = o^ofor/= 2,...,5.
Note that the hypothesis H,, where II is unrestridKl, can be written as Hj

with r=p. Hence, in this case the restriction /i - afi'g is the same as having /t
unrestricted. When we estimate model (1.2) wider the hypothesis n = a^' the
choice of hypothesis about fi becoRKs important. Ffew the Danish data tfiere
does not seem to be any linear trend in the non-^tiooary processes (cf.
Figure 3) and we will estimate modek of the form Hf. For the Finnish data,
however, there seems to be a linear trend in the non-isationary processes (cf.
Figure 4) and models of ttie form/f, will be ^timated.

The matrices A(p x m) and H{p x .y) are known emd define linear restric-
tions <Mi the parameters a(p x r) and 0{p x r). The restrictions reduce the
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parameters to ^[s^r] and ^{mxr), where r&s^p and r^m^p. The
important distinction between the H and the H* hypotheses is that H* define
a restriction on ft, namely that it lies in the space spanned by a or that
a\fi = Q, hence that no trend is presaiL In the following the discussion will
be concerned with the H hypotheses, but can easily be extended to include
the case of H*. In the above scheme note that Hj = 7/4 (1H ,̂ and that H^'^H^
and H4 c H2. In fact all hypotheses are special cases of H^ tf we choose either
A or H as the identity matrix.

The relations between the various hypotheses are illustrated in Figure 1.
All these hypotheses are restrictions of the matrix 11 which under H,

contains p^ parameters. Under the hypothesis H2 there are pr+{p-r)r
parameters which are further restricted to sr+{p-r)r under H4. Finally
mr+{s — r)r parameters remain under H5. Note also that the parameters a
and p are not identified in the sense that given any choice of the matrix
| ( r X r), the choice a$ and j8(§')~' will give the same matrix 11, and hence
determine the same probability distribution for the variables. One way of
expressing this is to say that what the data can determine is the space spanned
by the columns in /3, the cointegration space, and the space spanned by a. In
general we present the results normalized by the coefficient of some of the
variables, usually m 1 and ml respectively.

Note also that for each value of r{O^r:^p] there is a correspionding
hypothesis H2{r) of r or fewer cointegrating relations. The analysis makes it

Fig. 1. The relation between the various hypothesis studied, starting with the most
general VAR model (//,) and introducing the restriction of cointegration {Hj) as well
as linear restricti<ms on the cointepation vectOTS (/J) and the weights (a) in / / , and

H^. The assumption of no trend fi = a^'n is indicated by a*.
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possible to conduct inferences ^ o u t the value of r by testu^ H2{r) in H^ or
by testing H2( r) in H2( r -l-1).

in. THE MAXIMUM LIKELIHOOD PROCEDURE

In the following we will use die parameterization (1.2). The reason for this is
that the paratneters

( r , , . . . , r , _ j , <&,/«, n , A)

are v^ation independent and, since all the models we are interested in are
expressed as restrictions on fi and II, it is possible to maximize over all the
other parameters once and for all. We shall give details in the case of
hypotheses about a and P without restrictii^ ft, but mention how results are
modified when o 'ĵ /i = 0. Generally we use a superscript * to indicate that we
are analysing a model where a'^fi = ̂ . The model with /* = 0 and 4» = 0 was
analysed in Johansen (1988b) and Johansen and Juselius (1988).

We now consider maximum likelihood estimation of the parameters in the
unrestricted model:

AX,=r,AX,_, + ...-Hr^_,Ax,_,^, + nX,_,-l-/t + * D , + e,. (3.1)

The resuhs (3.2)-(3.9) are well-known but reproduced to establish the
notation. This will be useful for discussing the estimjitors and tests later.

We first introduce the notation Zn, = AX,, Z,, denotes the stacked variables
AX,_i,...,AX,_t + ,,D,, and 1, and Z4; = X,_(t. Sinularly, F is the matrix of
parameters corresponding to Z,,, i.e. the matrix consisting of T,,..., Tî  _,, ^
and ft. Thus Z,, is a vector of dimeiKion p(A:-l) + 3 + l and T is a matrix of
dimension/J X (p( A: - 1 ) +3 +1).

The model expressed in these variables becomes

i-c,, (r = l , . . . , r ) . (3.2)

For a fixed value of II, maximum likelihood estimation consists of a regres-
sion of Z(,, - nZn, on Z,, giving the normal equations

r T T

Z z,,,z;,=r Z z,,z',,+n Z ZJL\,. (3.3)
/ - I r = l / = !

The product moment matrices are denoted:

• /

M-=r" ' Z ZyZ' (j ;'=0 1 fc) (3 4)

Then (3.3) can be written as:

or

Mn'. 4 {3.5}
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This leads to the definition of the residuals

Ro,=Zo,-Mo,Mri'Z,,, (3.6)

R,, = Z,,-M,,Mfi'Zi,, (3.7)

i.e. the residuals we would obtain by regressing AX, and X,_^ on
AX,_,,...,AX,_^+i,D,,andl.

The concentratai likelihood function becomes:

(3.8)

We express the estimates under the mode! //j by introducing the notation

T

s ^ = r - ' I R,,R;=M,;^-M,,M,VM,,, {i,j-o,k), (3.9)

and formulate these well-known results in

THEOREM 3.1: In the model:

//,:AX,= j j

the parameters are estimated by ordinary least squares and we have:

l i = SoAV, (3.10)

and

^~^OO~^0k^lik^k{}' (3.11)

L-^/^(H,) = |A|. (3.12)

The estimate of II inserted into (3.5) gives the estimate of T.

Under the hypothesis Hf :n = a/3' and fi = a/SJ,, which will be investigated
for the Danish data, it is convenient to define Z ,̂ = Z,,, = AX, and let Zf, be the
stacked variables AX,_|,...,AX,_4+i,D,, whereas Zt; = Xflji = (X',_ ,̂ 1).
Thus we have moved the constant from the regressors into the vector Xf.^.
Further, we define T* as the matrix of the relevant parameters T,,..., T̂  _ j , ^ .
Similarly we define M | and S|. Note in particular that S*i is (p +1) x (p + 1).

3.1. The Empirical Analysis ofthe Unrestricted Model Hi

Model (3.1) including a constant term and s^tsonal dummies is fitted to the
Danish and Finnish money demand data described in Section 1.3. For k= 2,
the residuals for the Danuh data passed the test for being uncorrelated (see
Tzble 1 below). For the Finnish data, the test statistic for the residue in the
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equation for Ay is almost d^iificant. The autocorr^gram suggests that there
is some seasonality left in the residuals, but since the seasonal autocorrelation
is rather small we have chosen to ignore this. Accordingly, model (3.1) with
k=2 was fitted to both data sets. After conditioning on the first two data
realizations, the number of observations left for estimation was 53 in the
Danish and 104 in the Finnish data.

Since the parameter estimates of Fj, * , /< and A are not of particular
interest in this paper, they are not reported. The estimates of II are reported
in Table 7 Section VI, and the standard error of regression estimates in Table
1 below. The normality assumption is tested by the Jarque & Bera test
(Jarque and Bera, 1980), and reported below. For the Finnish data the
residuals from the Af" and Ap equations do not pass the test. The deviations
from normality are mainly due to too many large residuals. They are,
however, approximately symmetrically distributed around zero, which
probably is less serious than a skewed distribution. The robustness of the ML
cointegration procedure for deviations from normality has not been investi-
^ted so far.

TABLE 1
Some Test Statistics for the niid Assumption for the Residuals in the Model (1.2) with

k = 2

The Danish data The Finnish data

Am2

Tj 7.15
r, 2.12
a, 0.019

Ay

11.48
1.93
0.019

A("

10.57
1.06
0.007

Ai"

7.34
1.61
0.005

Ami

11.30
1.61
0.045

Ay

19.21
1.88
0.029

Ai'" Ap

4.30 6.99
10.86 28.02
0.034 0.011

where r, = TX.r-i{i= 1 10)- ;

m is the number of regre^ors, 5 ^ is skewness and EK is excess kunosis.
o, is the standard error of regression estimate.

IV. DERIVATION OF THE ESTIMATES OF a AND fi UNDER THE

HYPOTHESIS n = o^' AND THE UKELIHOOD RATIO TEST FOR

THIS HYPOTHESIS

Consider the model Hj, where n = c^'. The estimation of r j , . . . , r t_, , *
and fl is the same as before leading to (3.8). For fixed ̂ , it is easy to estimate
a and A by regr^sing R,,, on /J'R, _ ̂  to <^>tain:

: (4.1)

(4.2)
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and

L^^^P) = \Am = \Soo-SoJ{P'S,,fi)''fi'S,ol (4.3)

As shown in Johansen (1988b) (see also Tso (1981)), one proceeds to
estimate P by applying the identity.^

,,^|. (4.4)

This is minimized by noting that an expression like | ̂ '(Mj - Mj) /31 /1 ̂ 'M) ̂  |
can be minimized by solving the equation | AM, -^Mj 1 = 0, where M, = S^̂ ,

The results will be summarized in

THEOREM 4.1: Under the hypothesis

the maximum likelihood estimator of P is found by the following procedure:
First solve the equation

lAS,,-S,oSoo'SoJ=O, (4.5)

giving the eigenvalues A ,>. . .> Ap and eigenvectors F= (v,,..., v̂ ) normalized
suchthat^V'SttV = l.

The choice of $ is now

4 = (v,,...,U (4.6)

which gives

(l-A,). (4.7)

The estimates of the other parameters are found by inserting p into the above
equations. The likelihood ratio test statistic for the hypothesis H2 in H,, since
H^ is a special case of H2 for the choice r=p, is:

p

, ) = - r S ln(l-A,). (4.8)
i - r + l

^This is based on the general result

'A-'B| = |C | |A-BC- 'B ' |

where in this application A =S||,,, B = S^tfi and C = fi'Sttfi.
'Many computer packages contain procedures for solving the eigenvalue problem

I AI - A1 =0, where A is synmietric. Ctae can easily reduce (4.5) to this problem by first decom-
=CC', for some non-singutar p xp matrix C. Now (4.5) is equivalent to

j
which has the same eigenvalues A j >.. . > i^ but eigenvectors e, c .̂ The eigenvectors of (4.5)
are then found as v, = C'" 'e,.
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Similarly the likelihood ratio test statistic for testing Hjlr) in Hjir +1) is
given by

|r+l)=-rin(l-i,,,). (4.9)

Under the hypothesis Hf.Il^afi' and fi = afi'o the same results hold but
derived from S | rather than S,y.

The asymptotic distributions of the likelihood ratio test statistics (4.8) and
(4.9) are found in Johansen (1989), and are not given by the usual x' distribu-
tions, but as multivariate versions of the Dickey-Fuller distribution. These
distributions are conveniently described by certain stochastic integrals, and
can be tabulated by simulation, see the Appendix.

Consider first the case a\fi~Q.By suitably normalizing the equation (4.5)
and letting F— =» one can show that r(A^+,,..., Ap) converge to the roots of
the equation

?'dr- F(dU')
Jo Jii

¥F'dt-\ F(dU') (dU)F' = 0, (4.10)

where U(f) ={[/,(/),..., (7p_,(f)| is a (p-r)-dimensional Brownian motion
and the (p—r)-dimensional stochastic process F(/)={F|(/'),...,f^j_^(/)} is
defined by

Ui{s)ds, (i = l, . . . , /?-r). (4.11)

Further FF'dr 'is a(p-r)x(p-r) matrix of random variables defined by
Jo

the ordinary Riemarm integrals

FMFj(t)dt, (/,; = !,. . . ,p-r), (4.12)

and

i><^''-[rF(dU')= I (dU)F'

is define as the matrix of stochastic integrals*

' i

(t,/ = l,. . . ,p-r). (4.13)
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With this notation it follows tiiat the statistk (4.8) satisfies

-2ln{Q;H2\Hi)=-T i m-A,)= I rl-

which converges weakly to

- f r (dU)F' FF'dr F(dUU

where tr{M] denotes the trace of the matrix M. The statistic (4.8) is therefore
called the trace statistic (trace). Similarly

converges weakly to

(dU)F'l I FF'drl I F(dU')[,
u LJu J J "

where A,,̂ {M} denotes the marginal eigenvalue of the matrix M. The statistic
(4.9) is called the maximal eigenvalue statistic (A^̂ )̂.

lfr=p-l, then both U and F are one dimensional. Then the test statistics
are equal, since the trace equals the (maximal) eigenvalue, and the asymptotic
distribution of the statistic can be expressed as

[U-U]dU\ / [U{s)-Ufds
LJn j / Ju

where

U= U{u)du.
Jo

This statistic is the square of the statistic f̂  tabulated in Fuller (1976) p. 373.
The distribution of the trace and the maximal eigenvalue of the roots of

(4.10) depend only on the dimension p-r, i.e. the number of non-stationary

••The definition of a stochastic integral is analogous to the definition of a Riemann integral.
We let U and F be two continuous stochastic processes on the unit interval like the Brownian
motions. Then we consider a partion of the unit interval and the Riemann sum

The function U( •) has infinite variation but finite quadratic variation, i.e,
sup{f^)Zjt(t/(Ji)- t/((t_,))^^c< « . This can be used to prove the existence of the linwt of R in
^2. i-e- there exists a nuidom variable, which we shall call jFdU, such that E{R-\FAUf
converges to zera
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components under the hypothesis. The distributions are tabulated by simula-
tion and are given in the Appendix in Table A2.

Next consider the case where a'^/t # 0, i.e. the trend is present under the
null hypothesis. We can express the results in this case by choosing a different
definition of F:

- U,{s)ds,

{i=p-r).

(4.14)

(4.15)

It is instructive to consider again the case of p~r=l, where the statistic
reduces to

which is distributed as ;(^(1). This is the well-known result (West (1989)) that
if the linear trend is present under the hypothesis of non-stationarity then the
usual asymptotics hold for the likelihood ratio test. The distribution of the
trace and maximal eigenvalue of the equation (4.10) with this choice of F is
tabulated by simulation in the Appendix and given in Table Al.

Since the distribution with a\fi = Q has broader tails, cf. Tables Al and
A2 in the Appendix, the p-value should be calculated from the latter distribu-
tion.

Under H^ (i.e. ft = a^f,) the asymptotic distribution of the test statistics
(4.8) and (4.9) can be shown to be distributed as above but with F defined by:

These distributions are tabulated by simulation in Table A3. The relation
between the applications of the three distributions is illustrated in Figure 2
below:

F=U-0

T* = irl J d unjPF' du] '

H,

Fig. 2. The relation betweMi the hypotheses H^, H^sad if?, and the test statistics
used to test them. Note that 7"? = Tz + U{ \yu{\).
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4.1. The Empirical Analysis^

ln Table 2 the estimated eigenvalues A, the normalized eigenvectors ^, and
weights W=Sfl^^ are reported, for the two data sets. The graphs correspond-
ing to the eigenvectors and the original data are presented in Figures 3 and 4.
Note that the eigenvectors v* for the Danish data are of dimension 5, where
the last coefficient is the estimated intercept. For the Finnish data fi is
assumed to contain effects both from the intercept and from the linear trend
(see discussion in Section I).

In Table 3 the likelihood ratio test statistics are calculated and compared
to the 95 percent quantiles of the appropriate limiting distribution. Two
versions of the test procedure are reported in Table 3. The first is based on
the trace and the second on the maximum eigenvalue, see Theorem 4.1, (4.8)
and (4.9).

The Danish Data

On the basis of the plots of the series (see Figure 3) a model without a linear
trend in the non-stationary part of the process was assumed. Thus a constant
1 was appended to the vector X,_2, and the calculations were performed as
described in Section I, giving the matrices S|. The results of the eigenvalue
and eigenvector calculations are given in Table 2. First we consider the
number of cointegration vectors, beginning with the hypothesis r<. 1 versus
the general alternative /f,. Using the trace test procedure gives
-2hi(Q)=-rSt=2hi(l-A*)= 19.06.

The 95 percent quantile, 35.07, in the asymptotic distribution, see Table
A3, is not significant. Hence there is no evidence in the Danish data for more
than one cointegration relation. If we test the hypothesis that r= 0 in /f, we
get a test value of 49.14, which is found to have a /»-value of appr. 10 percent.
If instead we apply the maximum eigenvjdue test, and test H,(r=O) in
H2( r^ 1) we find - 2 ln( <2; r=01 r^ 1) = 30.08 which is in the upper tail of the
distribution of A,^ for r= 0 with a /?-value of 2.5 percent. We conclude that
there is only one cointegration vector in the Danish data. This hypothesis will
be maintained below. It must be noted that since the TA, are ordered they
cannot be indqjendent, not even in the limit.

Thus all the tests performed in Table 3 are highly dependent on one
another.

Finally, as a check that the maintained assumption about the absence of
trend is data consistent, the test for Hf(r^ 1) in //^(r^ 1) (see Figure 2) was
performed:

( -2

calculations have ^xea perfcsmed in the computer package RATS, VAR Econo-
metrics, Inc/Doan Associates.
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TABLE 3
Test statistics for the hypothesis H*, and H^for various values ofr versus r+I (k ̂ ^J and
versus the general alternative H, (trace) for the Danish and Finnish data. The 95%

quantiles are taicen from Table A 2 (H2) and A3 (Hy

r<3
r^l
r<.\
r=0

The Danish data

trace

2.35
8.69

19.06
49,14

trace
(0.95)

9.09
20,17
35.07
53.35

Amax

2.35
6.34

10.37
30.08

(0.95)

9.09
15,75
21.89
28.17

r<3
r^2
r< l
/-=0

The Finnish data

trace

3.11
11.01
37,65
76.14

trace
(0.95)

8.08
17.84
31.26
48.42

• " •mas

3.11
7.90

26.64
38.49

''•max

(0.95)

8-08
14-60
21,28
27.34

thus
This relation holds, since |Soo|nt(l-A;)=|S^(,|nf(l-A
Sn^S^ '̂Sio|. The asymptotic distribution of the test statistic is xH^
not significant.

The coefficient estimates of the cointegrating relation are found in Table 2
as the first cdumn in V*. The interpretation of the cointegration vector as an
error correction mechanism measuring the excess demand for money is
straightforward, with the estimate of the equilibrium relation given by

.22''+6.06.

Similarly d is foimd as the first column in the matrix W* = So2^*:

d' = (-0.213,0.115,0.023,0.029).

The coefficients of d can be interpreted as the weights with which excess
demand for money enters the four equations of our system, and it is natural to
give them an economic meaning in terms of the average speed of adjustment
towards the estimated equilibrium state, such that a low coefficient indicates
slow adjustment and a high coefficient indicates rapid adjustment. In the first
equation, which measures the changes in money balances, the average speed
of adjustment is approximately 0.213, whereas in the remaining three
equations the adjustment coefficients are lower though of the 'correct' sign. In
particular the last two adjustment coefficients are low, and the hypothesis that
some subset of the adjustment coefficients is zero will be formally tested in
Section VI.

The Finnish Data

As discussed earlier a model that allows for linear trends is fitted to the
Finnish data. The estimated eigenvalues, vectors and weights are given in
Table 2 and the test statistics in Table 3, which indicate that at least 2 but
possibly 3 cointegration vectors are present.

The acceptance of the third relies on a p-vaiue of approximately 20
percent, which usuaUy would be considered too high. But since the power of
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REAt MONEY STOCK IN DENMARK
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Fig. 3. The graphs of the cointegration relation V|X, lor j= 1,4 and the or^nal
Danish data. The sample is: 1974.1-rl987.3.
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Fig. 3. Continued
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Fig. 3. Continued
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REAL MONEY STOCK IN FINLAND
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Fig.4. The graphs of the cointegration relation VjX, for i = l , 4 and the original
Finnish data. The sample is: 1958.1-1984.3.
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the tests are likely to be low for cointegration vectors with roots close to but
outside the unit circle, it seems reasonable in certain cases to follow a test
procedure which rejects for higher p-values than the usual 5 percent. One
reason why we have kept r= 3 in this case is that the hypothesis of propor-
tionality between money and income, i.e. jS,, = -^ ,2 seems consistent with
the data for the 3 eigenvectors.* If m 1 and y appear in a cointegration vector
with equal coefficients of opposite sign, they should do so in all cointegration
vectors, see Section V.

Next we test the hypothesis that the linear trend is absent, i.e. Hf(3) in
l 3). We found that

|S*,

Since the asymptotic distribution of this statistic is x (̂l)> it is significant, and
the hypothesis i/ji^) is maintained. We find ^ as the first three columns of ^
from liable 2 and d as the corresponding columns of the weights W. Note
that given the full matrices V and VV one can estimate a and P for any value
ofr.

For the case r>\, the interpretation of P and d is not straightforward. A
heuristic interpretation is however possible by considering the estimates in
Table 2. Note that 0i,2'°-$u> '^, 1'2>3, and that 02 is approximately
proportional to (0,0,0,1). I'hus, $^,$2 ^nd ^3 can be approximately
represented as linear combinations of the vectors ( - 1,1,0,0), (0,0,0,1), and
(0,0,1,0), implying that ml-y, i"" and Ap are stationary. This means that the
only interesting cointegration relation found is between m 1 and y. However,
a linear combination between these three vectors might be more stable (in
terms of the roots of the characteristic polynomial) than the individual
vectors themselves and this linear combination could in fact be the
economically interesting relation. In particular, one would expect that the lin-
ear combination, which is most correlated with the stationary part of the
model, namely the first eigenvector, is of special interest. Although there is
some arbitrariness in the case r > 1, the ordering of tfie e^envectors provided
by the estimation procedure is likely to be useful.

The estimates reported in Table 2 indicate diat $2 is approximately
measuring the inflation rate, whereas $i and ^3 seem to contain information
about ml-y. Note also that d,i and d^j have opposite sign. The sign to be
expected for 'excess demand for money' sho^d be negative, but di3
dominates ctn, so that the 'excess demand for moliey' enters with a negative
sign in the first equation. The value of dj2 can be interpreted as the w e ^ t
with which the inflation rate enters equation i. M Table 7 Section VI, the

' It seems reasonable to denote the first coordinate of the cointegraticm vector fii, say, by fin.
In ordinary matrix notation we then have fi^i - fi^j.
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estimate of II = o^', i.e. the estimate of the combined effects of all three
cointegration vectors, is reported. It is striking how well the proportionality
hypothesis between money and income is maintained in all equations of the
system.

This completes the investigation of the model /fj ^^^ ^* in H^ and we
tum now to the models H^ and Hf in / / j .

V. ESTIMATION AND TESTING UNDER LINEAR RESTRICTIONS ON P

Mode] 7/3 :/fl = Hflj is a formulation of a linear restriction on the cointegration
vectors. The hypothesis spiecifies the same restriction on all the cointegration
vectors. The reason for this is the following: If we have two cointegration
vectors in which m and y, say, enter then any linear combination of these
relations will also be a cointegrating relation. Thus it will in general be poss-
ible to find some relation which has, say, equal coefficients with opposite sign
to m and y, corresponding to a long-run unit elasticity. This is clearly not
interesting, and only if the proportionality restriction is present in all yS
vectors, is it meaningful to say that we have found a imit elasticity.

5. /. Likelihood Ratio Tests

Under H3 we have the restriction ^ = H9 where H is (p x j), but that means
that the estimation of ri,...,rjt_j, 4>, /i, a and A is given as for fixed
jS = Hqj, and q> has to be chosen to minimize

I qp'(H'S«H-H'S,oSoo'So,H) flP|/| q>'{n'S,,U) q>\ (5.1)

over the set of al! 5 x r matrices ^. This problem has the same kind of
solution as above and we formulate the results in Theorem 5.1 below. A
subscript indicates which hypothesis we are currently working with.
Throughout, the estimator witiiout subscript will be the estimator under //,
o r H t

THEOREM 5.1: Under the hypothesis

we find the maximum likelihood estimator of j3 as follows: First solve

I AH'S^H - H'S^oSo-o'So;tH | = 0, (5.2)

for i j I >. . .>i3^ and V3 = (v3i,...,¥3.,) normalized by V3(H'SkjH)V3 = I.
Choose

* = (*3.,,-,*3.,)and43 = H*, (5.3)

and find the estimates of a, A and T fi-om (4.1), (4.2), and (3.5). The
maximized likelihood bwomes
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which gives the likelihood ratio test of the hypothesis Hj in H2 as

i,Ml - î l- (5.5)
The asymptotic distribution of this statistic is shown in Johansen {1989) to be
X^ with r{p—s) degrees of freedom.

Under the hypothesis H*:fi=Hq> and fi = afi'^, the same results hold.

5.1.1. The Empirical Analysis

The Finnish Data
We consider the hypothesis that there is proportionality between money and
income, so that the coefficients of money and income are equal with opposite
sign, i.e.

H,:^,,= -^,,2, (/= 1,2,3)

In matrix notation the hypothesis can be formulated as:

/ -

\

1
1

0

0

0
0

1

0

0
0

0

1

where ^ is a 3 x 3 matrix. Solving (5.2) gives the eigenvalues in Table 4.
These are compared to the eigenvalues of the unrestricted model H2. The
test statistic is calculated as -21n(2) = 0.02 + 3.51+ 0.29 = 3.82 which is
compared to ;u^95(r(/7-s))=;t;^(3(4 —3)) = 7.81. ThiK the hypothesis of
equal coefficients with opposite sign for m 1 and y, is clearly accepted. The
corresponding restricted ^-estimates hardly change at all compared to the
unrestricted estimates of Table 2 and they are therefore not reported here.

With the imposed proportionality restriction we now have three cointegra-
tion vectors restricted to a three dimensional space defined by the restriction
that m 1 and y have equal coefficients with opj)osite sign. Thus the hypothesis
if3 is really the hypothesis of a complete specification of sp{p). In this space
we can choose to present the results in any basis we want and it seems natural
to consider the three variables ml—y, i"' and Ap, Thus the conclusion about
the Finnish data is that the last two variables C" and Ap are already
stationary, and the first two, y and m 1, are cointegrated.

The Danish Data
In the Danish data we found r= 1. Based on the imrestricted estimates in the
previous section it seems natural to formulate tveo linear hypotheses in this
case, both of which are economically meaningful:
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and

In matrix formulation the first hypothesis is expressed as

1 0 0 0
- 1 0 0 0

0 1 0 0
0 0 1 0

L 0 0 0 l j

where qj is a 4 x 1 vector. Solving (5.2) gives the eigenvalues in Table 4.
These are compared to the eigenvalues of the unrestricted H^ model.

The test of //f, in //f consists of comparing Af j and A!f by the test

The asymptotic distribution of this quantity is given by the ;f̂  distribution
with degrees of freedom r{p-s)= 1(4-3)= 1. The test statistic is clearly not
significant, and we can thus accept the hypothesis that for the Danish data the
coefficients of m2 and y are equal with opposite sign.

The second hypothesis that the coefficients for the bond rate and the
deposit rate are equal with opposite sign is now tested. This hypothesis
implies that the cost of holding money can be measured as the difference
between the bond yield and the yield ftom holding money in bank deposits.
Since H^, was strongly supported by the data, we will test //J2 within //f,.
This will now be formulated in matrix notation as

" 1
- 1

0
0
0

0
0
1

- 1
0

0
0
0
0
1

where y is a 3 x 1 vector. Solving (5.2) we get the eigenvalues reported in
Table A. The test for the hypothesis is given by

which should be compared with the x^ quantiles with r\s^ -52)= 1(4-3)= 1
degree of freedom. It is not significant and we conclude the analysis of the
cointegration vectors for the Danish demand for money by the restricted
estimate

iJ ' = ( 1.00, -1.00,5.88, -5.88, -6.21),

The corresfKMiding estimate of a is given by

a* = (-0.177,0.095,0.023,0.032).
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TABLE 4
The Eigenvalues and the Corresponding Test Statistics for Testing Restrictions on fi

The Finnish data
Eigenvalues A, - 7" ln( 1 - A,)

',: 0.309 0.226 0.073 0.030 38.49 26.64 7.89 3.11
',: 0.309 0.199 0.070 38.47 23.13 7.60

The Danish data
Eigenvalues Af —7"ln(l-Af)

'f. 0.433 0.178 0.113 0.043 0 30.09 10.36 6.34 2.35 0
't,: 0.433 0.172 0.044 0.006 30.04 10.01 2.36 0.32
'?,: 0.423 0.045 0.006 29.16 2.44 0.32

5.2. The Wald Test

Instead of the likelihood ratio tests which require estimation under the model
H2 and 7/3, one can directly apply the results of model H2 given in Table 2 to
calculate some Wald tests. The idea is to exprras the restrictions on j8 as
K'p=O and then normalize K'/? by its 'standard deviation'.

It is shown m Johansen (1989) that if v* denotes the eigenvectors cor-
responding to A5,..., A ,̂ (see the Danish data in Table 5) then, in case r= 1,
the quantity

r'-i) z
1/2

is asymptotically Gaussian with mean 0 and variance 1. Hence K* = (K', 0)',
such that K*'fi* = K'/3, i.e. the contrast involves oaiy the coefficients of the
variables, not the constant term. This statistic is easily calculated from
Table 5.

If more than one cointegration vector is present, as in the Finnish data,
then the Wald statistic is gjven by

where v is the eigenvector corresponding to A4, aad 6 = diag(Ai, Aj, ^3) (see
the Finnish data in Table 5). The asymptotic distribution of this statistic is x^
with tip-s) degrees of freedom, where K fc p'x.{p-s}. In this case
r=p-l = 3, and since r^s^p = 4 and, since s»p is no restriction, we can
only test a hypothesis with s = r=p —1-3, coiresponding to a completely
specified fi.

The above test statistics require the nonnaUza^n of fi and v as in (4.5). An
alternative expression for this statistic which can be ^^lied for any
normalization is
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5.2.1. The Empirical Analysis
Since the calctilations are numerically simpler for the normalization
VStiV = I, it will be tised to illustrate the Wald tests. In Table 5 the eigen-
values and eigenvectors for this normalization Eire reported.

7?ie Danish Data
We start by the hypothesis

expressed as K'p = {1,1,0,0) P = 0. The Wald statistic is then calculated as
foUows:

First, T^I^K'p = 53^l\ -21.97 + 22.70) = 5.31, and

5

I (K*'v*)2 = ( 14.66-20.05)2+ (7.95-25.64)2

Then the test statistic becomes

w = 5.31/(1/0.4332-l)x 360.13)'/-= 0.24.

The second hypothesis

is tested in a similar way. Note however, that //f 2 is now tested within Hf and
not within /ff,. The test statistics becomes 1.32. Both these statistics are
asymptotically normalized Gaussian and the values found are hence not
significant.

The Finnish Data
For the Finnish data we only test the hypothesis:

^ 3 : ^ . 1 = - / 3 , 2 , (i = 1,2,3).

This can be formulated as K'y? = (1,1,0,0) P = 0.
First we find from Table 5 that K'w'K=(1.38 + 2.22)^ = 12.96 and

^(-11.13 + 10.24)-^^_^3.

"'0.0731" - 1

The test statistic becomes w^= 104x0.83/12.96 = 5.66, which is not
sipifiramt in the ;f ̂  distrilwtion with 3 degrees of freedom.

Notice that the Wald test in aO cases givra a value of the test statistic which
is lar^r tijan the value for the likelihood ratio test statistic. This just
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emphasizes the feet that we are relying on asymptotic results and a careful
study of the small sample properties is needed.

VI. ESTIMATION AND TESTING UNDER RESTRICTIONS ON a

Let US now turn to the hypothesis H4 where a is restricted by o = A V in the
model H2. Here A is a (pxm) matrix. It is convenient to introduce
B{px{p-m)) = Ai, such that B'A = O. Then the hypothesis H^, can be
expressed as B'a = 0.

The concentrated likelihood function (3.8) can be expressed in the var-
iables given by

A'(Ro, - a/J'R,,) = A'Ro, - A'A V^'R^, (6.1)

(6.2)

In the following, we factor out that part of the likelihood function which
depends on B'Rg,, since it does not contain the parameters V and fi. To save
notation, we define:

A^=A'AA, A^j = A'AB, S^^^ = S„̂  - Ŝ Ŝ̂ ft'Ŝ i

= A'So, - A'SooB(B'SooB)- 'B'So*, etc.

The factor corresponding to the marginal distribution of B'R ,̂ is given by

- Z (B'Ro,)'A^,HB'Ro,)/2L (6.3)

and gives the estimate

A,, = S,, = B'SooB, (6.4)

and the maximized likelihood function from the marginal distribution

(6.5)

The other factor corresponds to the conditional distribution of A'R ,̂ and Rj,
conditional on B'RQ, and is given by

X A-',(A'Ro, - A'A#'R,, - A«,A,VB'Ro,)/2 j . (6.6)

It is a well-known result from the Aeoiy of the midtivariate normal distribu-
tion that the parameters Aji,̂ , A^A^^^ Mid A^^^ are variation independent
and hence that the esdtnate of A ̂ ĵ A ̂ ' is found by regression for fixed ^ and
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/3 giving

KJ^-M'( V, ;»)=(S,, - A'AVJS'S,,) S^,', (6.7)

and new residuals defined by

In terms of ft^ and ft^ the concentrated likelihood function has the form (3.8)
which means that the estimatiOTi of /J follows as before.*

THEOREM 6.1: Under the hypothesis

the maximum likelihood estimator of fi is found as follows: First solve the
equation

|AS,,.,-St,.,S;^',S«,.,| = O, (6.8)

giving i^.i >...> A4.«>i4^.,, = ... = i4.p = 0 and^4 = (V4,,...,V4,,) normalized
suchthatSi'̂ S^ti (,̂ 4 = 1.

Now take

k = {Kl Kr\ (6-9)
which gives the estimates

^=(A'A)- 'S,, .^4 (6-10)
and

oB(B'SooB)-iB'So,)44, (6.11)

,«.* ,,.^ = S^,,,-A'd4d;A, (6.12)

and the maximized likelihood function

"' (6.13)

The estimate of A can be foimd from (6.4), (6.7) and (6.12), and T is
estimated from (3.5).

The likelihood ratio test statisic of H^ in / / , is

- 2 hi(Q; H41 Hj) = r I ln!( 1 - k,M 1 - A,)}. (6.14)
1 - 1

The asymptotic distribution of this test statistic is pven by a x^ distribution
wiA r{p-m) degrees of freedom, see Johansiai (1989). The same result
holds for testing HJ: a = A^ in /f f.

^It is convenient to calctdate the rdevant product momem matrices as
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The following very simple CoroUmy is usefiil for explaining the role of
single ̂ uation analysis:

COROLLARY 6.2: If m = r = 1 then the maximum likelihood estimate of fi is
found as the coefficients of X,_^ in the regression of A'AX, on X,_j, B'AX,,
and AX, _ 1,..., AX, _ ;t +1, D, and the constant.

PROOF: It suffices to notice that when m = r = 1, then only one cointegra-
tion vector has to estimated. It is seen from (6.8) that since the matrix
Sna./rSaa'aSat ft is singular and in feet of rank 1, then only one eigenvalue is
non-zero, and the corresponding eigenvector is proportional to SZk,t^ka.b->
which is exactly the regression coefficient of R ,̂ obtained by regressing A'R ,̂,
on B'Rfl, and R^. This can of course be seen directly from (6.6) since A'A^ is
1x1 and can be absorbed into fi, which shows that fi is given by the regres-
sion as described. If, in particular, a is proportional to (1,0,...,0), then
ordinary least squares analysis of the first equation will give the maximum
likelihood estimation for the cointegration vector. An empirical illustration of
this will be presented below.

Finally we just state briefly how one solves the estimation and testing of the
model H^.fi = Yl<p and a=Aq). In this case we note that ^'R^, = ^'H'R^,
which leads to solving (5.2) where R ,̂ has been replaced by H'R^,. Thus
restricting fi to lie in 5p(H) implies that the levels of the process should be
transformed by H'.

Since a = A V we solve (6.8), where we have conditioned on B'R ,̂. ln other
words if we assume that the equations for B'R ,̂ do not contain the parameter
o, i.e. B'a = 0, then we can correct for these before solving the eigenvalue
problem. It is now clear how one should solve the model H^=H^PiH^,
where restrictions have been imposed onfias well as on a, namely by solving
the eigenvalue problem

i AH'S,,.,H -H'S^. ,S; , : ,S^ ,H I = 0. (6.15)

This gives the final solution to the estimation problem of H^. Notice how
(6.15) contains the previous problems by choosing either H = I or A=I or
both. We have, however, chosen to present the analysis of restrictions on fi
and a separately in order to simplify the notation.

Finally, note that a linear restriction on fi implies a transformation of the
process, and that a linear restriction on a implies a conditioning. Thus all the
calculations can easily be performed starting with the product moment
matrices Ŝy and applying the usual operations of finding marginal (trans-
formed) and condidonkl variances followed by an eigenvalue routine.

6.1. The Empirical Analysis

In SectiOTi V it was shown that the hs^thesis about proportionality between
money and income, /3, i = -fii2, was accepted both for the Danish and tiie
Finnish data, and that the hypothesis ;3|3= - ^ , 4 was accepted for the
D k h data. Thus it seems natural to move directly to the H^ and the H^
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hypothesis, see Section n, and test hypotheses about a in the /^-restricted
models. For illustrative purposes we will, however, also present the empirical
results for just one H^ hypothesis, i.e. a restriction on o for unrestricted fi.

The Danish Data

We denote the cointegration vector by {fi^,...,fi^) and the weights by
(a,,...,0:4). Since we have no a priori hypothesis about the a's except that
a, ?* 0, we have at most three hypotheses about zero restrictions on a to test.
We have chosen to demonstrate the hypothesis: H^^: 03 = 0, in the text, and
report the results of other tests in Table 6.

The test results are sununarized in the upper part of the table. The
estimates of fi^ and a^ are presented below the test statistics. To facilitate
compar^n with the previous results the first column of the table gives the
estimates under the unrestricted model /ff, the second and third under one
and two fi restrictions, the next three under three o restrictions and finally
the last column gives the estimates under three o restrictiors but for
unrestricted fi.

Based on the calculated values of — T ln(l —A*̂ j) in Table 6 it is now
possible to test any of the three a hypotheses H*;, i= 1,2,3 against H%2, or
any of the //f, hypotheses with fewer restrictions on a. The likelihood ratio
test statistic for H*, versus H*j is calculated as

which is asymptotically distributed as ;i;̂  with {p-{p-i))r = i degrees of
freedom, when r = 1. For instance we consider / / | , ve3 sus H%2 and find

The other tests have been linearly ordered in Tj4)le 6, and we can choose any
hypothesis of interest and test against hypotheses with fewer restrictions.
Since we had no stroi^ a priori hypotheses abcwt a j , a^ and 04, the various
t^ts we have performed can be seen as a form for data exploration rather
than as specffication testing in the strict sense.

We proceed to the H* hypotheses described in die last column of Table 6,

^4,1: «2 = a J = 04=0

for unrestricted fi. As shown in Corollary ^2, the acceptance of this
hypothesis would legitimize the use of single ^^aation estimation of a and fi
and is therefore of particular interest.

The hypothesis HX,i is first tested by the fikelihood ratio test and the
correspondii^ estimates of a and ^ dmved. Ws dien give tlie corresponding
ordin£U7 least squares estimates iuul show that the two procedui^s give the
s^oe result.
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The appropriate A and B matrices are now

/O 0

0'

0

on the basis of which the matrices SĴ  j , , S%, j , , S*̂  j , and S* ĵ, can be
calculated. Solving the eigenvalue problem (6.8) gives one eigenvalue 0.357
and consequently one eigenvector 0, as well as one estimate d. Normalized
by the coefficient of m 2 the estimates are

, -0.96,4.76, -2.57, -6.58)

) = (-0.25,0,0,0).

The test statistic for this hypothesis about a is then given by

- 2 In(G; / / t i I //J) = r{in( 1 - i t , ) - hi(l - if)}

= 30.09-23.42 = 7.67 < 7.81

Although the test statistic is not significant at the 5 percent level it would be
so at a slightly higher level. On the basis of this we conclude that there is no
strong support for restricting 02, 03 and a^ to zero.

The single equation estimation corresponds to the calculation of the static
long-run solution of general autoregressive model

E,, (6.16)

where e, are independent Gaussian variables with mean zero and variance 0%
and A,(L), /= l,...,4,isal^polynomialof order 2, normalized at yii(O)= 1.

The static i<Mig-run solution is obtained by evaluatiog (6.16) at L= I,
which gives the estimate of fi and a normalized by the coefficient of /n, as

The OLS estimation of (6.16) evaluated at L = 1 gives:

4,0.244, -1.211,0.654,1.698),

from which the static long-run solution can be ceilculated as

m = 0.96^ - 4.76i''+ 2.57 f''+6.58,
(0.19) (0.83) (1.46) (2.06)

i.e. exactly the same estimates as in the resected maximiun likelihood
procedure, see Corollary 6.2.

We conclude the empirical analysis by a cot£^arison of the estimated II-
matrices under the fall tutrestricted Hj-model and the fimd version II = afi'
with data consistent restrictions on a and fi (see Table 7). For the Danish data
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the number of parameters (excluding the constant) has been reduced from 16
to 4, whereas for the Finnish data the reduction is from 16 parameters to 6.

VII. SUMMARY

In this paper we have addressed the estimation and testing problem of long-
run relations in economic modelling. The solution we propose is to start with
a relatively simple model specifying a vector valued autoregressive process
(VAR) including a constant term and seasonal dummies, and with independ-
ent Gaussian errors. The hypothesis of the existence of cointegration vectors
is formulated as the hsrpothesis of reduced rank of the long-run impact
matrix. This is given a simple parametric form which allows the application of
the method of maximum likelihood and likelihood ratio tests. In this way we
can derive estimates and test statistics for the hypothesis of a given number of
cointegration vectors, as well as estimates and tests for linear hypotheses
about the cointegration vectors and their weights. The asymptotic inferences
concerning the number of cointegrating vectors involve non-standard distrib-
utions, see Johansen (1989), and these are tabulated by simulation. Inference
concerning linear restrictions on the cointegration vectors and their weights
can be performed using the usual x'' methods. The test procedures are in gen-
eral likelihood ratio tests, but in the case of linear restrictions on ;8 a Wald test
procedure is su^ested as an alternative to the likelihood ratio test procedure.

It is shown that the inclusion of the constant term in the general VAR-
model has significant effects on the statistical properties of the described tests
for the reduced rank modeL The role of the constant term is closely related to
the question of whether there are linear trends or not in the levels of the data,
and it is demonstrated that the estimation procedtu-e as well as the distribu-
tion of the test statistics of the reduced rank model is strongly affected by the
assumption of how the constant term is related to the stationary and the non-
stationary part of the model.

The proposed methods are illustrated by money demand data from the
Danish and the Finnish economy. The applications were chosen to illustrate
various aspects of the cointegration method. The model for the Danish
demand for money is spiecified without assumii^ a linear trend in the data,
whereas the Finnish model allows for linear trends in the non-stationary part
of the model. The order of cointegration was oae for the Danish version,
which simplified the interpretation of tfie coint^jration vectors as a long-run
relation in the levels of the process. For tfie Finnish data there were three
cointegration vectors which served to illustrate ihe interpretational problems
when there are several cointegration vectors in the data.

Instiaaeitf Mathematical Suaistics and Institute (^Economics,
University of Copenhagen

Date of Receipt of Final Manuscript: December 1989
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APPENDIX. SIMULATION OF THE UMITING DISTRIBUTIONS

The limit distributions are expressed as functions ofthe stochastic matrix

hdUjF' I FF'd/ r(dU)' ,

see Section IV.
The (p-r)-dimensional Brownian motion V{t)={U^(t),...,Up^M} is

approximated by a random walk with r=400 steps. Thus we generate a
-r) array of i.i.d. Gaussian variables

and calculate X, from

with.Xo, = 0, ( = l,...,;>-r.In case the processF isgivenbyU-U, see (4.11)
the stochastic matrix jFF'dt and JF dU' are approximated by

r - l

and

respectively, where X_, = I ~' Z X, _,. From these expressions we calculate

From this matrix flie trace and the maximum eigenvalue are calculated. On
the basis of 6,000 simulations the quantiles are found as the appropriate
order statistics.

If instead F is given by (4.14) and (4.15), we replace in the above calcula-
tion the last component of X,_ j - X.., by r - 1 / 2 , and if F is given by (4.16)
and (4.17) then X_| is droppisd and X,_i is extended by an extra com-
ponent 1.
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TABLE A1
Distribution ofthe Maximal Eigenvalue and Trace ofthe Stochastic Matrix

|(dU)F'[JFF'dw]-'JF(dtr')

where U is an wi-dimensional Brownian motion and F is U - C, except that the last
component is replaced hy t- 1/2, see Theorem 4.1

dim 50%

1. 0.447
2. 6.852
3. 12.381
4. 17.719
5. 23.211

1. 0.447
2. 7.638
3. 18.759
4. 33.672
5. 52.588

80%

1.699
10.125
16.324
22.113
27.899

1.699
11.164
23.868
40.250
60.215

90%

2.816
12.099
18.697
24.712
30.774

2.816
13.338
26.791
43.964
65.063

95% 97.5%

Maximal eigenvalue

3.962
14.036
20.778
27.169
33.178

5.332
15.810
23.002
29.335
35.546

Trace

3.962
15.197
29.509
47.181
68.905

5.332
17.299
32.313
50.424
72.140

99%

6.936
17.936
25.521
31.943
38.341

6.936
19.310
35.397
53.792
76.955

mean

1.030
7.455

12.951
18.275
23.658

1.030
8.250

19.342
34.184
52.998

var

2.192
12.132
18.549
23.837
28.330

2.192
14.065
32.103
55.249
82.106

Simulations are performed replacing the Brownian motion by a Gaussian random walk with
400 steps and the process is stimulated 6.000 times.

TABLE A2
Distribution ofthe Maximal Eigenvalue and Trace ofthe Stochastic Matrix

J(dU)F'[|FF'd«]-'|F(dU')

where U is an wi-dimensional Brownian motion and F = U — U

dim 50%

1. 2.415
2. 7.474
3. 12.707
4. 17.875
5. 23.132

1. 2.415
2. 9.335
3. 20.188
4. 34.873
5. 53.373

m%

4.905
10.666
16.521
22.341
27.953

4.905
13.038
25.445
41.623
61.566

90%

6.691
12.783
18.959
24.917
30.818

6.691
15.583
28.436
45.248
65.956

95% 97.5%

Maximal eigenvalue

8.083
14.595
21.279
27.341
33.262

9.658
16.403
23.362
29.599
35.700

Trace

8.083
17.844
31.256
48.419
69.977

9.658
19.611
34.062
51.801
73.031

99%

11.576
18.782
26.154
32.616
38.858

11.576
21.962
37.291
55.551
77.911

mean

3.030
8.030

13.278
18.451
23.680

3.030
9.879

20.809
35.475
53.949

var

7.024
12.568
18.518
24.163
29.000

7.024
18.017
34.159
56.880
84.092

Simulauons are perf onned t^ reptacirtg the Brownian roodeti by a Gaussian random walk with
400 steps and the process is simulated 6,000 times.
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TABLE A3
Distribution ofthe Maximal Eigenvalue and Trace ofthe Stochastic Matrix

j{dV)F'[j¥F'du]-'j¥{dV')

where U is an m-dimensional Brownian motion and F is an (m +1 )-diniensiona!
process equal to U extended by 1, see Theorem 4.1

dim 50%

1.
2.
3.
4.
5.

1.
2.
3.
4.
5.

3.474
8.337

13.494
18.592
23.817

3.474
11.381
23.243
38.844
58.361

80%

5.877
11.628
17.474
22.938
28.643

5.877
15.359
28.768
45.635
66.624

90%

7.563
13.781
19.796
25.611
31.592

7.563
17.957
32.093
49.925
71.472

95% 97.5%

Maximal eigenvalue

9.094
15.752
21.894
28.167
34.397

10.709
17.622
23.836
30.262
36.625

Trace

9.094
20.168
35.068
53.347
75.328

10.709
22.202
37.603
56.449
78.857

99%

12.740
19.834
26.409
33.121
39.672

12.741
24.988
40.198
60.054
82.969

mean

4.068
8.917

14.050
19.172
24.433

4.068
12.017
23.868
39.431
58.954

var

6.738
13.021
18.698
23.607
28.954

6.738
19.192
37.529
59.854
89.072

Simulations are performed by replacing the Brownian motion by a Gaussian random walk
with 400 steps and the process is simulated 6,000 times.
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