
Biometrika Trust

Maximum Likelihood Estimation in Semiparametric Selection Bias Models with Application to
AIDS Vaccine Trials
Author(s): Peter B. Gilbert, Subhash R. Lele, Yehuda Vardi
Source: Biometrika, Vol. 86, No. 1 (Mar., 1999), pp. 27-43
Published by: Biometrika Trust
Stable URL: http://www.jstor.org/stable/2673534 .

Accessed: 10/04/2011 21:06

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless

you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you

may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=bio. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed

page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of

content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms

of scholarship. For more information about JSTOR, please contact support@jstor.org.

Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=bio
http://www.jstor.org/stable/2673534?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=bio


Biometrika (1999), 86, 1, pp. 27-43 
?D 1999 Biometrika Trust 
Printed in Great Britain 

Maximum likelihood estimation in semiparametric selection 
bias models with application to AIDS vaccine trials 

BY PETER B. GILBERT 
Department of Biostatistics, Harvard University, Boston, Massachusetts 02115, U.S.A. 

pgi1bert(hsph.harvard.edu 

SUBHASH R. LELE 
Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A. 

slele(welchlink.welch.jhu.edu 

AND YEHUDA VARDI 
Department of Statistics, Rutgers University, New Brunswick, New Jersey 08903, U.S.A. 

vardi(stat.rutgers.edu 

SUMMARY 

The following problem is treated: given s possibly selection biased samples from an 
unknown distribution function, and assuming that the sampling rule weight functions for 
each of the samples are mathematically specified up to a common unknown finite-dimen- 
sional parameter, how can we use the data to estimate the unknown parameters? We 
propose a simple maximum partial likelihood method for deriving the semiparametric 
maximum likelihood estimator. A discussion of assumptions under which the selection 
bias model is identifiable and uniquely estimable is presented. We motivate the need for 
the methodology by discussing the generalised logistic regression model (Gilbert, Self & 
Ashby, 1998), a semiparametric selection bias model which is useful for assessing from 
vaccine trial data how the efficacy of an HIV vaccine varies with characteristics of the 
exposing virus. We show through simulations and an example that the maximum likeli- 
hood estimator in the generalised logistic regression model has satisfactory finite-sample 
properties. 

Some key words: Biased sampling model; Confidence interval; Generalised logistic regression model; Human 
immunodeficiency virus vaccine efficacy trial; Hypothesis testing; Partial likelihood; Profile likelihood; 
Semiparametric model; Weighted distribution. 

1. INTRODUCTION 

Biological vaccine efficacy is commonly defined as VE = 1 - RR, where RR is the relative 
risk among vaccinated and unvaccinated persons of infection resulting from a single expo- 
sure to the infectious pathogen. Since the human immunodeficiency virus (HIv) exhibits 
broad genotypic and phenotypic diversity, it is important to investigate how the vaccine 
efficacy of a candidate HIV vaccine may vary with characteristics of the exposing HIV. 

Measurements of characteristics of viruses isolated from study participants infected during 
a preventive placebo-controlled vaccine efficacy trial can be used to make this assessment. 
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The difficulty is that only those HIV types which cause an infection can be observed, so 
that the available dataset is from an improper subset of trial participants. As a conse- 
quence, HIV type-specific exposure-adjusted infection rates in the placebo and vaccine 
groups cannot be directly calculated. Thus, there is a selection bias in assessing type- 
specific vaccine protection from viral data extracted from participants who become infected 
while enrolled in preventive vaccine trials. Berman et al. (1997) called this problem 'sieve' 
analysis, where the sieve is the vaccine's strain-specific barrier to infection. 

When there are K distinct HIV types of interest and failure times are measured, compet- 
ing risks methods may be considered (Prentice et al., 1978). However, the rarity of HIV 
infection implies that over 90% of participants will be censored by not becoming infected 
during the trial. Secondly, defining and measuring the infection time is problematic because 
several months may pass before maximum vaccine immunity is achieved, and the infection 
time endpoint is infrequently ascertained and may be interval censored. 

Gilbert et al. (1998) used the simpler endpoint infection status at study termination in 
the aforementioned case in which viral variation is described by K categories. Here assume 
viruses are ordered by a continuous distance from the prototype virus or viruses used in 
the vaccine preparation. This distance may be, for instance, a protein dissimilarity score 
such as the Hamming distance based on the amino acid sequence of some viral coding 
region. 

Let Y be a random variable denoting the distance of an observed infecting strain. Let 
F denote the 'baseline' distribution of Y among infected trial participants who received 
placebo, and let FV denote the distribution of Y among infected vaccinated trial partici- 
pants. We observe samples from F and from F, The generalised logistic regression model 
relates these two distributions in the following way: 

Y exp{Ig(u , O)} dF (u) 

FV(y) = 
0 exp {g(u, 0)} dF (u) (Y [0, o)), (11) 

where g(y, 0) is a given function and 0 is an unknown d-dimensional parameter. We 
require g(O, 0) = 0 for identifiability. Simple practical choices of g(y, 0) are a linear form, 
g(y, 0) = yO, and a quadratic form, g(y, 0) = Y0i + Y202 Note that FV is a weighted version 
of the baseline distribution F (Patil, Rao & Zelen, 1988). 

The model generalises a categorical linear logit model: if Y is categorical, with possible 
values y = 0, ... , K, then (1 1) equivalently expresses 

log pr(Y-= F) log {pr(Y-= F) ?g(Y 0). 

The primary motivation for the generalised logistic regression model is the useful interpret- 
ation of the 'differential vaccine efficacy parameter' 0. Gilbert et al. (1998) identified 
assumptions of exposure and infection dynamics of the circulating HIV strains in the trial 
population under which the log-odds-ratio g(y, 0) equals log{RR(y)/RR(O)}, where RR(Y) 
is the relative probability among vaccinees and non-vaccinees that a single exposure to a 
strain of distance y leads to transmission. Therefore, the relationship between vaccine 
protection and strain distance can be directly assessed: for any two strain distances Yi and 
Y25 log{RR(y1)/RR(y2)} is estimated by g(y1, 0) -g(y2, 0). Thus the model approximately 
accounts for the sieve selection bias by enabling estimation of an interpretable parameter. 

The two-sample generalised logistic regression model (1 1) also generalises easily to an 
s-sample situation where s corresponds to the number of groups in the trial. Let F denote 
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the distribution of infecting distances observed in the sth group, which we take to be the 
baseline distribution. Let 0 be a d-dimensional parameter and gi(y, 0), for i = 1, ... , s - 1, 
be given functions satisfying gi(O, 0) = 0. Then an s-sample model is formed by combining 
the sample ys = (Ysl, . . .s, yns) from F with the s - 1 samples yi(y, Yini) for ni > 1, 
from the distribution function 

f exp{fgi(u, O)} dF(u) 
Fi(y) =Ja expgi(u, 0)}dF(u) (Ye [0, o)). (12) 

A practical choice for the functions {gk} is gi(y, 0) = =1gik(y)0k, where gik are given 
functions of y independent of 0, and satisfy gik(O) = 0. 

Although the unknown baseline distribution F might be given a parametric form, for 
the HIV application we prefer to leave the model flexible with respect to the baseline 
distribution, and to view the generalised logistic regression model as semiparametric, 
where the regression relationship is parametric and the baseline distribution is left non- 
parametric. Model (1 2) is an example of an s-sample semiparametric selection bias model 
as shown in ? 2. 

Selection bias models or weighted distributions arise in many other practical situations. 
Patil et al. (1988) and Patil & Rao (1977, 1978) give excellent reviews of the statistical 
properties of these models and describe various situations in wildlife management, biology, 
fisheries, geology, etc. where these distributions arise. Of the many areas of application 
we highlight only case-control studies in biostatistics (Prentice & Pyke, 1979) and stratified 
or truncated regression (Bhattacharya, Chernoff & Yang, 1983). 

Nonparametric inference about F was first considered by Cox (1969) for the case of 
length biased sampling, where the weight function is w(y) = y and there is only one sample. 
Vardi (1982, 1985) generalised this procedure to the case of s independent samples from 
the same population but each with a different, but known, weight function wi(.). 

Thus far, estimation of F has been considered mainly for the fully parametric case where 
both the weights and F belong to parametric families, and for the fully nonparametric 
case where the weights are completely specified but F is nonparametric. Sun & Woodroofe 
(1997) introduced a semiparametric approach by estimating the weight nonparametrically 
and F parametrically for the one-sample model. Here we leave F nonparametric, but 
assume that the weight function of the ith sample is wi(., 0), for some parameter 0, and 
the sampling density of the ith sample is proportional to wi(., 0)f(.). We provide a simple 
procedure for simultaneously estimating 0 and F. 

In ? 2, we introduce the notation and mathematical formulation of the problem. In ? 3 
we discuss identifiability issues. The model is identifiable for most choices of weight func- 
tions when there are two or more samples, but rarely so in the one-sample case. In ? 4, 
we present the maximum likelihood estimation procedure, and discuss conditions on the 
weights and data under which a unique maximum exists. In ? 5, a simulation study of the 
maximum likelihood estimate (0, F) in the two- and three-sample generalised logistic 
regression model is presented, illustrating consistency and other results. An example based 
on real Thai HIV-1 sequence data is given in ? 6. The Appendix contains proofs of theorems 
displayed in the paper. 

2. NOTATION AND MATHEMATICAL FORMULATION 

Suppose we observe Il, ... .,In, independently and identically distributed with 
pr(Ij = i) = Ai, with ll + . .. ?+ As = 1, where the selection probabilities Aiu are not necessarily 
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known. For example s is the number of vaccine groups and I indicates the group. 
Conditional on I = i, we observe yi (Yil( ... , Yini) for ni > 1, a random sample of size ni 
from the cumulative distribution function 

Y 

Fi(y, 0, F) = WI(O, F)' 0 wi(u, 0)dF(u) (i= 1,..., s), (241) 

where 0 is an unknown real or vector-valued parameter, F is an unknown cumulative 
distribution function, and 

Wi(O, F) { wi(u, 0) dF(u) 
J-oo 

is the ith normalising function. The weight functions wi(., 0) are assumed to be nonnegative 
and of a known parametric form. The normalising functions WI4(O, F) are assumed to be 
finite and positive for all 0 in the parameter space 0 c Rd. 

The model arising from (21) is an s-sample selection bias model. Comparing (1-2) and 
(2 1) shows that the s-sample generalised logistic regression model is an s-sample selection 
bias model. For instance, the two-sample model has weight functions w1 and w2, corre- 
sponding to the vaccine and placebo groups, respectively, given by w1(y, 0) = exp {g(y, 0)} 
and W2(Y, 0) = 1- 

Following the notation of Vardi (1985), denote the size of the ith sample by ni, the total 
sample size by n = n1 + . .. + ns, and the ith sampling fraction by Ani = niln. Then a semi- 
parametric likelihood estimate of 0 and F maximises the likelihood 

S ni W,(Yj O)f(yij) 
L(O, F I Y) = fHwu, 0) dF(u) (2.2) 

with respect to 0 E( 0 and F over all distribution functions. 
Since F is constrained only to be a distribution function the maximisation problem is 

of infinite dimension. The key result of this paper is that, subject to identifiability and 
estimability conditions, this maximisation problem is equivalent to maximising a partial 
likelihood which turns out to be a maximisation problem of fixed dimension. 

3. IDENTIFIABILITY 

First suppose 0 E 0 is known. Suppose the sample space equals [y: wi(y, 0) > 0 for some 
i E {1,..., s}], and that 

T I{Wi(y, 0) > 0}I{wk(y, 0) > 0} dF(y) > 0 

for all i, k E {1,. . ., s}. As in Gill, Vardi & Wellner (1988, p. 1072), these conditions are 
necessary and sufficient for F to be identifiable when 0 is known. In what follows, assume 
these conditions hold for all 0 E 0. Note that they automatically hold if all of the weight 
functions are strictly positive. 

Now consider identifiability of unknown 0 and F. When there is only one sample, the 
identifiability issue is complicated. For example, suppose w(y, 0) = y O'. Then the pairs 
(0, f) and (0 + c, Iy -Cf(y)) give rise to the same likelihood function for any value of c, 
assuming the integral exists, and so the pair (0, F) is not identifiable. This example is 
typical of the single-sample case. If w is such that either w(y, 0)/w(y, 0 + c) or 
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w(y, 0)/w(y, Oc) is constant in 0, then the pair (0, F) is nonidentifiable. In fact, for any w, 
the pair (w(y, 0), F) and the pair (h(y)w(y, 0), h-'(y)F(dy)/ h-'(u)F(du)), for an arbitrary 
h > 0 for which the integral is finite, give the same likelihood. Thus it is often impossible 
to estimate both 0 and F uniquely. 

The situation is different when the domain of w(y, 0) depends on 0, in which case it is 
usually possible to estimate consistently 0 and the conditional distribution of F. For 
instance, in the simple case in which F is supported on the whole real line and w(y, 0) = 
I{y < 0}, 0 is consistently estimated by the largest observation, and I{y < 0}F(y)/F(O) is 
consistently estimated by the sample distribution function; clearly there are many F's for 
which I{y < 0 }F(y)/F(O) is the same. Theorem 1 gives a sufficient condition for identifi- 
ability in the one-sample case. Let D(O) be the collection of y's for which w(y, 0) is strictly 
positive. 

THEOREM 1. Let s = 1. If the domain D(O) depends on 0, in that F{D(0) - D(O)} > 0 or 
F{D(0) - D(0)} > 0 for all 0, 0 E 0 with 0 * 0, then the one-sample selection bias model is 
identifiable. 

For the s-sample case, with s > 2, identifiability is less of a problem. When one of the 
weight functions is independent of 0, the class of identifiable models can be characterised 
by a simple condition on the weight functions. 

THEOREM 2. Let s > 2, with ws independent of 0. Then the s-sample selection bias model 
is identifiable if and only if the following condition holds: for all 0, 0 Ec 0 with 0 t 0, there is 
at least one weight function wi, for i E {1, ... , s - 1}, such that wi(y, 0) and wi(y, 0) are 
linearly independent as functions of y. 

A large class of weight functions satisfy the condition of Theorem 2. For instance, 
consider an s-sample model with ws known and one weight function, wl, say, of the form 
w1 (y, 0) = exp {g(y)h(0)}. If the real-valued function g is nonconstant with g(O) = 0, and 
the real-valued function h is one-to-one, then the condition holds. Next consider model 
(1 2), with 

d 

gi (Y5 0) Y gik (Y) Ok gik (0) = ? (i =1 .. * *, S- 15 k = 1, .., d). 
k=1 

It is straightforward to show that the condition of Theorem 2 holds if and only if, for 
some i E {1, ... , s - 1}, the functions {gil, ... ., gid are linearly independent. This holds 
for all interesting generalised logistic regression models. Another selection bias model 
satisfying the condition is one with a dth degree polynomial weight function with known 
intercept and unknown coefficients 0 = (01, ..., Od)'. 

In the general situation, if one does not want to assume that one of the weight functions 
is completely known, the following condition is sufficient for identifiability. 

THEOREM 3. Suppose there exist weight functions wi and Wk, for i, k E {1, .. ., s}, it k, 
such that thefunctions Wi(y, O)Wk(y, 0) and wi(y, O)Wk(y, 0) are linearly independent in yfor 
all 0, 0 EE 0 with 0 t 0. Then the s-sample selection bias model is identifiable. 

Since the identifiability condition of Theorem 2 or 3 only involves two of the s weight 
functions, the class of identifiable models grows with s. In fact, any s-sample model is 
identifiable if two of its weights compose an identifiable two-sample model. It also holds 
that a two-sample model is identifiable if one of its parametric weights forms a one-sample 
identifiable model. 
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The condition in Theorem 3 is not necessary. For a counter-example, consider the 
two-sample model with w1(y, 0) = I{y > 0}, w2(y, 0) = cI{y > 0}. For c > 1 this model is 
identifiable by Theorem 1 and the remark in the preceding paragraph. In general, it 
appears that, if all pairs of weight functions are linearly dependent in y for each fixed 0, 
the model will not be identifiable unless the domain of each weight function depends on 0. 

In what follows, we assume that the selection bias model satisfies the conditions of 
Theorem 2, so that s > 2, WS is known, and the model is identifiable. Under these conditions 
we describe a simple procedure for deriving the maximum likelihood estimates. 

4. MAXIMUM LIKELIHOOD ESTIMATION 

4-1. The likelihood 
Rewrite the likelihood in the following form. Let tl,..., th be the distinct observed Y 

values, with multiplicities r1, ... ., rh. Let nij (i = 1, . . . , s, j = 1, ... , h) be the number of 
observations from the ith group with value t1. Then the likelihood of the data (2 2) can 
be rewritten as 

L(O,FIy)= H H 1 Wi(.j ) (4.1) 
i=i j=i 1 

As in Vardi (1985), clearly L= 0 if any ti is a continuity point of F, while L> 0 if f(tj) > 0 
(j = 1, ... , h). Furthermore, for any given 0, if F assigns positive mass to a Borel 
set outside {tl, . . ., th}, then F can be replaced with a distribution G satisfying 
L(O, F) K L(O, G). Thus, in order to find an F that maximises (4 1), we can restrict our 
search to the class of discrete F's which have positive jumps at each of the points tl, . . ., th, 
and only there. Put Pl = f(tl),... , Ph = f(th), and denote the likelihood function by 
L(0, p I y) _ pr(O,)(yl, . . . , ys). Then our problem is to maximise 

L(O, P I Y) = HII '()J (4 2) 

subject to e 0 and j= pj = 1, for pj > O, where we put 
h 

P = (Pi, ., Ph), Wij(O) = wi(tj, 0), (0, p) = Y wij(O)pj (i = l, . . ., s, j = 1, . .. , h). 
j=l 

4 2. Maximum partial likelihood estimation procedure 
Let FM be the mixture distribution over the s samples, with density defined byfM(tj, 0) = 

Ei ;ni {wii(0)pi/IW(0, p)}. The full likelihood can then be factorised as 

L(O,pl Y)= h{w H (wj()pjlw/(O P} x H H {fM(tj, 0)}fnij 
i=l j=l fM( j, 0) i=l j=1 

Consider the first term, which we denote by L1(0, p I y). Set VJ = WI(O, F), suppressing the 
dependence of VJ on 0 and F. Set V = (V1, . . ., Vs)'. Then this partial likelihood simplifies 
to 

S h f wiJ(0)V7' nij 
L1(O, VIy)= 5.i7d=1Ifkk(OV (4-3) 

=1 j1 k INk'ki(0 V 
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As we show in the proof of Theorem 4, we can behave as if the parameters {JV} are 
free, subject to the constraint that they are positive. For estimability one of the weight 
functions must be constant, so suppose ws(y, 0) = 1 for all y and 0, which forces Vs = 1. 
This corresponds to the assumption of strong connectivity of a certain graph F(O) for 
all 0 E( 0, defined in Vardi (1985) and restated here. For i, k E {1, ... ., s}, we say 
there is a directed path from a vertex i to a vertex k, as i -+ k, if and only if 
wil(O)nkl + * * * + Wih(O)nkh > 0. The graph F(O) defined on the s vertices {1,- . , s} is said 
to be strongly connected if, for every pair (i, k), there exists a directed path from i to k 
and a directed path from k to i. 

The following procedure then yields the joint maximum likelihood estimate (0, F). 

Step 1. Maximise L1 over 0 and V, subject to 0 E (D, V1 > O, V2> O, , Vs 1 > O, Vs = 1 
to obtain (0, V). 

Step 2. Compute Vardi's nonparametric maximum likelihood estimator F F(0) from 
data with 'known' weight functions wi(., 0), with ws(., 0) 1. 

Step 3. Then Wi = Vi= wi(y, 0) dF(y) (i = 1,.. , s) automatically. 

Step 1 can be accomplished via profile likelihood. For fixed 0 E 0, let 

V(0) = (Vi (4) VS - 1 () 1 ) 

be the unique solution of 
h rjwij 

HiIV,(O), . . ,Vs(O)J = Vi -1 E 0(0) Y)=1( =1 ,s )(4 4) 
J =lZk =lnk Wk (O) Vk 1(0) 

in the region V1(0) > 0, . . ., Vs 1(0) > 0, Vs -= 1. Vardi (1985) proved that there exists a 
unique solution to (4 4) if and only if the graph F(O) is strongly connected. The estimator 
0 is the argument which maximises the profile partial likelihood Lpr defined by 

Lpr(O) H El ={4 } (4*5) 
i=1 j=k Wk1 nk Wkj (0) kJ 

With V= V(0), Step 2 proceeds by setting A 

= p(0), where 

57 k nk Wkj (0 ) Y;k 

Thus the semiparametric estimator of F is 

n =Ittj Ity}{ rj/=l nkwk (0) Vkf } 
F(y) = ~ Z' 1{rk/=1 n k(A)Vkj n L =1 { rjl nk k =1 n kj (0) Vk} 

The above procedure, based on Vardi (1985), is computationally attractive because it 
requires computation of F on only one occasion; once (0, V) is obtained, p is obtained 
through substitution only. Thus, in essence, the procedure only requires maximising a 
function depending on finite-dimensional parameters and solving a system of equations 
of fixed dimension (s - 1). Theorem 4 asserts that this procedure indeed yields the maxi- 
mum likelihood estimator. 

THEOREM 4. Suppose s > 2 with ws =1 and that the identifiability condition of Theorem 2 
holds. Further suppose that the graph SF(O) is strongly connected for all 0 EE 0. Then, if 
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(0, F F) obtainedfrom Steps 1-3 maximises the partial likelihood (4 3), it maximises the full 
likelihood (441). 

4 3. Estimability and uniqueness 
In this section we study conditions on the weight functions and the data which guarantee 

that problem (4 2) has a unique maximum. Assume the weight functions are differentiable 
in 0. Let the d-vector vi(y, 0) denote the derivative of wi with respect to 0 evaluated at (y, 0). 

Under strong connectivity of the graph F(O) for all 0 E( 0, the problem will have a 
unique maximum if the logarithm of the profile partial likelihood (4 5) is strictly concave 
on 0. Theorem 5 gives a sufficient condition for this to hold for two-sample models, which 
is satisfied by all generalised logistic regression models imagined to be interesting. 

THEOREM 5. Suppose s = 2, W2 1, v1(y, 0)/w1(y, 0) is not degenerate at the d-unit vector, 
there is at least one observation in each group, and (02/002) logJ{w(y, O)} = 0, the d x d zero 
matrix. Then, if the graph F(O) is strongly connected for all 0 EE 0, the logarithm of the 
profile partial likelihood (4 5) is strictly concave on 0. 

The conclusion of Theorem 5 also holds for s-sample selection bias models with weight 
functions satisfying vP1(y, O)/wl(y, 0) = ... = vs- 1 (y, 0)/ws - 1 (y, 0) for all y and 0. 

Now consider arbitrary s > 2 with ws = 1. We have been unable to determine conditions 
under which the log profile partial likelihood is strictly concave in 0 or under which the 
log partial likelihood is strictly concave jointly in 0 and V. Theorem 6 provides a partial 
solution, giving sufficient conditions on the weight and data for L1 to have a unique 
maximum marginally in V for fixed 0 and in 0 for fixed V. 

THEOREM 6. (i) For fixed 0 EE 0, suppose the graph F(O) is strongly connected. Then 
L1(VI 0, y) has a unique maximum. 

(ii) Suppose (02/002) log{wi(y, 0)} = 0 (i = 1,-.. , s - 1) and, for all i, k E {1,.. ., s - 1} 
with i < k, and all y and 0, 

w~i(Y, O)lWi(Y, 0) <- Wk(Y, O)lWk(Y, 0) 

if and onlyif fvi(y, 0) 1< vk(y, 0). Then log L1(O I V, y) is strictly convave on 0 c R, so that it 
has a unique maximum. 

The condition in (ii) guarantees log {L,(O I V, y)} strictly convave on 0, but, as seen in 
the full proof, is not at all necessary. All that must happen is that, for i < k, 

{Wk(tj, 0)/wk(tj, O)} - {vi(tj, 0)/wi(tj 0)}, vWk(tj, 0) - vi(tj, 0) 

tend to have the same sign for j = 1, . . . , h. 

5. SIMULATIONS 

We study the performance of (0, F) through computer simulations of the two- and three- 
sample generalised logistic regression models. We investigate bias and estimation of vari- 
ance via observed inverse generalised Fisher information and via the bootstrap. The boot- 
strap is attractive because it is first-order asymptotically correct; see P. B. Gilbert's 1996 
University of Washington Ph.D. thesis. We also study the power of likelihood ratio, Wald 
and score tests of the hypothesis {Ho: 0 = O} of uniform vaccine protection, and the cover- 
age accuracy of confidence intervals derived from these test statistics. 
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We take Y to be the percent amino acid difference between an observed infecting virus 
and the global subtype B consensus virus in the V3 loop region of the HIV-1 envelope 
gene. This definition is motivated by the functional importance of the V3 loop. For the 
two-sample generalised logistic regression model (1 1), take g to be linear, scaled by the 
maximum observed subtype B distance of 35%. Thus the log relative risk ratio is given 
by lOg {RR(y)/RR(0)} = 31yO. We consider three values of 0: 0, 2 and 4. The value 0 = 2 
implies the relative risk at y = 35 is RR(35) = exp(2) RR(0) = 7 39 RR(0), while the value 
0 = 4 implies RR(35) = 54 60 RR(0). For the three-sample model (1 2) with two vaccine 
groups and a placebo group 0= (01, 02)' iS two-dimensional, where gl(y, 01) and g2(y, 02) 
describe dependency of vaccine efficacy on distance for the first and second vaccines, 
respectively. We take gl = 92 = g. 

Four baseline distribution functions F are considered, the first three members of the 
beta family. These are Un(0, 35), N([u, cr2) and Ex([u/2). Real HIV-1 sequence data are 
used to guide the selection of ,u and y2. The global subtype B V3 loop consensus and 159 
subtype B V3 loop sequences from United States infections are available from the public 
sequence databank of the Los Alamos National Laboratory; see Los Alamos National 
Laboratory technical report MS K710 by B. Foley and B. Korber. The parameters ,u and 
o are taken to be the sample mean and sample variance of the 159 computed distances, 
giving j2=1157% and 2 = 710 %2 The frequency distribution of these distances is 
depicted in Fig. l(a). The fourth baseline distribution is constructed from observed 
distances of HIV-1 isolates in Thailand, where HIV-1 subtypes B and E circulate. From 
30 Thai subtype B sequences and 64 Thai subtype E sequences from the Los Alamos 
library, and assuming a relative prevalence of 40% B and 60% E (Vaniyapongs et al., 
1996), we constructed the empirical baseline distribution, illustrated in Fig. 1(b). For this 
Thai distribution we take g(y, 0) = 71 yO, as the maximum observed distance is nearly 70%. 

(a) U.S. distance distribution (b) Thai distance distribution 
50 50 

40 40 

_30 _30 

20 7,u20 

10 X X10 

0 _ _ __0 _ _ _ _ 

0 10 20 30 40 0 20 40 60 80 
Strain distance (%) Strain distance (%) 

Fig. 1. (a) The distribution of the V3 loop amino acid distance between 159 
U.S. subtype B sequences and the global subtype B consensus sequence. 
(b) The distribution of 94 V3 loop amino acid distances of infecting strains 

in Thailand. 

Four sample sizes in terms of the number of infections occurring during the trial are 
considered, representing vaccines with overall efficacy 0% and 50%. 

For each combination of the above parameter values, the statistics were computed 1000 
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times. Details of the computations can be found in P. B. Gilbert's dissertation. We now 
present a fraction of the simulation results; for a complete report see the dissertation. 

The maximisation algorithm converged for 98&2% of generated datasets. Figure 2 dis- 
plays the log profile partial likelihood of (4 5) as a function of 0 for a representative sample 
of 16 of these datasets, 8 for the two-sample problem and 8 for the three-sample problem. 
The log profile partial likelihood is visibly strictly concave in all cases, corroborating 
Theorem 5. 

F uniform 

0= -000 0=3 96 0=001, 0 32 0 2055 3 76 
0 9 

-5 4 
-10 -1 
-15 -61/ 

-4 -20 2 4 0 2 4 6 8 
0 0 0o 2 - 0 

F normal 

=0-062 0=3 98 0=0 18,-0 16 0=2 57, 3 97 
-1 ~~~~~~6 
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F exponential 

O=-000 0=395 0 030,005 0=2165391 
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0 0 02 0 

F Thai 
0= -004 0=398 0 005 022 0 227 385 

0 6 
-51 
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-15 -9 

-4 -20 2 4 0 2 4 6 8 
0 0 

Fig. 2. Plots of the log profile partial likelihood versus 0 for a spectrum of generated datasets. The obtained 
0 is written above each plot. The first two columns are plots for the two-sample problem representing sample 
size np = 100, nv = 50; the second two columns are plots for the three-sample problem representing sample 

size np = 100, nv1 = 50, nv2 = 25. 

Tables 1-3 display simulation results for the two-sample problem. As reported in 
Table 1, 0 is unbiased in large samples, demonstrating asymptotic consistency. In small 
samples 0 is positively biased, most noticeably when 0 = 0 or 0 = 4, and when F is not 
distributed uniformly. In all cases the finite-sample and observed generalised Fisher infor- 
mation variance estimates are close in magnitude, demonstrating consistency of the 
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Table 1. Bias and variance of the maximum likelihood estimator 0; finite- 
sample variance S2, observed generalised Fisher information variance 

estimate varF, bootstrap variance estimate varB 

np nv 0 Bias s2 var var Bias s2 varF varB 
F uniform F normal 

100 100 0 -0 01 0-24 0-24 0.20 -0 03 0 47 0 50 0 33 
50 25 0 -0 00 0-71 0 76 0 52 0 24 1 21 1-56 0-96 

100 100 2 0-02 0 30 0-29 0 30 -0 01 0 52 0 54 0 57 
50 25 2 0 08 0 97 0.95 1 01 0-20 1 63 1-71 1 78 

100 100 4 0-08 0 49 0-46 0-48 0 01 0 66 0 67 0-72 
50 25 4 0-27 1-87 1-67 1-77 0-29 2 28 2 14 2 67 

F exponential F Thai 
100 100 0 007 067 079 047 001 049 052 0-38 
50 25 0 0 38 1-48 2-49 1-66 0-21 1-26 1-63 0 97 

100 100 2 0 05 0-64 0-64 0-67 0 04 0 54 0 53 0 54 
50 25 2 0 10 1 68 1.91 1-92 0-12 1-80 1-65 1-55 

100 100 4 0-06 0-64 0-65 0 67 0 09 0-67 0 62 0 66 
50 25 4 0-23 1-94 1-87 2 27 0-25 2 19 1 96 2 23 

information variance estimator. The bootstrap variance estimate is also close to the finite- 
sample variance, but tends to be slightly smaller when 0 = 0 and slightly larger when 
0 = 2 or 4. Note that the variance estimates increase with 0. They are of comparable 
magnitude for F normally, exponentially and Thai distributed, and about 50% lower for 
F uniformly distributed. 

For distances generated from F uniformly, normally or Thai distributed, size and power 
are very similar for the likelihood ratio, Wald and score tests. As shown in Table 2, they 
have nominal size. When F is exponentially distributed, the score test is more powerful 
than the likelihood ratio and Wald tests, which are slightly conservative. Generally power 
is equal for F normal, exponential and Thai, and higher for F uniform. For example, 
consider a trial with 150 infections, 100 in the placebo group. With size 0 05, the power 
to detect 0 = 2 is 0&65, 0 66, 0-66 and 0-89 for F normal, exponential, Thai and uniform, 
respectively. 

Table 2. Power of likelihood ratio (LR), Wald and score tests of Ho: 0 = 0 
with cL = 0-05 

F uniform F normal F exponential F Thai 
np nv 0 LR LR LR Wald Score LR 

100 100 0 0 05 0 05 0 02 0-02 0-04 0 05 
50 25 0 0 04 0 03 0-02 0-02 0 04 0 03 

100 100 2 097 0-81 079 077 086 084 
50 25 2 0 61 0 40 0 37 0 33 0-51 0-41 

100 100 4 1 00 1 00 1 00 1 00 1 00 1 00 
50 25 4 0.99 0 93 0.99 0 97 0.99 0 92 

Table 3 shows that the confidence intervals derived from the score statistics are sym- 
metric about the true value 0 =0 and 0 = 2, and mildly skewed to the right about 0 = 4. 
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The confidence intervals derived from the likelihood ratio and Wald statistics have gener- 
ally similar performance, not shown. 

Table 3. Score statistic confidence intervals about 0, oc = 0 05 

np nv 0 F uniform F normal F exponential F Thai 

100 100 0 -1 16, 1 12 -1 55, 1 58 -1 38, 1 84 -1 63, 1 88 
50 25 0 -168, 214 -181, 335 -171, 317 -160, 307 

100 100 2 0 93, 3 03 0 66, 3 49 0 52, 3 59 0 62, 3 58 
50 25 2 028, 401 -0 15, 442 0 18, 492 -0 12, 468 

100 100 4 277, 550 258, 553 301, 478 253, 611 
50 25 4 1 81, 660 1 67, 726 233, 641 1 59, 668 

Wald-based and profile likelihood-based confidence intervals have nearly identical 
coverage probabilities, and are within one or two percent of the correct probabilities, not 
shown. They are most accurate when 0 = 2 or 4, and slightly conservative for each distri- 
bution when 0 = 0. 

Gaussian quantile-quantile plots of 0, not shown, illustrate approximate asymptotic 
normality of 0. The distribution of 0 is skewed to the right relative to a normal distribu- 
tion when the sample size is small and 0 = 4, most so when F is exponential. 

Figure 3 contains plots of F for each baseline distribution, with 95% confidence bands 

(a) (b) (c) (d) 
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Fig. 3. Datasets generated with np = 100, nv = 50 and 0 =2. (a), (b) F uniform; (c), (d) F normal; (e), (f ), F 
exponential; (g), (h), F Thai. (a), (c), (e) and (g) show the mean of F across the 1000 replications, with 95% 
symmetric asymptotic normal approximation confidence bands. The true distribution is depicted by a solid 

(e) ~ in.(),() (f) (g) (h)nld 5%bosrpcnfdnebns 
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derived from the bootstrap and from an asymptotic normality approximation using the 
observed Fisher variance estimate. For all parameter settings the true distribution and its 
average are superimposed, so evidently F is unbiased. The sample variability of F, not 
shown, is slightly larger than as indicated by the bootstrap bands, and slightly smaller 
than as indicated by the normal approximation bands. The shape of the bootstrap confi- 
dence bands matches the shape of the sample variability. The estimator F behaved very 
similarly for all other sample sizes and true 0 values. 

For the three-sample problem, 0 performs similarly as in the two-sample problem when 
the sample sizes are balanced across the groups, but poorer for unbalanced sample sizes. 
In the unbalanced case 0 exhibits positive bias, and the asymptotic variance estimate tends 
to be greater than the finite-sample variance. Moreover, the likelihood ratio and Wald 
tests are conservative, although the score test performs as well as in the two-sample 
problem. The estimator F performs as well as in the two-sample problem. 

In conclusion, (0 F) has satisfactory finite-sample properties. Performance of estimates, 
tests and confidence intervals for 0 is best when the true baseline distribution F is uniform, 
acceptable when F is normal or Thai, and appreciably worse when F is heavily skewed, 
i.e. exponential. The semiparametric estimator F performed well in all cases. 

6. EXAMPLE 

We now illustrate how the generalised logistic regression model can be applied to data 
arising from a large-scale preventive HIV vaccine trial. Since such a trial has not yet been 
conducted, we use a pseudo-example in the setting where the first international Phase III 
trial is underway, in Bangkok. The placebo dataset is formed by randomly sampling 100 
distances from the empirical distribution P depicted in Fig. l(b). To construct data for 
the vaccine group, we sample under the assumption that the vaccine is 50% effective 
against strains within 10% of prototype, but efficacy declines with V3 loop amino acid 
sequence divergence, with efficacies 40%, 30%, 20%, 10% and 0% against strains with 
distances in the ranges 11-20%, 21-30%, 31-40%, 41-50% and 51% +, respectively. 

Define the two-sample generalised logistic regression model as in the simulations, with 
g(y, 0) = 710yO. We fit this model to the generated dataset, which had 69 infections in the 
vaccine group. We obtain 0= 1 28, with 95% Wald and profile likelihood-based confidence 
intervals (- 026, 282) and (-024, 2-85). The normal approximation and bootstrap vari- 
ance estimates of 0 are 0 62 and 0 59, which are in the range expected from the simulation 
study. The likelihood ratio, Wald and score statistics are respectively 2 70, 2 65 and 2 89, 
which all narrowly miss rejecting the null hypothesis of uniform protection at the 0 05 
significance level. 

According to the model, the estimated vaccine relative risk varies with distance accord- 
ing to the function 

R-R(y) = exp( yO) RiR(0) = exp(0 018y) RiR(0). 

To illustrate the interpretation, set -B = 11 24% and YE = 34 87%, the average distances 
of Thai subtype B and E sequences computed from the Los Alamos library. The model 
estimates that the vaccine protects 

RR(34 87)/RR(11 24) = exp{0 018(34 87 - 11 24)} = 1 53 

times better against exposing strains with distance Y-B than against exposing strains with 
distance Y-E~ As seen in Fig. 4(a), the true relative risk ratio is closely estimated for distances 
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Fig. 4. (a) Vaccine protection: estimated ratio of relative risks R-R(y)/RR(O) versus strain distance y displayed 
as a solid line. The broken lines are profile likelihood-based confidence intervals, and the dotted line step 
function is the true relative risk ratio. (b) P shown as solid lines, with 95% asymptotic normal approximation 
confidence bands as short dashed lines and 95% bootstrap confidence bands as long dashed lines. The true 

F is portrayed as dotted lines. 

of less than 30% and overestimated for large distances. Figure 4(b) shows that F slightly 
underestimates F. 

In conclusion, the model detects decreasing vaccine protection with increasing strain 
distance, but fails to describe accurately the precise dependency of the relative risk ratio 
on distance. This is because of the strong parametric form of the weight function w1 
imposed by the linear function g. Instead, w1 could be given a richer parametric form, or 
estimated by kernel methods or smoothing splines. Alternatively, if f = dF/d, is given a 
known or parametric form, the distribution function 

IVY 0r0 
W1 (Y) wl(z) dz wl(z) dz 

could be estimated nonparametrically by a maximum partial likelihood procedure like 
Steps 1-3 with f playing the role of the weight function. 

7. DISCUSSION 
Although we have taken F to be the cumulative distribution function of a random 

variable defined on /? = R, all the results presented here hold generally for t?I a sample 
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space with a c-field of subsets X. If F is an unknown probability measure on (y?, X), and 
wl, ... , ws are nonnegative, measurable weight functions defined on @Y, then the corre- 
sponding biased probability measures F1,.. , Fs are modelled by 

Fi (A) =_ Wi (OJ F)- iwJ(u,0) dF(u) (AcE R; i =1, ... ., s). 
,A 

An application is the generalised logistic regression model of a multivariate distance 
Y (Y1,..., Yk)' E Y? C [0, so )k. This model is practically important since HIV vaccine pro- 
tection is likely to vary by variations in several attributes of the virus. The multivariate 
generalised logistic regression model allows assessment of how vaccine protection depends 
jointly on distances and marginally on each distance adjusted for the other distances. An 
example of a useful multivariate model is the two-sample bivariate model specified by 

w1(y1,y2,0)= exp(y01?+ Y202 + Y1Y203), w2-1. 
The generalised logistic regression model has many other applications, for example to 

assess differential protection of a vaccine against any pathogen that exhibits variation, 
and, for any treatment comparison trial with a failure time endpoint, to assess how treat- 
ment efficacy varies by the time Y since treatment initiation. 

Elsewhere we will describe the desirable large sample properties of (0, F). 
In conclusion, the semiparametric maximum likelihood estimator shares many proper- 

ties with the semiparametric maximum likelihood estimator in Cox's proportional hazards 
model. These include a simple computational procedure through maximisation of a 
smooth log profile partial likelihood, comparable finite-sample properties and optimal 
asymptotic properties. This is not surprising, as the s-group proportional hazards model, 
defined by A(y, 0 1i) = exp(OJ)l(y Is) for i = 1, .. ., s, 0 = (01,... , Os)', Os 0, has the analytic 
form of an s-sample selection bias model, albeit with weight functions depending on the 
infinite-dimensional parameter F, with wi(y, 0, F) = { 1 - F(y)}exP(Oi)- 1, where F is the 
cumulative distribution function of Y for the sth group. 
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APPENDIX 

Proofs 
We sketch the proofs of Theorems 1, 2, 3 and 5, and present more fully the proofs of Theorems 

4 and 6. See P. B. Gilbert's dissertation for details of all the proofs. 
The proofs of Theorems 1-3 are straightforward, using the Radon-Nikodym Theorem (Ash, 

1972, p. 63). The proof of Theorem 5 proceeds by directly verifying, using the Cauchy-Schwarz 
inequality and strong connectivity of the graph (0), that the Hessian of the logarithm of the 
profile partial likelihood is negative definite unless the vector vw(y, 0)/w1(y, 0) is degenerate at the 
unit vector. 

Proof of Theorem 4. Evidently supo, log {L(O, PI y)} equals 

sup ( L E n.. log w1A40) + sup [ rj logp,(0) - E nk log { L wkJ(O)PJ(0)}])D 
i=l1= j=j=1= j=l 
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where the suprema are for 0 Ec 0 and p being a discrete probability measure. Since the graph 'F(O) 
is strongly connected, by Vardi (1985, p. 186) the inner maximisation has a unique solution, given 
by 

pi(O) oc r ZnkWkj(0)Vk (0) (j= 1, *,h), 
k 

where (V1(O), V2(0),..., V, (0), 1)' is the unique solution of (4.4). Therefore, it suffices to show 
that, when p(O) is substituted into L(O, p y), we obtain the partial likelihood function L1 of (43) 
up to a constant which does not depend on the parameters. 

To this end write 

qj(0) = rj { nkwki(1)W7J(0,P)}, pj(O) =y(O)qj(O) = { qj(O)} (A41) 

The form of pj(O) and equations (A1) imply that V(O) = y(O)W(O, p) (i = 1,.. ., s) and 
y(O) = W- '(0, p). Since WIT(O, p) = 1 is independent of 0 and F by hypothesis, it follows that 

Wij(o)pj(o) rjwij(O)Wi l(0, p) 

Wi(0, P) Sk nkwkJ(O)Wk '(0, P 

Substituting this into (42) shows that the full likelihood equals the partial likelihood (4-3) times 
the constant n- 1Hj rj. LI 

Proof of Theorem 6. (i) As in Pollard (1990, ? 14), it is easily shown that, for fixed 0, 
11(. I 0, y) _ log L,(. I 0, y) is concave in the transformed variables Zi = log((VI) (i = 1, ... , s). Moreover, 
it is constant along lines through the origin, since it is homogeneous of degree zero. By the concavity, 
the maximising line is obtained by setting 

(a1aVi)Il(VI ,y) = O (i= 1, ... ., s), 
and putting Vs = 1 fixes a unique point along the maximising line. 

(ii) This is proved by algebraically manipulating the second derivatives of 11(.IV, y) into an 
expression which is seen by inspection to be negative under the condition. LII 
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