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The origin of the present paper is the desire to study the asymptotic behaviour of
certain tests of significance which can be based on maximum-likelihood estimators.
The standard theory of such problems (e.g. Wald(4)) assumes, sometimes tacitly, that
the parameter point corresponding to the null hypothesis lies inside an open set in the
parameter space. Here we wish to study what happens when the true parameter point,
in estimation problems, lies on the boundary of the parameter space.

We suppose we have a sample Xlt ...,Xn (scalars or vectors) from a distribution
F(x,6), where 6 = (61, ...,6k) is a vector parameter lying in Euclidean space. The set
of all such points such that F(x, d) is a proper distribution is the 'natural parameter
space Q.' of the distribution. This may be open or closed or neither. In what follows
we shall confine ourselves to estimates which are obtained by maximising the likeli-
hood for variations of 6 in a closed bounded space O.x contained in Q, and which may or
may not be a proper subset of £1. In particular we shall be concerned with cases where
6 lies on the boundary of Qx and usually on the boundary of Q as well.

As an example of the type of problem to which we want to apply the theory consider
the usual test of homogeneity for a sample from a Poisson distribution. Let the sample
be X1}..., Xn and suppose that the null hypothesis asserts that it comes from a Poisson
distribution of the form

^Ajfa!)1. (1)

The alternative hypothesis is that the sample comes from a compound distribution
of the form ,m

(nl)-1 e-*A"/(A)dA, (2)
Jo

where /(A) is the density of some distribution with mean Ao and small variation
about Ao. For example, we might assume that/(A) is the log-normal distribution with
mean Ao and variance cr2. The null hypothesis is then o~2 = 0, which is certainly on the
natural boundary of the parameter space, and the alternative hypothesis is that
o"2 > 0. We may now ask the following questions. (1) Is the usual test involving the
ratio of the sample variance to the sample mean asymptotically equivalent to a test
based on maximum-likelihood estimators? (2) Is the test based on a maximum -
likelihood estimator of cr2 asymptotically optimal in some sense? (3) If it is optimal,
is this optimality robust against various forms of the distribution /(A)?

It is proposed to investigate these problems in later papers but in order to do so we
have first to investigate the asymptotic behaviour of maximum-likelihood estimators
when the true value lies on the boundary of the parameter space.
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We do this by proceeding along the lines of Wald(4). We suppose that F(x, 6) is
either a purely discrete distribution with an enumerable number of points of increase,
or an absolutely continuous distribution on the space of the x's. In the first case we
write/(a;, 6) for the probability of a point, and in the second for the probability density
at x.

We assume that 6 takes values in a closed bounded set £2X which is not necessarily
the whole of the natural parameter space Q of the distribution. In general Qx may
have some boundary points which are also boundary points of Q. For reasons of
convenience and simplicity we take Qx to be the closed subset of Euclidean space
defined by

O<0*<6 i (bt>0) (» = 1,...,*). (3)
We shall be concerned with the situation when one or more of the 6i are zero, and in
particular 61 = 0.

We have as likelihood,

exp £ = / ( * ! , <?).../(Zn,0). (4)

If dx and 62 are parameter points (or other vectors) we write

where A = (A1, ...,Ak), to mean that the components satisfy

d\-e\<Ai for i = l,...,lc.

We also define a distance function by

\ \ i - 6 i \ . (5)

Assumption 1. f(X, 6) is a continuous function of 6 in Q r

The maximum-likelihood estimator is defined to be any function 8(Xlt...,Xn)
which lies in Qx and results in an absolute maximum of L in Q1. By Assumption 1 at
least one such function exists. If there exists more than one such function we select one
by any convenient rule.

Assumption 2. Let Dn be the set of points in the sample space for which the
derivatives

(s L n i j L K ) ( b )

are continuous functions of 6. Then

Prob(0B|0)=l. (7)

Assumption 3. 8 is a consistent estimator of 6, uniformly for 6 in Clv

This will be true if the assumptions set out in Moran (3) are verified but will also
hold in more general cases.

Following Wald we now define

^ ^ , (8)
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where the greatest lower bound is taken for values of 6 satisfying \6 — 6j\ ^ 8.
Similarly we define

where the least upper bound is taken for values of 6 satisfying \d — 6t\ < 8.

Assumption 4. For any sequences {dx(n)}, {62{n)} belonging to Qla and any sequence
{8n}, for which

lim d^n) = lim 62(n) = 6 in Q^ (10)

n = 0, (11)

we have lim E$iM ^(X, 62(n), Sn) = Hm EeM ^(X, 62(n), Sn)

= ^nogf(X,0))

uniformly in 6, where E denotes the expectation.

Assumption 5. There exists e > 0 so that

Egi{^(X,62,Sn and Eei{^(X,62,8)*}

are bounded functions of dx, 62, and 8 in the subset of Qx denned by \0x — 62\ 4, e, and
the interval 0 < 8 ^ e.

Assumption 6. The greatest lower bound, with respect to 0 in Qj, of the determinant
of the matrix

/a»iog/(Z,fl)\
-E°\ dd*ddi )

is greater than zero.

Assumption 7.

for all 0 in Qx, and i,j' = \,...,h. Here the integrals are interpreted as sums if F(x, 6)
is discrete.

Assumption 8. There exists TJ > 0 so that

2+7

(15)

are bounded functions of 6 in Q r

Write fa«Iog/(Z,g)

and (o-y) for the inverse of the matrix (c#). Write zn(0) for the vector whose components
are

£ = »*(**-0*) (»=1,...,A) (17)

where 5 is the true value of the parameter and B is the maximum-likelihood estimator
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THBOBBM I. Suppose that 81 = 0, and 0 < 6l < bjor i = 2,...,k. Then the distribution
function

®n(t,d) = -PT0b(zn<t,d) (18)
converges, uniformly in t and 8, towards the mixture of distributions

Prob (z <t,6) = Pi(t,6) + $F2(t,6), (19)

where Fx(t, 6) is a k-dimensional muUivariate distribution defined on the region

t1 > 0, -oo<ti<oa (i = 2,...,k), (20)

and having in this region a probability density equal to twice the density of a muUivariate
normal distribution with means zero, and covariance matrix equal to (<r.y). F2(t,d) is
a (k — 1)-dimensional distribution concentrated on the subspace t1 = 0, — oo < t1 < oo
for i = 2,. . . , k, and such that the joint distribution ofz2,..., zk is that of the quantities

** = 2 < W (* = 2,...,fc), (21)

where y1, ...,yk are jointly normally distributed with zero means and covariance matrix
(c^), the distribution ofy2, ...,yk being taken conditional on the inequality

i^-ScySoftY^O, (22)
?=2 s=2

where the cr̂ J' are the elements of the matrix

°22 • • °

• - I . (23)

Furthermore, the convergence to the limiting distribution is uniform in t and in the subset
of Qx given by 61 = 0.

Proof. This follows Wald(4) very closely. From Assumption 7 we have

Hence the matrix (ci3) is positive definite by Assumption 4, and so also are all sub-
matrices obtained by striking out rows and columns with the same indices.

6 is the true value of the parameter, and $ the maximum-likelihood estimator. By
Assumption 3, as n tends to infinity, the probability tends to unity that $ is in any
neighbourhood of 6 = (0,62, ...,6k) which is open relative to Qv Since 0 < &1 < bit

for i = 2, ...,k, and the derivatives exist we have

a i . g f l j . , » ) = 0 | f o r f _ 2 k (27)
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If B1 = 0, the derivative in (26) is taken to the right whilst if B1 > 0, (26) becomes
an equality. Consider first the distribution of B conditional on B1 > 0. Then for all
sample points in the set D of assumption 2 we have

a logf(Xs,B) ^diogf(xs,d) i to, < dnogfjx^)
?—W— = ?~~^—+,?/'-*3)? && ~0' (28)

where d1 = 0, and di; depending on i, is a vector lying on the segment joining 6 to 8.
Writing yn for the vector with components

^ S , (29,

and using (17), we get

Let v be arbitrarily small and define Qn{6) to be the subset of Dn for which

8Hogf(X3,0)n ? mm + < v. (31)

Then Vvob{Qn{6),e} (32)

converges to unity as n tends to infinity, uniformly in 9. This is proved by Wald(4)
p. 431, and it is unnecessary to repeat the proof here. Now using the fact that the
determinant of (cy) has a positive lower bound, we conclude from (30) and (31) that
conditional on z\ > 0,

4 &*«+ ve«}, (33)

where e^ is a bounded function of n, 6, and v, and the sample is restricted to points of
Qn(0). From the assumptions made and the standard central limit theorem it follows
that, independently of any conditions on the signs of the z\, the distribution of
(y\, ...,yn) converges, uniformly in 6, towards the multivariate normal distribution
with means zero, and covariance matrix (ci;).

Neyman's C(a) tests are based on the asymptotic distribution of these derivatives
and although in his papers he does impose the condition that the true parameter point
is internal to an open set in the parameter space, it is clear from the above that this
is an unnecessary condition. I t is only for tests based on maximum-likelihood esti-
mators that a special investigation is necessary when the null hypothesis asserts that
the parameter lies on an essential boundary of the natural parameter space.

From the fact that v in (33) can be made arbitrarily small by choosing n large, and
from (32), it follows that the joint distribution of the z\, conditional on z\ > 0, con-
verges, uniformly in 8, to a 4-variate distribution whose density is zero for z\ < 0,
and for z\ > 0 is twice that of a multivariate normal distribution with means zero
and covariance matrix (o-^(0)).

Now consider what happens when 6X = 0. Since 6 gives an absolute maximum to
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the likelihood in £llt we have (26) and (27). Then arguing as above, with an error
which converges to zero uniformly in d,

!&-S*£ey<0, (34)
3 = 2

V\= £ 4 % , for i = 2,...,k. (35)

Thus the h'miting distribution of {z\, ...,z£) is that of the quantities zi in (21) subject
to the inequality (22). This limiting distribution, which is not multivariate normal, is
approached uniformly for 6 in the subset of Qx determined by d1 = 0.

The condition (22) can be written in a simpler form which we need later. Write
(cty) for the matrix obtained by deleting the first row and column of (cy). Write bif for
the minor of (cy) complementary to ciit and similarly &$' for the minor of (c$) com-
plementary to Cy. Then the coefficient of ys (s ̂  2) in (22) is

= -trfvu, (36)
so that (22) can be written

oft1 S <rlsy° < 0. (37)
8 = 1

We now consider the case where more than one of the 01 lie on the boundary. For
simplicity we confine ourselves to the situation where 61 = 62 = 0, 0 < di < 6i for
• = 3 , . . . , * .

THEOREM II. In the above circumstances the quantities z\ have a distribution which
converges, uniformly in 6, towards the mixture of distributions

i^FS, 0) + «»Ja(*. 0) + ̂ F3(t, 6) + a^{t, 0) (38)

where, t being the vector (t1, • • • , t k ) ,
(1) Fjtf, 6) is a multivariate distribution on the space t1 > 0, t2 > 0, —co<ti< oo for

i = 3, ...,k which has the probability density, in this region, of the Ic-variate normal
distribution with means zero and covariance matrix (o^), conditional on the inequalities

z1 = A=Xcrljyi > 0, (39)

z2 = B = Xcr2jyi>0, (40)

and ax is the probability that these inequalities hold in the joint distribution of the yi.
(2) F2(t, 6) is the (k— \)-variate distribution on the space t1 = 0, t2 > 0, — oo < tl < oo

for i = 3, . . . , k for which the density is that of the quantities

* = s <4}y>
3 = 2
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conditional on

I J i V O , (42)

0, (43)

the yi are distributed normally with zero means and covariance matrix (ci3-), and
is defined by (23). a2 is the probability that G < 0, and D > 0.

(3) jfg^, 6) is similar to F2{t, 6) with z1 and z2 interchanged, and {off) replaced by
inverse of the matrix obtained by striking out the second row and column of (ci}).

The conditions are
0) (44)

and F = z1 = Huffy* > 0, (45)

where the sums are taken over j , s, = 1,3,..., k. a3 is the probability that E < 0, F > 0.
(4) F^t, 6) is a (k — 2)-variate distribution on the space t1 = t2 = 0, — oo < t* < oo

for i = 3, ...,k, for which the density is that of the quantities

2* = S o4JV, (46)

where {off) is the inverse of the matrix obtained by striking out the first and second rows
and columns of (c,y), and the distribution is taken conditional on

G = y1-Itc1]
!t^y^O, (47)

j = 3 s = 3

and H = y*- £ c2i £ offy < 0. (48)
i = 3 s = 3

a3 is the probability that G ̂  0, H < 0.

Proof. The proof follows exactly the same modification of Wald's proof required
to prove Theorem 1. Each of the above cases occurs conditionally on two inequalities
involving the quantities y1.

I t is not obvious that given any set of values of {y1,...,yk) that the above set of
conditions are both exclusive and exhaustive. A discussion of this point throws some
light on what happens. Just as in the discussion in Theorem I we can prove at once
that G ̂  0 is equivalent to

o-^-A ^ 0,

or A ^ 0, (49)

since axl > 0. Similarly E ^ 0 is equivalent to

Next we can prove in exactly the same way that G < 0 and H < 0 are respectively
equivalent to F ^ 0, D < 0. We also prove that D is a multiple of axxB — o-12A. To
do this we use a theorem of Jacobi (Mirsky(2), p. 25).

29 PSP 70
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THEOREM III. Let L be the matrix (Zi3). Let Mbea two-rowed minor of L, and L^ the
co-factor oflti in L. Write L* = (L^) and define M' as the cofactor of M in L, and M* as
the minor of L* corresponding to M. Then

M*=\L\M'. (50)

We take the matrix L as (cif). Then L^ is c^|c|, so that L* is (o-w|c|). Take M as
the minor

c,

Then M*is

c n

(To, C

(51)

(52)

M' is then the cofactor of cy in the matrix whose inverse occurs on the right-hand side
of (23) and is therefore equal to a§> |c(1)|. From this it follows that

Hence

Similarly, we can show

We can now

D =

F = <

= 1̂1 °$-

(TiM^B-Or^A).

' write the conditions involved in the four cases as follows.

F&,6).

F2{t,6).

F3(t,d).

FJt,d).

A > 0,

A < 0,

B^O,

crnB-

B>0.

cr11B — o'12A > 0.

o~22A — o~12B > 0.

o~12A ^ 0, o-22-4 — o~12B ^ 0.

(53)

(54)

(55)

(56)

(57)

(58)

(59)

There is no restriction in putting o~n = o-22 = 1 and o~12 = p. Then for any set of
values of the yi, (59) is clearly incompatible with (57) and (58). Adding the two equa-
tions in (56), and the two in (59) we get A+B > 0, and (l-p)A + (l— p)B < 0
which are incompatible. (56) is obviously incompatible with (57) and (58), whilst
from (57) and (58) we get A + B < 0, (1 -p) A + (1 -p) B > 0. Thus the four sets of
conditions are incompatible.

To prove they exhaust all possibilities suppose that (59) is false. Then we must have
one of the following possibilities:

(1) B-pA>0, A-pB>0; (2) B-pA > 0, A-pB^0;

(3) B-pA^0, A-pB>0.

Consider case (1). If B < 0 we get (58). If B > 0 we get (56) if A > 0, and (57) if
A < 0. In case (2) if A < 0 we get (57). Suppose A > 0. We have

(A-pB)-(B-pA) = (l+p)(A-B).

The left-hand side is negative and therefore B > 0, so that we get (56). Case (3) is
symmetric to case (2) and hence the above set of conditions exhaust all possibilities.
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It is also instructive to look at the situation in another way. The quantities yl are

asymptotically distributed in a multivariate normal distribution with means zero
and covariance matrix (ci3). The set of equations

y*= S cvvf (i=l,...,k), (60)

therefore has a unique solution v = (v1,...,vk), which has a 4-variate normal distribu-
tion with means zero and covariance matrix (<ri3). We may call v the ' pseudo-maximum
likelihood point', for if the vt are such that the set of quantities 6l + n~ivi lie in Qv they
coincide, asymptotically, with the rescaled maximum likelihood point. Define the

function A = - 1 S c«(«* - «*) (u> - »*) (61)
a

as a function of the point (u1,..., uk) in the whole Euclidean space. This is proportional
to the logarithmic likelihood which can therefore be studied by studying Lx. Suppose
that either or both of v1 and v2 are negative and consider the hyperellipsoid

2 c«(«* - «*) («* - v!) = K, (62)
a

for varying values of K increasing from zero. Let K increase to the three values where
(62) is tangential to the spaces u1 = 0 (k — 1 dimensional), u? = 0 (k— 1 dimensional),
and u1 = v? = 0 (k — 2 dimensional). The first of these to occur which satisfies u1 > 0,
V? Js 0 will have a tangent point which is, asymptotically, the maximum-likelihood
point with respect to £lx.

Assume first that v1 < 0 and v2 > 0. Then the first point of tangency lying in Qt

will be of the form (0, u2, ...,uk). If u2 > 0 the conditions (42) and (43) will be satisfied.
The only other alternative is that u2 = 0 when the conditions (47) and (48) will be
satisfied. The case v1 > 0, v2 < 0 is symmetric. If v1 < 0, v2 < 0 the first point of
tangency with the space Q± can have u1 > 0, u2 — 0, or u1 = u2 = 0, or u1 = 0, u2 > 0.
Notice that this shows that, contrary to the situation in Theorem 1, we can have
v1 < 0 and B1 > 0.

Theorems I and I I are not adequate for a discussion of the asymptotic power of
tests of hypotheses involving points on the boundary because to obtain the asymptotic
power we also need to consider the asymptotic behaviour of maximum likelihood when
the true parameter is inside Q.lt but approaches the boundary at the rate n~i as the
sample size increases. I t is here that uniformity of convergence becomes essential.

THEOREM IV. Suppose that Assumptions 1-8 are satisfied and that 62,...,6k have
fixed values in open intervals 0 < 0f < 6̂  (i = 2, ...,k), whilst 61 = an~i, where
0 < a < a0. Then uniformly for a in this interval the joint distribution of z1, ...,zk will
tend to a mixture of distributions

(63)
where

(1) Fx(t) is a k-variate distribution on the space t1 > —a, —co<ti<oo(i = 2,...,k),
whose probability density is that of a multivariate normal distribution with means zero
and covariance matrix (o-^), conditional on z1 > —a.

29-3
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(2) F2(t) is a (k — 1) variate distribution on the space t1 = —a, —co<tl<co
(i = 2 , . . . , k), which is such that the joint distribution ofz2, ...,zkis obtained in the following
way. The z* are the solutions of the set of equations

z1 = —a,
k

yi = acu+ 2 Cyzi (i = 2, ...,&), (64)

where yx,...,yk are jointly normally distributed with zero means and covariance matrix
(cw) conditional on

y1-acn--Elcljz^O. (65)

Proof. This runs exactly as in the previous theorems, a is obtained as follows.
Consider the distribution of z1. When z1 > 0 this is a distribution with a density equal
to that of a normal distribution with mean zero and variance o~iv Thus we must have

a = Prob (z1 > — a)

1 f« /= r e x p l - du.

Theorem IV is easily generalized to cases where more than one of the di are zero.

I am indebted to Dr W. Du Mouchel for some helpful criticism. Part of the above,
work was carried out in the Department of Statistics, University of California
Berkeley under a grant (GM 10525(07)) from the U.S. National Institutes of Health,
Bethesda, Maryland.
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