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Maximum Likelihood Estimation for Vector 

Autoregressive Moving Average Models 

T. W. Anderson 

Stanford University 

ABSTRACT 

The vector autoregressive moving average model is a multivariate 

stationary stochastic process {~t} satisfying 

p 
I B y = 

~k -t-k k=O 

q 

L A vt • g=O -g - -g 

where the unobservable multivariate process {~t} consists of indepen­

dently identically distributed random vectors. The coefficient matrices 

and the covariance matrix of ~t are to be estimated from an observed 

sequence ~1 , ••• , ~T. Under the assumption of normality the method 

of maximum likelihood is applied to likelihoods suitably modified for 

techniques in the frequency and time domains. Newton-Raphson and scoring 

iterative methods are presented. 

KEY WORDS: Maximum likelihood estimation, vector autoregressive moving 

average, Newton-Raphson, scoring, information matrix, time 

series analysis. 



Maximum Likelihood Estimation for Vector 

Autoregressive Moving Average Models 

T. W. Anderson* 

Stanford University 

1. Introduction. The purpose of this paper is to review and relate 

several methods of estimating the coefficients of a vector-valued auto-

regressive moving average process. These procedures are based on the 

application of the Newton-Raphson method or the scoring method to modi-

fications of the likelihood function of a Gaussian model. To some extent 

this paper does for the multivariate process what Anderson (1977) did for 

the univariate process. 

'rhe observable m-component vector-valued autoregressive moving average 

process {lt} satisfies 

(1.1) I ~k :L"t-k = 
k=O 

t= ••• ,-1,0,1, 
" • e ' 

where the sequence consists of m1observable 

independently identically distributed random m-component vectors with 

~t = 0 

~0' •• & ' 
A 
-q 

are 

A0 = I • - ~m 

mxm 

We take 

assumed nonsingular and B
0

, ••• , B 
- -P 

and 

matrices. To avoid indeterminacy we require 

t.y = 0 
~t -

(with no loss of generality if 

is known) because we are interested in the covariance structure as 

it depends on the coefficient matrices. 

*r am indebted to Fereydoon Ahrabi and Paul Shaman for assistance 
and advice on preparing this paper. 



Let 

(1.2) B( z) = 
p k 
I ~k z 

k=O 
A( z) = 

q 

I A 
g=O -g 

We shall assume that the zeros of l~(z)l and l~(z)l are greater than 

1 in absolute value. 

For an arbitrary stationary m-component process {lt} with 

we can define the covariance sequence 

(l. 3) " - cy y' 
l..h -t -t+h ' 

h = ••• ' -1,0,1, . . . ' with If the series converges, the 

spectral density is 

00 

(1.4) f(l.) 1 I -H.h = e l:h 21T 
h=-oo 

with !'(/.) = !(>.) , where the bar denotes complex conjugate; that is, 

f(l.) is Hermitian. Then -
(1. 5) 

where the right-hand side consists of the matrix with each element being the 

integral of the corresponding element of eiAk f(l.) • For the autoregressive -
moving average process defined by (1.1) the matrix-valued spectral density is 

(1.6) f(t.) 

where * denotes complex conjugate transpose. (See Anderson (1971) and 

Hannan (1970) for general discussion of scalar and vector processes, 

respectively.) 



Any stationary process {~t} with ~inite second-order moments 

determines the covariance sequence {Eh} which in turn determines the 

spectral density when it exists and (1.4) converges in a suitable 

sense. Conversely, i~ the process is Gaussian either the covariance 

sequence or the spectral density describes the process. In particular, 

an autoregressive moving average process satisfYing (1.1) with 

tv v' = L: determines ~(A.) by (1.6) ~t --.t ~ 
Does that ~(A) nniquely 

determine the matrix L: and the matrix polynomials B(z) and A(z) ? 

The answer is No without ~urther conditions. What are tmiquely determined 

are the matrix L: and the rational trans~er function, which can be 

written B(z)-l A(z) • However, we obtain the same trans~er function 
"' "' 

~rom B(z)-l A(z) , where A(z) and B(z) are de~ined by 

(l. 7) A(z) = C(z) A(z) , B(z) = C(z) B(z) 

where C( z) is another matrix o~ polynomials which is nonsingular ~or 

lzl = 1 • The matrix C(z) is called a common le~ divisor o~ A(z) 

and B(z) , and ~(z) and B(z) are right multiples of C(z) • The 

greate~ common le~ divisor of two polynomial matrices is a common le~ 

divisor and any other common left divisor has this matrix as a right 

multiple. The greatest common left divisor is not unique; it can be 

multiplied on the right by a unimodular matrix (that is, a polynomial 

matrix with constant determinant). We can ask that a greatest common 

left divisor be I , but to eliminate the indeterminacy of mul tiplica--m 

tion by a unimodular matrix another condition should be added. One such 

condition is that the rank of (B A ) is m [Hannan (1969a)]. other "'p ~q 

conditions can replace this last one (which is not a necessary condition); 

see Hannan (1971) and Kashyap and Nasburg (1974). 
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The statistical inference problem is to estimate B
1

, ••• , B , 
- -P 

... ' A ' -q 
and (p and q given) on the basis of T observations 

ll' ... , lT. The method of maximum likelihood can be considered under the 

assumption that the process is Gaussian. The problem, which is the optimi-

zation of a complicated objective function, can be solved numerically. However, 

we consider modifying the model so that the Newton-Raphson or scoring method can 

be used in a straight-forward way. In the time domain we modify the likelihood 

function by treating the variables before the period of observation as 

zero; that is, y = 
-0 

= y = 0 
-1-p -

and !o = ••• = v = 0 • This case 
-1-q 

is a little simpler than that of Reinsel (1976), who treats ... ' y 
-P 

as fixed and v 1 = ••• = v = 0 • 
-p+ -q -P Tunnicliffe Wilson (1973) proposed 

an equivalent procedure without specifying the choice of initial values of 

the variables. 

In the frequency domain we use the sample spectral density (periodogram) 

(1. 8) 

where 

(1.9) 

I( A) 
T 

1 I , i/..(t-s) 
= 2TIT t,s=l lt ls e 

T-1 
= 21TI L 

h=-(T-1) 

-iA.h 
e ~h ' 

l T~h 
1 = T L lt "Kt+h ' h = 

t=l 
0, 1, .•• , T-h , 

= c' 
--h 

Dunsmuir and Hannan (1976) have shown that the logarithm of the likelihood 

function for the observations on the Gaussian process can be approximated by 

a constant plus 

4 



( 1.10) 

where ~\ = (2·rr/T)t 7 t = 1, ••• , T, and f(A) is given by (1.6) • Hannan 

( 1969b) used this approach for the strictly moving average process, and Akaike 

(1973) and Nicholls (1976) followed this approach for the autoregressive moving 

average model (with exogenous variables included). This logarithm of the 

likelihood function can also be obtained by modifying the model (1.1) by setting 

~0 = ~T' ... , ~1-p = ~T-p+l and v = v v --o T' ••• , 1 - vT +1 - ~ -q - -q 
[Anderson (1977)]. 

In general, if the likelihood of 8 based on the observation of X 

is L(x,8) , then the Taylor'sseries expansion of log L(x,8) yields - -
the equation 

3
2 

log L(x,8) 
(1.11) - -

ae ae' 8=8 
- -0 

A A 

which is to be solved for ~l given an initial estimate 2o this is 
A 

the Newton-Raphson method. If 2o is consistent of probability order 
A 

1//T , then in most models, ~l is consistent, asymptotically normal, 

and asymptotically efficient. It is customary to iterate (1.11), using 
A A 

a solution ~l as the initial estimate 2o in the next stepo 

The information matrix is 

(1.12) 

where X is the random vector on which x is the observation. The 

method of scoring consists of the estimation procedure (1.11) with the 

information matrix replacing the matrix of second partial derivatives. 

Iteration is usually carried out. 

5 



To write linear equations for the elements of matrices it is con-

venient to use the "vee'' of a matrix. 

Definition. If C = ( c
1

, ••. , c ) 
~ ~n 

(1.13) vee C = 

We use the following result: 

(1.14) vee ABC= (C' @A) vee B , 
~ 

which is easily verified by writing out the two sides; here @ denotes 

the Kronecker product. (See, for example, Marcus and Mine (1944), p. 9.) 

Accordingly, we let 

( 1.15) vee (A1 
••• A ) = a , 

~ ~q 
vee (B1 ••• B ) = S 

- -P 

2. Estimation in the frequency domain. The equations for estimating 

~ and § given initial estimates of ~, S, and 2: are 

A A A A A 

~0 ~0 ~1 - ~0 2-o 
(2.1) = 

A A A A A 

Q' !o ~1 - ~0 !:o -0 

A A A 

The matrices (l/T)~0 , (l/T)§0 , and (1/T)!o are initial estimates of 

the corresponding submatrices of the (limiting) average information matrix 

6 



~ll . . . <I> 
~lq 

(2.2) <I> = 

<I> <I> 
~ql ~qq 

n n 
~ll -lp 

(2.3) ~1 = 

(2.4) 

where the individual submatrices are square of order 2 
m , and ~O and 

A £o are composed of the first derivatives of the logarithm of the 

likelihood function evaluated at the initial estimates. 

Let 

(2.5) 

which is the spectral density of the moving average part of (l.l) and 

is derived from the right-hand side. Then we can write the submatrices 

of the (limiting) average information matrix as 

(2 .. 6) 

7 



(2 a 7) A* (eiA.)B* 

(2. 8) 1 JTI 
(2n) 2 

-TI 

= 21TIJ 
TI [ !_ ( 1 ) I 1 J • ( k o ) '\ 

·- II. @ fu(A.)- e~ -IV AdA • 

-TI 

Each submatrix depends on its indices only through the difference of the 

indices; that is, the matrices ~ , Q , and ~ are block Toeplitz. Note 

that ~ , the moving average part of the average information matrix, depends 

only on the moving average part of the process. (We emphasize that ~O 

estimates T ~ , etc.) 

The submatrix of the full (limiting) average information matrix that 

involves a and ~ and the submatrix that involves S and ~ are 

composed of zeros. The covariance matrix is estimated by a separate equation. 

Newton-Raphson (Akaike, Hannan, and Nicholls). In the Newton-Raphson method 

in the frequency domair.. the matrices on the left-hand side of (2.1) are 

the second partial derivatives of the logarithm of the likelihood function 

with asymptotically negligible terms omitted; they can be obtained from 

(1.10) • Let 

(2.9) 

8 



In ~0 (eiA) and ~0 (ei~ we use the initial estimates of the coefficient 

matrices. 

(2.10) 

(2 .ll) 

(2.12) 

Then the estimates of T~gh , 

"(o) T 
~ =-I 
~g~ t=l 

A A A 

' 

e 

The matrices ~0 , ~0 , and !o are again block Toeplitz. Each submatrix 

is made up of estimates of the matrices appearing in the (limiting) 

average information matrix. 

The right-hand side of (2.1) consists of the partial derivatives of 

the logarithm of the (approximate) likelihood function with respect to the 

elements of a and S arranged in the forms of (column) vectors. The 
~ 

A 

g-th subvector of 3o and the k-th subvector of ~O are 

(2 .13) 
"'(o) 
~g 

9 



(2.14) P"" ( 
0 ) = - ve c [ 

-k 

Since the first partial derivatives of the logarithm of the likelihood 

function with respect to the elements of § are linear in the elements of 

§,they can be set equal to zero. The solutions in terms of the initial 

estimates of a: and L: constitute an alternative "initial estimate" of - -
B and can be used in (2.1) • Then p = 0 

-0 -
and the solution for ~l is 

easier. This is what Hannan (1969b) and (1971) did in the scalar case and 

Nicholls did (1976) in the vector case. 

Scoring. In the expressions for T<l> h ' -g TS4 o ' 
-g~ 

we 

replace the parameters by their initial estimates, multiply by 2rr , and 

sum over t instead of integrate over A • The resulting expressions are 

(2.15) 

(2.16) 

(2.17) 

"(0) 
~gh 

""( 0) 1 T 
S4 = -~ I 
-gR- 2rr t=l 

i(g-h)\ 
e 

The right-hand sides of (2.1) are the same as for the Newton-Raphson method. 

The estimate for the covariance matrix is given by 

10 



(2.18) 

A A 

As 'I'+ oo , vT [ (~1 - a)' , (~1 - S)'] 1 has a limiting normal 

distribution with mean zero and covariance matrix 

-1 

(2.19) 

Nicholls (1976) has given this result for the ~t 's independently identically 

distributed and the estimates based on his modification of the Newton-Raphson 

method with consistent initial estimates of order 1/IT in probability. The 

result also holds for the scoring method. Dunsmuir and Hannan (1976) have 

justified their results under very general conditions on the I !t s. Nicholls 

(1977) showed that the estimates he derived were a kind of "three-stage 

realization" of the Newton-Raphson method. 

3. Estimation in the time domain. It will be convenient to define 

y' l v'l 

tj 
~l 

(3.1) y ::: V= ' ' 

' -T ~T 

which are T x rn matrices, and 

(3. 2) vee Y = y , vee V = v ' 

which are Tm X l vectors. When lo = = y = 0 and ~O = = v = 0 -1-p - ·~1-q 

the model can be written as 

p 
Lk 

q 
Lg (3.3) I y B' = I VA' 

~k - -g ' k=O g=O 

ll 



where 

(3.4) L = 
~ 

0 0 

I 
-T-1 

0 -
with 1° = ~T • Since 

(3.5) 

the modified model can be written 

(3.6) 

where 

(3.7) § = I ~k 0 ~k '~ = I A 0 Lg 
k=O g=O -g -

and ~ has the distribution N(~,~) , where 

(3.8) 

The logarithm of the likelihood function is 

(3.9) log L =-~log 2TI- ~log 1~1 - ~ !.' ~~ ~,-l~-l4--l~ !_ • 

The first partial derivatives of (3.9) evaluated at the initial estimates 

are 

(3ol0) (0) K(I €$) Lg V ) '/),-1 j-1 d_-l.f3 y 
~g = ~ ~m - -0 -~ ~o ~o -O 

12 



(3.ll) 

where 

(3.12) 

(3.13) 

"(O) 
.P ' = - K( I €} 
~k ... -m 

vee V 
-0 

K = 

" = a.-l e. 
= ~0 ~O -0 l 

~ll ~rnl 

E1 E 
~ m ~mm 

and E. . is the m x m matrix with l in the i-th row and j-th 
-lJ 

column and 0 1 s elsewhere. (The permutation matrix ~ has the properties 

vee A = K vee A' - - - ' 
~ = K', and ~=I 2 .) 

~m 
The submatrices on the left-hand 

side of (2,1) are 

( 3.14) ~(0) --
'±' K(I 
-gh - ~rn 

( 3.15) 

(3.16) k A l A l A 1 
K(I €) L Y )'a~---~--- a_- (I 
- ~m -0 -0 -0 ~m 

A 

The matrices ~0 , ~0 , and !o are approximately block Toeplitz. 
A 

The vector is not calculated by ( 3.12), but rather from (l.l) with 

initial estimates for the parameters. The first row of "!o 

13 

is y' _l The 



second row is found from (l.l) for t = 2 (with lo = ••• = ~2-p = ~ and 

~0 = ••• - v
2 = 0) • 

~ -q ..., 
Successive rows of ~O are found recursively. 

Reinsel (1976) treated yl, ••• ' y as fixed and assumed 
~ ~P 

v +l = ••• = v = 0 • The difference in the above equations is that Lk Y 
~p -q .... p 

is replaced by a (T-p) x m matrix with y' 
~t-p+k 

as its t-th row, 1 is a 

(T-p) x (T-p) matrix and V is a (T-p) x m matrix. In either case the 

asymptotic theory is the same as that given for the estimates in the frequency 

domain. (Reinsel did not need K because he used vee A' and vee ~k' .) ... ...g -

The nature of the procedure is that the equations for the increment 

in the estimates of the coefficients are analogous to weighted least 

squares equations for the regression of ~ on !::g Yo and L'X, y • 

Osborn (1977) has shown how the exact likelihood can be expressed 

for the pure moving average process and shows how it can be evaluated 

for values of A_, ••• ,A and ~. :-v""l ~q 

4. Initial estimates. We state initial estimates in terms of the 

observed covariances {~h} given by (1.9) • In practice the mean of 

the process is unknown and in ( l. 9) ~t (and ~t+h) would be replaced 

by lt- l (and lt+h- ~ , respectively), where f = (l/T)~~=l lt 
Then initial estimates of B

1
, ••• , B are obtained from 

..., "'P 

( 4.1) 

Then we 

( 4.2) 

p "(0) I ~k .:k-'X-k=l 

can form (with 

A(O) 
;:t = 

= - ~-'X, ' 
'X, 

~0 = = y 
-1-p 

P "(o) 
I ~k ~t-k , 

k=O 

14 

= q + l, ... , q + p 

= 0 and "(0) 
~0 = I) 

t = l, ••• , T, 

. 



(4.3) 
u 1 T-h "(0) "(O)' u' 

~hO = T t~1 ~t ~t+h = - ~hO ' 
h = 0 , 1, ••• , T-1, 

(4.4) 
A 1 q_ iAh U 

!~ (A.) = 2TI . L e ~hO • 
h=-q 

is a Hermitian nonnegative definite matrix function, it can 

be factored according to (2.9) to define 

[Robinson (1967)]. Alternatively, ~O), 

"'(o) "(o) 
~ ' ••• , ~q and Eo 

(0) 
••• , A can be found from 

-q 

(4.5) 

h = 1, ••• , q, 

where 

(4.6) 
'l'-1 

Iu (A.) = ..±... -L 
~O 2TI h=-(T-1) 

iA.h u 
e chO ' 

as suggested by Hannan. Then 

(4.7) 
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