
 

International Journal of Contemporary Mathematical Sciences 

Vol. 13, 2018, no. 3, 111 - 123  

HIKARI Ltd,  www.m-hikari.com  

https://doi.org/10.12988/ijcms.2018.8411 

 

 

Maximum Likelihood Estimation in the Odd  

 

Generalized Exponential-Exponential Distribution 
 

 

Amani Abdullah Al-Salafi and Samia Abbas Adham 

 

Department of Statistics, King Abdulaziz University 

Jeddah, Kingdom of Saudi Arabia 

 
   Copyright © 2018 Amani Abdullah Al-Salafi and Samia Abbas Adham. This article is distributed 

under the Creative Commons Attribution License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original work is properly cited. 

 

Abstract 

 

A new distribution, called odd generalized exponential-exponential 

distribution (OGE-E(ϴ)) is proposed for modeling lifetime data. A comprehensive 

study of the cumulative distribution function, probability density function, survival 

and hazard function of the new distribution are presented. Moreover, the maximum 

likelihood estimation of the parameters of the OGE-E(ϴ) distribution is considered 

for both simulated and real data sets. 
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1. Introduction 
 

The skills of proposing generalized classes of distributions has pulled 

theoretical and applied statisticians due to their flexibility in modeling data in 

practice. The exponential distribution is perhaps the most widely applied statistical 

distribution for problems in reliability. However, the generalized exponential 

distribution (called GE) has lots of different properties and it can be used quite 

effectively to analyze several skewed lifetime data. 

Considered the three-parameter to proposed a generalized of the exponential 

distribution called Generalized Exponential (GE) distribution fits better than the 

three-parameter gamma or three-parameter Weibull in some cases and discussed 

some of different properties of the model (Gupta and Kundu, 1999) [6]. Discussed 
three-parameter GE distribution for exact expressions for single and product moments 
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of record statistics. In addition, he obtained single and product moments of record 

statistics (Raqab, 2002) [15]. Introduced a generalization referred to as the beta 

exponential distribution generated from the logit of a beta random variable. 

However, they provided a comprehensive treatment of the mathematical properties 

of the beta exponential distribution and discussed simulation issues, estimation by 

the methods of moments and maximum likelihood by (Nadarajah and Kotz, 2006) 

[14]. Used the Bayes estimation of the unknown parameters of the GE distribution 

under the assumptions of gamma priors on both the shape and scale parameters; 

Also they considered Bayesian estimation of the parameter based on the idea of 

Lindley and the Gibbs sampling procedure (Gupta and Kundu, 2007) [7]. Defined 

a bivariate GE distribution so that the marginal distribution are GE distribution. 

Furthermore, they used the algorithm to compute the maximum likelihood estimates 

of the unknown parameters. They observed that the bivariate generalized 

exponential distribution provides a better fit than the bivariate exponential 

distribution by (Kundu and Gupta, 2009) [9]. Introduced the Marshall-Olkin 

approach to introduce an extra shape parameter to the two-parameter GE 

distribution and observed that the new three-parameter distribution is very flexible, 

they noticed that the probability density functions can be either a decreasing or an 

unimodal function. In addition, they established different properties by using the 

Maximum likelihood method to compute the estimators of the unknown parameters 

by (Risti´c and Kundu, 2015) [16]. 

Studied some mathematical properties of the new wider Weibull-G family of 

distributions and discussed some special models in the new family also derived the 

properties hold to any distribution in this family. Obtained general explicit 

expressions for the quantile function, ordinary and incomplete moments, generating 

function and order statistics and discussed the estimation of the model parameters 

by maximum likelihood and illustrate the potentiality of the extended family with 

two applications to real data (Bourguignon et al., 2014) [2]. Studied a new 

generalization of the exponential Gompertz and generalized exponential 

distributions called the generalized Gompertz distribution (GGD) which has 

increasing, constant, decreasing or bathtub curve failure rate depending upon the 

shape parameter. They found that the GGD is very useful in survival analysis. They 

derived some statistical properties such as moments, mode, and quantiles. However, 

they obtained the maximum likelihood estimators of the parameters using a 

simulations and real data to determine whether the GGD is better than other well-

known distributions in modeling lifetime data (EL-Gohary et al.,  2013) [5]. Studied 

the generalized exponentiated moment exponential (GEME) distribution and 

developed various properties of the distribution. They also presented 

characterizations of the distribution in terms of conditional expectation as well as 

based on hazard function of the GEME distribution random variable (Iqbal et al., 

2014) [8]. Introduced a new class of distribution called Kumaraswamy generalized 

exponentiated exponential distribution and calculated the variation of the skewness 

and kurtosis measures. He derived the likelihood estimators of the parameters and 

analyzed a real data set (Mohammed, 2014) [15]. Studied a new continuous 

distribution called exponentiated Kumaraswamy-exponential that extends the expo- 
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nential distribution and studied several structural properties of the new distribution. 

They investigated the moments, hazard function, mean deviations and R´enyi 

entropy. However, they discussed the maximum likelihood estimation of this 

distribution and an application reveals that the model proposed can be very useful 

in fitting real data (Rodrigues and Silva, 2015) [17]. Proposed a new family of 

continuous distributions called the odd generalized exponential family, whose 

hazard rate function could be increasing, decreasing. It includes as a special case 

the widely known exponentiated-Weibull distribution and discussed three special 

models in the family density function can be expressed as a mixture of 

exponentiated densities based on the same baseline distribution. They derived 

explicit expressions for the ordinary and incomplete moments, quantile and 

generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies 

and order statistics for the first time obtained the generating function of the Fréchet 

distribution and proposed characterizations of the family. They considered the 

method of maximum likelihood and means of two real lifetime data sets (Tahir et. 

al., 2015) [18].  Studied a new distribution, called odds generalized exponential- 

exponential distribution. They obtained some mathematical properties. However, 

they studied estimation and simulation of the distribution (Maiti and Pramanik, 

2015) [11]. Proposed a new lifetime model, called the odd generalized exponential 

Gompertz distribution. They obtained some of its mathematical properties. 

However, they studied the maximum likelihood estimation and derived the Fisher’s 

information matrix. Finally, they applied it to a real data set. Introduced a new 

model called the odd generalized exponential linear failure rate distribution (El-

Damcese et al, 2015) [3]. They obtained some statistical properties and discussed 

the estimation of the model parameters by maximum likelihood by (El-Damcese et 

al, 2015) [4]. Proposed a new generalization of the Rayleigh distribution called odd 

generalized exponential Rayleigh distribution and derived its statistical properties. 

They derived some mathematical properties (Luguterah, 2016) [10]. Studied the 

new distribution, called odds generalized exponential-Pareto distribution. They 

derived mathematical properties of the new distribution including estimation, 

simulation. Finally, they applied it to a real data set (Maiti and Pramanik, 2016) 

[12]. 

The core idea of the construction of the odd generalized exponential family 

(OGE)   based on replacing x in the cumulative distribution function (CDF) of the 

GE model, given by:  
 FGE(x; α, λ) = (1 − e−λx)

α
; (1) 

  

where α and λ are positive parameters; by G(x; η)/ G̅(x; η) where G(x; η) and 

G̅(x;η) are the CDF and the reliability function of a parent distribution with a 

parameter vector η. That is, the CDF of the OGE family can be written as: 

 
 

FOGE(x; α, λ, η) = (1 − e
−λ
G(x; η)

G̅(x; η))

α

. (2) 
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and the probability density function (PDF) is then given by: 
 

 

fOGE(x; α, λ, ξ) =
αλg(x; η)

G̅(x; η) 
e
−λ
G(x;η)

G̅(x;η) (1 − e
−λ
G(x;η)

G̅(x;η))

α−1

, (3) 

where g(x; η) is the baseline PDF (Tahir et. al., 2015) [18].  

 

This paper is outlined as follows. In Section 2, the cumulative distribution 

function, density function, reliability function and hazard function of the odd 

generalized exponential-exponential OGE-E(Ө) distribution are defined. Section 3 

presents the maximum likelihood estimation of the parameters and asymptotic 

confidence intervals are determined. Section 4 considers the numerical 

computations of the maximum likelihood estimates of the parameters for both 

simulated and real data sets. Finally, discussion and conclusions are presented in 

Section 5. 

 

2. OGE-E(Ө) Distribution 
 

In this section, the construction of the new three parameters distribution called 

odd generalized exponential-exponential (OGE-E(Ө)) distribution with parameters 

γ, α, and λ where the vector Ө is defined in the form Ө = ( γ, α, λ ) is presented. 

 

Definition: A random variable X is said to have the OGE-E(Ө) with parameters 

γ, α and  λ if G(x; η)/ G̅(x; η) where G(x; η) =1 − e−γx and G̅(x; η) = 1 − (1 −
e−γx), in Equation (2), are the CDF and the reliability function of a exponential 

distribution with a parameter vector γ That is, the CDF of the OGE-E(Ө) can be 

written as: 
 

 

FOGE−E(x, α, λ, γ) = (1 − ee
−λ(

1−e−γx

e−γx
)

)

α

.   (4) 

 

 

 
FOGE−E(x, α, λ, γ) = (1 − e−λ(e

γx−1))
α
.   (5) 

 

The corresponding PDF is then given by: 
 

 
fOGE−E(x, α, λ, γ) =

α λ γ

e−γx 
e−λ(e

γx−1)(1 − e−λ(e
γx−1))

α−1
.   (6) 

 

The and survival and hazard functions of OGE-E(Ө) function is given by 
 

  

S(x) = 1 − (1 − e−λ(e
γx−1))

α
, 

 

 (7) 
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and 
 

h(x) =
ƒ(x)

S(x)
=
αλγe−λ(e

γx−1)+γx(1 − e−λ(e
γx−1))

α−1
  

1 − (1 − e−λ(e
γx−1))α  

. (8) 

 

Also the reversed hazard function of OGE-E(Ө) is 

 

 
 

r(x) =
ƒ(x)

F(x)
=
αλγe−λ(e

γx−1)+γx

1 − e−λ(e
γx−1)

. (9) 

 

The following Figure 1, Figure 2 and Figure 3 show different shapes of the PDF, 

CDF and the hazard function, respectively, corresponding to different values of the 

parameters of the OGE-E(Ө) distribution. 

 

 

 

Figure 1: PDF of the OGE-E(Ө) distribution for Ө = (𝛄 = 𝟏, 𝛂 =
 𝟎. 𝟏, 𝟎. 𝟓, 𝟏, 𝟏. 𝟓, 𝟐, 𝟓, 𝛌 = 𝟐). 

 

 

 

 

 

 



 

116                                               Amani Abdullah Al-Salafi and Samia Abbas Adham 

 

 

 
Figure 2: CDF of the OGE-E(Ө) distribution for Ө = ( γ = 1, α =

0.1, 0.5, 1, 1.5, 2, 5, λ =  2) 

 

Figure 3: Hazard function of the OGE-E(Ө) distribution for Ө = (γ = 1, α =
0.1, 0.5, 1, 1.5, 2, 5, λ = 2 

 

3. Maximum Likelihood Estimation 
 

The maximum likelihood estimators (MLE'S) of OGE-E(Ө)  parameters can be 

obtained as follows, the likelihood function of the OGE-E(Ө) is 
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ℓ =∏αλγ eγxe−λ(e
γx−1)(1 − e−λ(e

γx−1))α−1.

n

i=1

 

 

     (10) 

Then the log-likelihood function is given by 
 

 
L =     n ln(α) + n ln(λ) + n ln( γ) + γ ∑xi 

n

i=0

 
 

 
              −λ∑(eγxi − 1)

n

i=0

+ (α −  1)∑ln

n

i=0

[1 − e−λ(e
γx−1)]. 

 

 

 

Hence, the maximum likelihood equations are 
 

 

 ∂L

∂α
=
n

α
+∑ln

n

i=1

[1 − e−λ(e
γxi−1)] = 0, 

 

(11) 

 ∂L

∂λ
=
n

λ
−∑(eγxi − 1)

n

i=1

+ (α − 1)∑
eγxi − 1

eλ(e
γxi−1) − 1

= 0,

n

i=1

 

 

(12) 

 ∂L

∂γ
=
n

γ
+∑xi

n

i=1

+ (α − 1)∑
γλeγxi

eλ(e
γxi−1) − 1

= 0,

n

i=1

 (13) 

 

From equation (11), when assuming the parameters λ and γ are known one 

can obtain the maximum likelihood estimator of α in a closed form as follow: 

 
 

α̂ =
−n

∑ lnn
i=1 [1 − e−λ(e

γxi−1)]
. (14) 

 

Otherwise, a statistical software or numerical technique must be applied to solve 

the likelihood quations (11), (12) and (13) simultaneously in order to obtain the 

maximum likelihood estimates of the parameters.    

It is known that the simplest large sample approach is to assume that the MLEs 

γ, α and λ are approximately multivariate normal with mean µ and the covariance 

matrix I0
−1, where I0

−1 the inverse of the observed information matrix which defined 

as follows: 

 
 

I0
−1 = E

{
 
 
 

 
 
 

−

[
 
 
 
 
 
 
∂2L

∂α2
∂2L

∂λ ∂α

∂2L

∂γ ∂α

∂2L

∂α ∂λ

∂2L

∂λ2
∂2L

∂γ ∂λ

∂2L

∂α ∂γ

∂2L

∂λ ∂γ

∂2L

∂γ2 ]
 
 
 
 
 
 
−1

}
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I0
−1 = [

var(α̂) cov(λ̂, α̂) cov(γ̂, α̂)

cov(α̂, λ̂) var(λ̂) cov(γ̂, λ̂)

cov(α̂, γ̂) cov(λ̂, γ̂) var(γ̂)

]   ,           (15) 

 

where the second partial derivatives included in  I0
−1 are given as follows 

 

 ∂2L

∂α2
=
−n

α2
, 

 

 ∂2L

∂α∂λ
=∑

eγxi − 1

eλ(e
γxi−1) − 1

n

i=1

, 
 

 ∂2L

∂α ∂γ
=∑

λxie
γxi

eλ(e
γxi−1) − 1

n

i=1

, 
 

 ∂2L

∂λ2
=
−n

λ2
− (α − 1)∑

((eγxi − 1))
2
eλ(e

γxi−1)

(eλ(e
γxi−1) − 1)

2

n

i=1

, 
 

 ∂2L

∂λ ∂α
=∑

eγxi − 1

eλ(e
γxi−1) − 1

n

i=1

, 
 

 ∂2L

∂λ ∂γ
=  −∑xie

γxi

n

i=1

+ (α

− 1)∑
xie

γxi(−λ eγxi+λe
γxi−1 + (λ + 1)eλ(e

γxi−1) − 1)

(eλ(e
γxi−1) − 1)

2

n

i=1

, 

∂2L

∂γ2

=
−n

γ2

+ (α − 1)∑
λeγxi(−λ xiγe

γxi+λe
γxi−1 + xiγ e

λ(eγxi−1) − xiγ + e
λ(eγxi−1) − 1)

(eλ(e
γxi−1) − 1)

2

n

i=1

 

 ∂2L

∂γ ∂λ
= (α − 1)∑

λeγxi(−λ (eγxi − 1)eλ(e
γxi−1) + eλ(e

γxi−1) − 1)

(eλ(e
γxi−1) − 1)

2

n

i=1

, 
 

 ∂2L

∂γ ∂α
=∑

γλeγxi

eλ(e
γxi−1) − 1

,

n

i=1

 
 

  The asymptotic (1-δ)100% confidence intervals of α, λ, γ are α̂ ± zδ
2

√var(α̂),  λ̂ ±

zδ
2

√var(λ̂), and  γ̂ ± zδ
2

√var(γ̂), where zδ
2

 is the upper 
δ

2
  percentile of the standard 

normal distribution 
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4. Numerical Computations 
 

1. Monte Carlo Simulation Study 

In this sub-section, the method of the ML estimation for the parameters of the 

OGE-E(Ө)  distribution is obtained through a Monte Carlo simulation study. The 

sample size n=100, 150, 300 are considered, and m the number of samples is set to 

be 1000.  

The ML estimates of the parameters γ, α and λ are obtained numerically as the 

following steps: 

1. The ML estimates of parameters γ, α and λ are computed by solving the system 

of nonlinear equations (11),  (12) and (13), simultaneously, by using Newton-

Raphson method held in the (nlminb) function in R package. 

2. The ML estimates, Var, Bias and MSE's, of the estimates are calculated for 

each method using the following: 

3.  
 

Bias(ϴ̂) = ϴ̂− ϴ 

 
(16) 

 MSE(ϴ̂) = Var(ϴ̂) − (Bias(ϴ̂))2 

 
(17) 

where ϴ = (γ; α; λ) ϴ̂ = ( γ̂, α̂, λ̂) and ϴ̂  is  the mean of  ϴ̂ over  the m repetitions. 

Table 1 summarizes the results of the simulation study for different parameters 

values. 
 

Table 1. Var, Bias and MSE of the ML estimators for different γ, α and λ 

 

n γ, α, λ 

Estimate Var Bias MSE 

γ̂ α̂ λ̂ γ̂ α̂ λ̂ γ̂ α̂ λ̂ γ̂ α̂ λ̂ 

 

100 

0.5,2,1 

0.52

59 

 

2.09

30 

 

1.28

71 

 

0.02

96 

 

0.39

10 

 

1.72

23 

 

0.02

59 

 

0.09

30 

 

0.28

71 

 

0.03

03 

 

0.39

97 

 

1.80

48 

 

0.5, 1.5,1 

0.52

27 

 

1.56

46 

 

1.26

26 

 

0.03

04 

 

0.14

65 

 

1.06

21 

 

0.02

27 

 

0.06

46 

 

0.26

26 

 

0.03

09 

 

0.15

06 

 

1.13

11 

 

1,0.5,1 

1.10

16 

 

0.50

27 

 

1.20

47 

 

0.15

02 

 

0.00

57 

 

1.35

01 

 

0.10

16 

 

0.00

27 

 

0.20

47 

 

0.16

05 

 

0.00

57 

 

1.39

21 

 

1, 2, 1 

1.06

57 

  

2.08

16 

  

1.27

11 

  

0.12

18 

  

0.37

09 

  

2.61

77 

 

0.06

57 

 

0.08

16 

 

0.27

11 

 

0.12

62 

 

0.37

76 

 

2.69

12 

 

 

150 
0.5,2,1 

0.51

24 

 

2.06

52 

 

1.18

69 

 

0.01

96 

 

0.21

53 

 

0.72

00 

 

0.01

24 

 

0.06

52 

 

0.18

69 

 

0.01

97 

 

0.21

96 

 

0.75

50 
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Table 1. (Continued): Var, Bias and MSE of the ML estimators for different γ, α a

nd λ 

 

 

0.5,1.5,1 

0.51

88 

 

1.52

55 

 

1.13

28 

 

0.01

91 

 

0.08

75 

 

0.50

95 

 

0.01

88 

 

0.02

55 

 

0.13

28 

 

0.01

95 

 

0.08

81 

 

0.52

72 

 

1,0.5,1 

1.06

37 

 

0.50

19 

 

1.14

80 

 

0.10

57 

 

0.00

35 

 

0.81

94 

 

0.06

37 

 

0.00

19 

 

0.14

80 

 

0.10

97 

 

0.00

35 

 

0.84

13 

 

1,2,1 

1.02

62 

 

2.06

04 

 

1.17

58 

 

0.08

09 

 

0.23

90 

 

0.65

29 

 

0.02

62 

 

0.06

04 

 

0.17

58 

 

0.08

16 

 

0.24

27 

 

0.68

38 

 

 

300 

0.5,2,1 

0.50

58 

 

2.03

64 

 

1.07

88 

 

0.00

95 

 

0.09

86 

 

0.19

44 

 

0.00

58 

 

0.03

64 

 

0.07

88 

 

0.00

96 

 

0.10

00 

 

0.20

06 

 

0.5,1.5,1 

0.50

79 

 

1.51

81 

 

1.06

80 

 

0.00

92 

 

0.03

87 

 

0.18

62 

 

0.00

79 

 

0.01

81 

 

0.06

80 

 

0.00

93 

 

0.03

90 

 

0.19

08 

 

1,0.5,1 

1.02

44 

 

0.50

28 

 

1.08

82 

 

0.05

75 

 

0.00

17 

 

0.25

31 

 

0.02

44 

 

0.00

28 

 

0.08

82 

 

0.05

81 

 

0.00

17 

 

0.26

09 

 

1,2,1 

1.01

55 

 

2.02

93 

 

1.08

31 

 

0.04

13 

 

0.10

14 

 

0.22

72 

 

0.01

55 

 

0.02

93 

 

0.08

31 

 

0.04

15 

 

0.10

23 

 

0.23

41 

 

 

2. Real Data Analysis 

A real data set obtained from (Aarset, 1987) [1] are applied to obtain the ML 

estimates of the parameters of the OGE-E(Ө) distribution. The data set consists of 

failure times of 50 devices put on life test at time 0, is given in Table 2. The 

estimates of the parameters are computed and presented in Table 3. In order to 

compare the ML estimates of the OGE-E(Ө) distribution with the previous 

corresponding results of other two distributions: Odd Generalized Exponential 

Gompertz distribution(OGE-G), Odd Generalized Exponential Linear Failure Rate 

distribution(OGE-LFR) and the Odd Generalized Exponential-Exponential 

distribution(OGE-E(ϴ)). The summarized results are shown in Table 3. 

 

Table 2: Lifetimes of 50 devices (Aarset, 1987) [1] 

 
0.1 0.2 1 1 1 1 1 2 3 6 

7 11 12 18 18 18 18 18 21 32 

36 40 45 46 47 50 55 60 63 63 

67 67 67 67 72 75 79 82 82 83 

84 84 84 85 85 85 85 85 86 86 
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Hence, the (nlminb) function in R package is applied to this real data set in 

order to compute the ML estimates of the parameters of the OGE-E(Ө) distribution. 

In addition, the ML estimates of the parameters of other two distributions: odd 

generalized exponential Gompertz distribution (OGE-G) with parameters 

(α, β, λ, c) and the odd generalized exponential linear failure rate distribution 

(OGE-LFR) with parameters (α, β, a, b) which have been obtained in [3] and [4], 

respectively. The comparisons between the computed ML estimates of the three 

distributions are studied according to the indications AIC (Akaike Information 

Criterion) and BIC (Bayesian Information Criterion). Hence, the summarized 

results are shown in Table 3. 

 

Table 3: Summarized results of fitting different distributions to the lifetimes of 50 

devices of (Aarset, 1987) [1] 

 
Distribution Estimates  AIC BIC 

OGE-G 

α̂=0.0400,  

�̂� = 0.1940, 

λ̂=0.000345, 

c ̂=0.0780 

423.9470 447.5951 

OGE-LFR 

α̂=472.404, 

�̂�=0.529, 

â=8.218×10−6, 

b ̂=6.427 ×10−7 

473.730 481.378 

OGE-E(ϴ) 

γ̂ =0.1 

α̂=0.8820 

λ̂=0.1 

14306.45 

 

14312.19 

 

 

5. Conclusions 
 

1. A new model the so-called odd generalized exponential-exponential (OGE-

E(Ө)) distribution is constructed; its cumulative distribution function, 

probability density function and survival, hazard functions are presented.  

 

2. The ML estimation of the parameters of the OGE-E(Ө) distribution is 

considered, for simulated and real data sets.  

 

3. A comparison according to the indications of the AIC and BIC is held 

between the three distributions (OGE-E(Ө), OGE-LFR and OGE-G) 

providing that the OGE-G distribution to be the best distribution that fits the 

real data set among others. 
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