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ABSTRACT

The vector autoregressive moving average model is a multivariate
stationary stochastic process {yf} satisfying

P
) B ¥ = ) A v
poo =k Yok T L) g Te-g

where the unobservable multivariate process {Xt} consists of indepen-
dently identically distributed random vectors. The coefficient matrices
and the covariance matrix of v, are to be estimated from an observed
sequence T1o covs Iop - Under the assumption of normality the method
of maximum likelihood is applied to likelihoods suitably modified for

techniques in the frequency and time domains. Newton-Raphson and scoring

iterative methods are presented,

KEY WORDS: Maximum likelihood estimation, vector autoregressive moving
average, Newton-Raphson, scoring, information matrix, time

series analysis.



Maximum ILikelihood Estimation for Vector

Autoregressive Moving Average Models

T. W. Anderson®

Stanford University

l. Introduction. The purpose of this paper is to review and relate

several methods of estimating the coefficients of a vector-valued auto-
regressive moving average process. These procedures are based on the
application of the Newton-Raphson method or the scoring method to modi-
fications of the likelihcod function of a Gaussian model. To some extent
this paper does for the multivariate process what Anderson (1977) did for
the univariate process.

The observable m-component vector-valued autoregressive moving average

process {yt} satisfies

(1.1) ) }
1.1 B ¥y = A v ’
=0 ~k Lt-k a0 ~8 =g

t=..0,~-1,0,1, ... , where the sequence {v, } consists of uncbservable

independently identically distributed random m~component vectors with

th = 9 and gXtX% = E s assumed nonsingular and ?O’ coss ?p and

AO’ ese s Aq are m X m matrices. To avoid indeterminacy we require

BO = AO = Im . We take Eyﬁ = 0 (with no loss of generality if

Eyt is known) because we are interested in the covariance structure as

it depends on the coefficient matrices.

* .
I am indebted to Fereydoon Ahrabi and Paul Shaman for assistance
and advice on preparing this paper.



Let

D k q g
(1.2) B(z) = } B z , Alz)= ) A z°.
~ k=0 ~ ~ g=0 ~&
We shall assume that the zeros of |B(z)| and |A(z)| are greater than
1l in absolute wvalue.
For an arbitrary stationary m-component process {yt} with

~

Syt = 0 we can define the covariance sequence

(1.3) 2, = €, Tl

~

h= .o, =1,0,1, ... ,with Z_ =3I!.

~ ~

If the series converges, the

spectral density is

(1.1) ) =z [ Ty,

h==0 ~

o~18

with f£'(A) = F(A) , where the bar denotes complex conjugate; that is,

£(A) is Hermitian. Then

™.
(1.5) I, =J' S 2(1) @,

where the right~hand side consists of the matrix with each element being the
integral of the corresponding element of elkk f(A) . For the autoregressive

moving average process defined by (1.1) the matrix-valued spectral density is

.y =1 . . .4 —1
(1.6) £(A) = ;L-B(elk) é(elk) Z é*(elk) E*(elk) >

21T~
where ¥ denotes complex conjugate transpose. (See Anderson (1971) and
Hannan (1970) for general discussion of scalar and vector processes,

respectively. )



Any stationary process {Xt} with finite second-order moments
determines the covariance sequence {Eh} which in turn determines the
spectral density when it exists and (1.4) converges in a suitable
sense. Conversely, if the process is Gaussian either the covariance
sequence or the spectral density describes the process. In particular,
an autoregressive moving average process satisfying (1.1) with
£Xt X% = § determines f(l) by (1.6) . Does that f(k) uniquely
determine the matrix L and the matrix polynomials g(z) and é(z) ?

The answer is No without further conditions. What are uniquely determined
are the matrix E and the rational transfer function, which can be

written B(z)_l A(z) . However, we obtain the same transfer function

from E(z)_:L g(z) , Where %(z) and E(z) are defined by
(1.7) K(z) = c(z) Alz) , B(z) = ¢(2) B(z) ,

where C(z) is another matrix of polynomials which is nonsingular for

lz| =1 . The matrix C(z) is called a common left divisor of X(z)

and §(z) , and g(z) and ?(z) are right multiples of g(z) . The
greatest common left divisor of two polynomial matrices is a common left
divisor and any other common left divisor has this matrix as a right
multiple. The greatest common left divisor is not unique; it can be
multiplied on the right by a unimodular matrix (that is, a polynomial
matrix with constant determinant). We can ask that a greatest common
left divisor be Em »but to eliminate the indeterminacy of multiplica-
tion by a unimodular matrix another condition should be added. One such
condition is that the rank of (§p A) is m [Hannan (1969a)]. Other

conditions can replace this last one (which is not a necessary condition);

see Hannan (1971) and Kashyap and Nasburg (197k).



The statistical inference problem is to estimate Bl’ cees Ep,

él’ cees éq, and § (p and q given) on the basis of T observations

Yi» »+es ¥p - The method of maximum likelihood can be considered under the
assumption that the process is Gaussian. The problem, which is the optimi-
zation of a complicated objective function, can be solved numerically. However,

we consider modifying the model so that the Newton-Raphson or scoring method can

be used in a straight-forward way. In the time domain we modify the likelihood

function by treating the variables before the period of observation as

zero; that is, XO = Lee = Zl-p = 9 and XO = he. = Yl-q = 9 . This case

is a little simpler than that of Reinsel (1976), who treats Vi oo ¥

as fixed and v = sl = =0 ., Tunnicliffe Wilson (1 roposed
Yotleg v, =0 (1973) prop

an eguivalent procedure without specifying the choice of initial wvalues of
the variables.

In the frequency domain we use the sample spectral density (periodogram)

T

1 , iA(t-s)
(1. sy I opme
t,s=1
1 Tgl -idh |
= S D
21 = (T-1) ~h
where
1 T-h
(1.9) S = F L ¥y ¥ian 2 R =05 1s ens TR,
t=1
- 1]
S-n

Dunsmuir and Hannan (1976) have shown that the logarithm of the likelihood
function for the observations on the Gaussian process can be approximated by

a constant plus



T -
(1.10) S log |3 -2 I tr 0L TO)

where A, = (em/m)t, t =1, ..., T, and £(A) 1is given by (1.6) . Hannan

(1969b) used this approach for the strictly moving average process, and Akaike
(1973) and Nicholls (1976) followed this approach for the autoregressive moving
average model (with exogenous variables included). This logarithm of the
likelihood function can also be obtained by modifying the model (1.1) by setting
yO =

-~

Yp> vooe Yiop T Ippa WA T = Vps eees ¥y = Uy, [Anderson (1977)].
In general, if the likelihood of O based on the observation of x
is L{x,0) , then the Taylor's series expansion of log L(x,0) yields

the equation

G log L(x,0) | A A 5 :
(1.11) e | & (878) = g5 toe Lx[8)} ~
0 39 0=0, 9 6=0,

which is to be solved for Gl given an initial estimate eO ; this is
the Newton-Raphson method. If 60 is consistent of probability order

l//f , then in most models, 91 is consistent, asymptotically normal,

and asymptotically efficlent, It is customary to iterate (1.11), using

a solution 61 as the initial estimate 60 in the next step.

The information matrix is

82 log L(x|8)
(1.12) S 39 00" A 2

~

where X 1is the random vector on which x is the observation, The
method of scoring consists of the estimation procedure (1.11) with the

information matrix replacing the matrix of second partial derivatives.

Iteration is usually carried out.



To write linear equations for the elements of matrices it is con-
venient to use the "vec" of a matrix.

Definition. If C = (Sl, seoos Sn) ,

Nl
(1.13) vec C = . .
“n
We use the following result:
(1.14) vec ABC = (C' @ A) vec B ,

which is easily verified by wrifing out the two sides; here ® denotes
the Kronecker product. (See, for example, Marcus and Minc (1944), p. 9.)

Accordingly, we let

1. = =B .
(1.15) vee (A gq) o , vec (§l gp) B

2, Estimation in the frequency domain. The equations for estimating

o and B given initial estimates of a, B, and X are

~ ~ ~

B T T =
N PN Pa FaY Fal
& Gy %7 % %
(2.1) = .
N Fal A "N Pa
H -
i ¥ L.@l 8 2o

The matrices (1/T)®. , (l/T)Q0 , and (l/T)WO are initial estimates of

the corresponding submatrices of the (limiting) average information matrix



?ll o L3 a glq
(2.2) o= . . R
® o o @
~ql ~qq
b -

~11 ~lp
(2.3) E'B = ° Iy 9
o @ L] Q
~ql ~qp
- -
gll L] ® L] \glp
(2.)4') g = ° 3 £l
Yy ... Y
~pl ~Pp

where the individual submatrices are square of order m2, and §O and
go are composed of the first derivatives of the logarithm of the
likelihood function evaluated at the initial estimates.

Let

(2.5) ) =2 ™z ax |

which is the spectral density of the moving average part of (1l.1) and

is derived from the right-hand side. Then we can write the submatrices

of the (limiting) average information matrix as

m . .
(2.6) I 2‘[ 1 @ & () el(g“h))‘ ax
~gh (em?J_, by ~



~ ~

m : : ' A
(2,7) Q = - __l_.é..j’ T A% (e-l}\)B* (el)\)—-l ® fu(k)-lJ el(g-z)kd}‘ ’
) ~ ~

0 . . . .
(2.8) ¥, = —-l-z-j (el 1 (™) B (™
~ (2m) ~ - - ~

=T

'

2

ki 1

_ -1 i(k-2)A
= £ () @ N e ar .

1l

Each submatrix depends on its indices only through the difference of the
indices; that is, thé matrices ? R 8 , and g are block Toeplitz. Note
that ? , the moving average part of the average information matrix, depends
only on the moving average part of the process. (We emphasize that §
estimates T @ , ete.)

The submatrix of the full (limiting) average information matrix that
involves 0o and § and the submatrix that involves E and § are

composed of zeros. The covariance matrix is estimated by a separate equation.

Newton-Raphson (Akaike; Hennan, and Nicholls). In the Newton-Raphson method

in the frequency domain the matrices on the left-~hand side of (2.1) are
the second partial derivatives of the logarithm of the likelihood function

with asymptotically negligible terms omitted; they can be obtained from

(1.10) . Let

(2.9) Poy=2na () 3 ax oty
° ~0 t 21 ~0 0 <0



~ . ~ .
In Ao(elx) and Bo(el% we use the initial estimates of the coefficient
matrices. Then the estimates of T?gh ’ T@gz s ‘and Tsz are

~oy T i\ i) S VU § |

(2.10) oon = tz Agle t)_lgo(e t)g(xt)gg(e t)ég(e o
al1 i(g--h)&G
@ fg(xt) € s

~ T -A i N i>\ At - 1(g—2))&
(e.11) gé@kg (e OB (e IO @O e £,

~ T i ~t i(k=2)A
can 9= 1 |10 0 o] S

t=1 |

"N

N A
The matrices @O, QO’ and Y. are again block Toeplitz. Each submatrix
is made up of estimates of the matrices appearing in the (limiting)

average information matrix,

The right-hand side of (2.1) consists of the partial derivatives of
the logarithm of the (approximate) likelihood function with respect to the
elements of a and ﬁ arranged in the forms of (column) vectors.  The

N ~

g~th subvector of 4 and the k-th subvector of p, are

oo )10, Bl (e Yat(e By te P
t= T ~

2o

~ T At
(2.13) qéo) = vec| } £u(k )™t

~



T ix -id k

o0 SO0 B D) e .

(2,14) D = - vec

)
t=1

Since the first partial derivatives of the logarithm of the likelihood
function with respect to the elements of B are linear in the elements of
B ,they can be set equal to zero. The solutions in terms of the initial

estimates of o and I constitute an alternative "initial estimate"” of

B and can be used in (2.,1) . Then Py= 0 and the solution for oy is

easier. This is what Hannan (1969b) and (1971) did in the scalar cese and

Nicholls did (1976) in the vector case.

Scoring. In the expressions for T?gh .

replace the parameters by their initial estimates, multiply by 2r , and

ngz , and T?kz s, We

sum over t instead of integrate over A . The resulting expressions are

A T ~ A l(g'—h)}\
(0) _ 1 uf, -1 t
(2.15) 2 = o7 Z Z, @ Lo(Ay) € >
t=1
A T ] A A iA, A iA PN i(g—%))\
t ]
(236) 20 - T | Ziaste OBxe W @ 2 | °,
t=1
[ A A A A
A A 1 A 1 A A 1 ~ 1
(2.17) Yég) - 5; Lo| Byle R Ale ") Ly Aple ©) B (e o
t=1
~ i(k=2)A
u -1 t
£o(2) © .

The right-hand sides of (2.1) are the same as for the Newton-Raphson method.

The estimate for the covariance matrix is given by

10



~ T ~ l>\ ~ l)\. ~ l}\. A~ l)\
2.18 _2r ty-1 . e Ty
( ) L 7% tzl Ale ") Byle ) I(A) BE(e ) agle )T

S

As T > ﬁ[q _M',@l-@q’h%almﬁMgmmﬂ

~

distribution with mean zero and covariance matrix

99"]
(2.19) .

Nicholls (1976) has given this result for the Xf's independently identically
distributed and the estimates based on his modification of the Newton-Raphson
method with consistent initial estimates of order 1/V/T in probability. 'The
result also holds for the scoring method. Dunsmuir and Hannan (1976) nave

Jjustified their results under very general conditions on the Xf's' Nicholls

(1977) showed that the estimates he derived were a kind of "three-stage

realization" of the Newton-Raphson method.

3. Estimation in the time domain. It will be convenient to define

ﬁ? B
(3.1) Y= . V= R
v vl
T ~
L LT

which are T X m matrices, and

(3.2) vee Y=y , vec V=1v |,
wvhich are Tm X 1 vectors. When Yg = «ve = Xl—p 0 and Ty = eee Zl_Q.z

the model can be written as

(3.3)

fl b~
=
12
B -
il
[0)¢1
il 10
o

11



where

0 0
(3.4) L=
Ipn @
R 0 _ .
with L~ = IT . Since
(3.5) vee X Y B! = (Bk ® 1¥) vee Y ,
the modified model can be written
(3.6) By=&y,
where
i x ; :
(3.7) 8- 13 @ .4=1 24 061",
k=0 g:O

and v has the distribution N(0,8) , where
(3.8) L=318 1,.
The logarithm of the likelihood function is

T 1 -1 ¢-1 -1
(3.9) 1ogL=-T—é‘-‘ilog2n-§1og |Z] —§y'6'd.' él& 8y .

The first partial derivatives of (3.9) evaluated at the initial estimates

are
(0) _ g8 g y1 g1 g-1 A_lé
(3510) 3 =K, ® "V 4L A

12



(3.11) SO L lkr @ Ky attEat sy

where
R
® = “L—
(3.12) vee Vo =¥ =% 0¥ s
- 1
Ell ° e gml
(3.13) K = . . R
glm °° Emm
easa

and Eij ig the m X m matrix with 1 in the i-th row and j~th
column and O's elsewhere. (The permutation matrix K has the properties

vec A = K vec é' » K =K', and K2 E 2 The submatrices on the left-hand

~ -~

side of (2,1) are

~ 0 > & - -
Gavy o) =xz 0 i) 4T 8, @ Pk,

~

(3.15) 5(0) =x(I ® 187V A )t é,-l J.;D—l&i:l @ L

~gL ~ N ~ ~O ~0 ~ ~ *
a6 30 - Ky )0 gt Al g :
(3.16) ¥ g(gmés)gg):g .,oa:o(l ® LYK,
~N Al ~
The matrices CDO, QO, and ‘PO are approximately block Toeplitz,
The vector M is not calculated by (3.12), but rather from (1.1) with
initial estimates for the parameters. The first row of VO is yi . The

13



second row is found from (1.1) for t = 2 (with Vg = ++s S ¥p_p, =0 and

~

Cal

Vo = e = Y, q = 0) . Successive rows of VO are found recursively.

Reinsel (1976) treated Yis eees yp as fixed and assumed

. R k
= = =0 . The difference in the above equations is that % X

v ® @0

~p+l-q ~P

is replaced by a (T-p) X m matrix with z%-p+k as its t-th row, L is a
(T~p) X (T~p) matrix and V is a (T-p) X m matrix. In either case the
asymptotic theory is the same as that given for the estimates in the frequency

domain. (Reinsel did not need K Dbecause he used vec Aé and vec B£ o)

The nature of the procedure is that the equations for the increment

in the estimates of the coefficients are analogous to weighted least

squares equations for the regression of y on i) Vb and Lz Y .

Osborn (1977) has shown how the exact likelihood can be expressed
for the pure moving average process and shows how it can be evaluated

-3
for values of él’ ooy éq and E .

4, Initial estimates. We state initial estimates in terms of the

observed covariances {ch} given by (1.9) . In practice the mean of

the process is unknown and in (1.9) Ty (and yt+h) would be replaced
T

by Ve = ¥ (and Ypan~ ¥ » respectively), where y= (l/T)Zt=l Yi
Then initial estimates of Bl’ ooy Bp are obtained from
£ 2(0)
(4,1) Z B, Ceg = = C_yp » £=q+1, .., qa+p.
k=1
Then we can form (with y. = ... =¥ =0 and g(O) = I)
P A
0 0
(h‘-g) .g.(t )= z :E( )Xt_k 3 t=15 "'STS
k=0

1k



u 1 ~(0) A(0)r _ u' _ _
(L.3) oo = E.tzl G By -9 B=0,1, .., -1,
~ Q. -
u 1 i2h u
(k) oM =3 boe g

A
If fg (A) 1is a Hermitian nonnegative definite matrix function, it can

be factored according to (2.9) to define Aio), coes Aéo) and I,
A
[Robinson (1967)]. Alternatively, Aioj, voss Aéo) can be found from
(4.5) PR ogT Ropn o) o
-5 I I f ( e
by hE o e oo ) Ty
T A A ~iA 8
== T AT o) 2o e Y, n=1, ..., q
oS0 Y 20t Lo Yy
t=1
where
m1 i
u 1 - idh u
6 () == 1 ®ho °
(4.6 ~0 2T p=(2-1)
as suggested by Hannan. Then
A T A il ~ iA
am ty-1 u t,-1
Y = ¥
(La7) I, = 55 tzl A (e )T I )ax(e )T

15
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