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Summary. Let X1, . . . , Xn be independent and identically distributed random vectors with a (Lebesgue)

density f . We first prove that, with probability one, there exists a unique log-concave maximum likelihood

estimator f̂n of f . The use of this estimator is attractive because, unlike kernel density estimation, the

method is fully automatic, with no smoothing parameters to choose. Although the existence proof is non-

constructive, we are able to reformulate the issue of computing f̂n in terms of a non-differentiable convex

optimisation problem, and thus combine techniques of computational geometry with Shor’s r-algorithm

to produce a sequence that converges to f̂n. An R version of the algorithm is available in the package

LogConcDEAD – Log-Concave Density Estimation in Arbitrary Dimensions. We demonstrate that the

estimator has attractive theoretical properties both when the true density is log-concave and when this

model is misspecified. For the moderate or large sample sizes in our simulations, f̂n is shown to have

smaller mean integrated squared error compared with kernel-based methods, even when we allow the

use of a theoretical, optimal fixed bandwidth for the kernel estimator that would not be available in

practice. We also present a real data clustering example, which shows that our methodology can be used

in conjunction with the Expectation–Maximisation (EM) algorithm to fit finite mixtures of log-concave

densities.
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1. Introduction

Modern nonparametric density estimation began with the introduction of a kernel density estimator
in the pioneering work of Fix and Hodges (1951), later republished as Fix and Hodges (1989). For
independent and identically distributed real-valued observations, the appealing asymptotic theory of
the mean integrated squared error was provided by Rosenblatt (1956) and Parzen (1962). This theory
leads to an asymptotically optimal choice of the smoothing parameter, or bandwidth. Unfortunately,
however, it depends on the unknown density f through the integral of the square of the second
derivative of f . Considerable effort has therefore been focused on finding methods of automatic
bandwidth selection (cf. Wand and Jones, 1995, Chapter 3, and the references therein). Although
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this has resulted in algorithms, e.g. Chiu (1992), that achieve the optimal rate of convergence of the
relative error, namely Op(n

−1/2), where n is the sample size, good finite sample performance is by
no means guaranteed.

This problem is compounded when the observations take values in R
d, where the general kernel esti-

mator (Deheuvels, 1977) requires the specification of a symmetric, positive definite d× d bandwidth
matrix. The difficulties involved in making the d(d+1)/2 choices for its entries mean that attention
is often restricted either to bandwidth matrices that are diagonal, or even to those that are scalar
multiples of the identity matrix. Despite recent progress (for example, Duong and Hazelton (2003),
Duong and Hazelton (2005), Zhang, King and Hyndman (2006), Chacón, Duong and Wand (2008),
Chacón (2009)), significant practical challenges remain.

Extensions that adapt to local smoothness began with Breiman, Meisel and Purcell (1977) and
Abramson (1982). A review of several adaptive kernel methods for univariate data may be found
in Sain and Scott (1996). Multivariate adaptive techniques are presented in Sain (2002), Scott and
Sain (2004) and Duong (2004). There are many other smoothing methods for density estimation,
for example methods based on wavelets (Donoho et al., 1996), splines (Eubank, 1988; Wahba, 1990),
penalized likelihood (Eggermont and LaRiccia, 2001) and vector support methods (Vapnik and
Mukherjee, 2000). For a review, see Ćwik and Koronacki (1997). However, all suffer from the
drawback that some smoothing parameter must be chosen, the optimal value of which depends on
the unknown density, so achieving an appropriate level of smoothing is difficult.

In this paper, we propose a fully automatic nonparametric estimator of f , with no tuning parameters
to be chosen, under the condition that f is log-concave – that is, log f is a concave function. The
class of log-concave densities has many attractive properties and has been well-studied, particularly
in the economics, sampling and reliability theory literature. See Section 2 for further discussion of
examples, applications and properties of log-concave densities.

In Section 3, we show that if X1, . . . , Xn are independent and identically distributed random vectors,
then with probability one there exists a unique log-concave density f̂n that maximises the likelihood
function,

L(f) =

n
∏

i=1

f(Xi).

Before continuing, it is worth noting that without any shape constraints on the densities under
consideration, the likelihood function is unbounded. To see this, we could define a sequence (fn) of
densities that represent successively close approximations to a mixture of n ‘spikes’ (one on each Xi),
such as fn(x) = n−1

∑n
i=1 φd,n−1I(x−Xi), where φd,Σ denotes the Nd(0,Σ) density. This sequence

satisfies L(fn) → ∞ as n → ∞. In fact, a modification of this argument may be used to show that
the likelihood function remains unbounded even if we restrict attention to unimodal densities.

There has been considerable recent interest in shape-restricted nonparametric density estimation, but
most of it has been confined to the case of univariate densities, where the computational algorithms
are more straightforward. Nevertheless, as was discussed above, it is in multivariate situations that
the automatic nature of the maximum likelihood estimator is particularly valuable. Walther (2002),
Dümbgen and Rufibach (2009) and Pal, Woodroofe and Meyer (2007) have proved the existence
and uniqueness of the log-concave maximum likelihood estimator in one dimension and Dümbgen
and Rufibach (2009), Pal, Woodroofe and Meyer (2007) and Balabdaoui, Rufibach and Wellner
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Fig. 1. The ‘tent-like’ structure of the graph of the logarithm of the maximum likelihood estimator for bivariate

data.

(2009) have studied its theoretical properties. Rufibach (2007) compared different algorithms for
computing the univariate estimator, including the iterative convex minorant algorithm (Groeneboom
and Wellner, 1992; Jongbloed, 1998), and three others. Dümbgen, Hüsler and Rufibach (2007)
also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
Schuhmacher and Dümbgen (2010) and Koenker and Mizera (2010). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported on
[0,∞) (Grenander, 1956) and of a convex, decreasing density (Groeneboom, Jongbloed and Wellner,
2001).

Figure 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent pole
heights so that the corresponding tent functions converge to the logarithm of the maximum likelihood
estimator. One reason that this computational problem is so challenging in more than one dimension
is the fact that it is difficult to describe the set of tent pole heights that correspond to concave
functions. The key observation, discussed in Section 3.1, is that it is possible to minimise a modified
objective function that is convex (though non-differentiable). This allows us to apply the powerful
non-differentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
variant called Shor’s r-algorithm, which has been implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distribution.
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(a) Density (b) Log-density

Fig. 2. Log-concave maximum likelihood estimates based on 1000 observations (plotted as dots) from a

standard bivariate normal distribution.

These plots were created using the LogConcDEAD package (Cule, Gramacy and Samworth, 2007)
in R (R Development Core Team, 2009).

Theoretical properties of the estimator f̂n are presented in Section 4. We describe the asymptotic
behaviour of the estimator both in the case where the true density is log-concave, and where this
model is misspecified. In the former case, we show that f̂n converges in certain strong norms to the
true density. The nature of the norm chosen gives reassurance about the behaviour of the estimator
in the tails of the density. In the misspecified case, f̂n converges to the log-concave density that is
closest to the true underlying density (in the sense of minimising the Kullback–Leibler divergence).
This latter result amounts to a desirable robustness property.

In Section 5 we present simulations to compare the finite-sample performance of the maximum
likelihood estimator with kernel-based methods with respect to the mean integrated squared error
(MISE) criterion. The results are striking: even when we use the theoretical, optimal bandwidth for
the kernel estimator (or an asymptotic approximation to this when it is not available), we find that
the maximum likelihood estimator has a rather smaller mean integrated squared error for moderate
or large sample sizes, despite the fact that this optimal bandwidth depends on properties of the
density that would be unknown in practice.

Nonparametric density estimation is a fundamental tool for the visualisation of structure in ex-
ploratory data analysis. Our proposed method may certainly be used for this purpose; however, it
may also be used as an intermediary stage in more involved statistical procedures. For instance:

(a) In classification problems, we have p ≥ 2 populations of interest, and assume in this discussion
that these have densities f1, . . . , fp on R

d. We observe training data of the form {(Xi, Yi) :



Log-concave density estimation 5

i = 1, . . . , n}, where if Yi = j, then Xi has density fj . The aim is to classify a new observation
z ∈ R

d as coming from one of the populations. Problems of this type occur in a huge variety
of applications, including medical diagnosis, archaeology, ecology etc. – see Gordon (1981),
Hand (1981) or Devroye, Györfi and Lugosi (1996) for further details and examples. A natural

approach to classification problems is to construct density estimates f̂1, . . . , f̂p, where f̂j is
based on the nj observations, say, from the jth population, namely {Xi : Yi = j}. We may

then assign z to the jth population if nj f̂j(z) = max{n1f̂1(z), . . . , npf̂p(z)}. In this context,
the use of kernel-based estimators in general requires the choice of p separate d× d bandwidth
matrices, while the corresponding procedure based on the log-concave maximum likelihood
estimates is again fully automatic.

(b) Clustering problems are closely related to the classification problems described above. The
difference is that, in the above notation, we do not observe Y1, . . . , Yn, and have to assign
each of X1, . . . , Xn to one of the p populations. A common technique is based on fitting a
mixture density of the form f(x) =

∑p
j=1 πjfj(x), where the mixture proportions π1, . . . , πp

are positive and sum to one. We show in Section 6 that our methodology can be extended to
fit a finite mixture of log-concave densities, which need not itself be log-concave – cf. Section 2.
A simple plug-in Bayes rule may then be used to classify the points. We also illustrate this
clustering algorithm on a Wisconsin breast cancer data set in Section 6, where the aim is to
separate observations into benign and malignant component populations.

(c) A functional of the true underlying density may be estimated by the corresponding functional of
a density estimator, such as the log-concave maximum likelihood estimator. Examples of func-
tionals of interest include probabilities, such as

∫

‖x‖≥1
f(x) dx, moments, e.g.

∫

‖x‖2f(x) dx,

and the differential entropy, −
∫

f(x) log f(x) dx. It may be possible to compute the plug-in
estimator based on the log-concave maximum likelihood estimator analytically, but in Sec-
tion 7, we show that even if this is not possible, we can sample from the log-concave maximum
likelihood estimator f̂n, and hence in many cases of interest obtain a Monte Carlo estimate of
the functional. This nice feature also means that the log-concave maximum likelihood estima-
tor can be used in a Monte Carlo bootstrap procedure for assessing uncertainty in functional
estimates.

(d) The fitting of a nonparametric density estimate may give an indication of the validity of a
particular smaller model (often parametric). Thus, a contour plot of the log-concave maximum
likelihood estimator may provide evidence that the underlying density has elliptical contours,
and thus suggest a model that exploits this elliptical symmetry.

(e) In the univariate case, Walther (2002) describes methodology based on log-concave density
estimation for addressing the problem of detecting the presence of mixing in a distribution.
As an application, he cites the Pickering/Platt debate (Swales, 1985) on the issue of whether
high blood pressure is a disease (in which case observed blood pressure measurements should
follow a mixture distribution), or simply a label attached to people in the right tail of the
blood pressure distribution. As a result of our algorithm for computing the multidimensional
log-concave maximum likelihood estimator, a similar test may devised for multivariate data –
see Section 8.

In Section 9, we give a brief concluding discussion, and suggest some directions for future research.
We defer the proofs to Appendix A and discuss structural and computational issues in Appendix B.
Finally, we present in Appendix C a glossary of terms and results from convex analysis and compu-
tational geometry that appear in italics at their first occurrence in the main body of the paper.
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2. Log-concave densities: examples, applications and properties

Many of the most commonly-encountered parametric families of univariate distributions have log-
concave densities, including the family of normal distributions, gamma distributions with shape
parameter at least one, Beta(α, β) distributions with α, β ≥ 1, Weibull distributions with shape
parameter at least one, Gumbel, logistic and Laplace densities; see Bagnoli and Bergstrom (2005)
for other examples. Univariate log-concave densities are unimodal and have fairly light tails – it may
help to think of the exponential distribution (where the logarithm of the density is a linear function
on the positive half-axis) as a borderline case. Thus Cauchy, Pareto and lognormal densities, for
instance, are not log-concave. Mixtures of log-concave densities may be log-concave, but in general
they are not; for instance, for p ∈ (0, 1), the location mixture of standard univariate normal densities
f(x) = pφ(x) + (1 − p)φ(x− µ) is log-concave if and only if ‖µ‖ ≤ 2.

The assumption of log-concavity is a popular one in economics; Caplin and Naelbuff (1991b) show
that in the theory of elections and under a log-concavity assumption, the proposal most preferred
by the mean voter is unbeatable under a 64% majority rule. As another example, in the theory of
imperfect competition, Caplin and Naelbuff (1991a) use log-concavity of the density of consumers’
utility parameters as a sufficient condition in their proof of the existence of a pure-strategy price
equilibrium for any number of firms producing any set of products. See Bagnoli and Bergstrom
(2005) for many other applications of log-concavity to economics. Brooks (1998) and Mengersen and
Tweedie (1996) have exploited the properties of log-concave densities in studying the convergence
of Markov chain Monte Carlo sampling procedures.

An (1998) lists many useful properties of log-concave densities. For instance, if f and g are (possibly
multidimensional) log-concave densities, then their convolution f ∗ g is log-concave. In other words,
if X and Y are independent and have log-concave densities, then their sum X+Y has a log-concave
density. The class of log-concave densities is also closed under the taking of pointwise limits. One-
dimensional log-concave densities have increasing hazard functions, which is why they are of interest
in reliability theory. Moreover, Ibragimov (1956) proved the following characterisation: a univariate
density f is log-concave if and only if the convolution f ∗ g is unimodal for every unimodal density
g. There is no natural generalisation of this result to higher dimensions.

As was mentioned in Section 1, this paper concerns multidimensional log-concave densities, for
which fewer properties are known. It is therefore of interest to understand how the property of
log-concavity in more than one dimension relates to the univariate notion. Our first proposition
below is intended to give some insight into this issue. It is not formally required for the subsequent
development of our methodology in Section 3, although we did apply the result when designing our
simulation study in Section 5.

Proposition 1. Let X be a d-variate random vector having density f with respect to Lebesgue
measure on R

d. For a subspace V of R
d, let PV (x) denote the orthogonal projection of x onto V .

Then in order that f be log-concave, it is:

(a) necessary that for any subspace V , the marginal density of PV (X) is log-concave and the
conditional density fX|PV (X)(·|t) of X given PV (X) = t is log-concave for each t

(b) sufficient that for every (d− 1)-dimensional subspace V , the conditional density fX|PV (X)(·|t)
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of X given PV (X) = t is log-concave for each t.

The part of Proposition 1(a) concerning marginal densities is an immediate consequence of Theorem 6
of Prékopa (1973). One can regard Proposition 1(b) as saying that a multidimensional density is
log-concave if the restriction of the density to any line is a (univariate) log-concave function.

It is interesting to compare the properties of log-concave densities presented in Proposition 1 with
the corresponding properties of Gaussian densities. In fact, Proposition 1 remains true if we replace
‘log-concave’ with ‘Gaussian’ throughout (at least, provided that in part (b) we also assume there is a
point at which f is twice differentiable). These shared properties suggest that the class of log-concave
densities is a natural, infinite-dimensional generalisation of the class of Gaussian densities.

3. Existence, uniqueness and computation of the maximum likelihood estimator

Let F0 denote the class of log-concave densities on R
d. The degenerate case where the support is

of dimension smaller than d can also be handled, but for simplicity of exposition we concentrate on
the non-degenerate case. Let f0 be a density on R

d, and suppose that X1, . . . , Xn are a random
sample from f0, with n ≥ d+ 1. We say that f̂n = f̂n(X1, . . . , Xn) ∈ F0 is a log-concave maximum
likelihood estimator of f0 if it maximises ℓ(f) =

∑n
i=1 log f(Xi) over f ∈ F0.

Theorem 2. With probability one, a log-concave maximum likelihood estimator f̂n of f0 exists and
is unique.

During the course of the proof of Theorem 2, it is shown that f̂n is supported on the convex hull
of the data, which we denote by Cn = conv(X1, . . . , Xn). Moreover, as was mentioned in Section 1,

log f̂n is a ‘tent function’. For a fixed vector y = (y1, . . . , yn) ∈ R
n, a tent function is a function

h̄y : R
d → R with the property that h̄y is the least concave function satisfying h̄y(Xi) ≥ yi for all

i = 1, . . . , n. A typical example of a tent function is depicted in Figure 1.

Although it is useful to know that log f̂n belongs to this finite-dimensional class of tent functions,
the proof of Theorem 2 gives no indication of how to find the member of this class (in other words,
the y ∈ R

n) that maximises the likelihood function. We therefore seek an iterative algorithm to
compute the estimator.

3.1. Reformulation of the optimisation problem

As a first attempt to find an algorithm which produces a sequence that converges to the maximum
likelihood estimator in Theorem 2, it is natural to try to minimise numerically the function

τ(y1, . . . , yn) = −
1

n

n
∑

i=1

h̄y(Xi) +

∫

Cn

exp{h̄y(x)} dx. (3.1)
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The first term on the right-hand side of (3.1) represents the (normalised) negative log-likelihood of
a tent function, while the second term can be thought of as a Lagrangian term, which allows us to
minimise over the entire class of tent functions, rather than only those h̄y such that exp(h̄y) is a
density. Although trying to minimise τ might work in principle, one difficulty is that τ is not con-
vex, so this approach is extremely computationally intensive, even with relatively few observations.
Another reason for the numerical difficulties stems from the fact that the set of y-values on which
τ attains its minimum is rather large: in general it may be possible to alter particular components
yi without changing h̄y. Of course, we could have defined τ as a function of h̄y rather than as a
function of the vector of tent pole heights y = (y1, . . . , yn). Our choice, however, motivates the
following definition of a modified objective function:

σ(y1, . . . , yn) = −
1

n

n
∑

i=1

yi +

∫

Cn

exp{h̄y(x)} dx. (3.2)

The great advantages of minimising σ rather than τ are seen by the following theorem.

Theorem 3. The function σ is a convex function satisfying σ ≥ τ . It has a unique minimum at
y∗ ∈ R

n, say, and log f̂n = h̄y∗ .

Thus Theorem 3 shows that the unique minimum y∗ = (y∗1 , . . . , y
∗
n) of σ belongs to the minimum

set of τ . In fact, it corresponds to the element of the minimum set for which h̄y∗(Xi) = y∗i for
i = 1, . . . , n. Informally, then, h̄y∗ is ‘a tent function with all of the tent poles touching the tent’.

In order to compute the function σ at a generic point y = (y1, . . . , yn) ∈ R
n, we need to be able

to evaluate the integral in (3.2). It turns out that we can establish an explicit closed formula for

this integral by triangulating the convex hull Cn in such a way that log f̂n coincides with an affine
function on each simplex in the triangulation. Such a triangulation is illustrated in Figure 1. The
structure of the estimator and the issue of computing σ are described in greater detail in Appendix B.

3.2. Nonsmooth optimisation

There is a vast literature on techniques of convex optimisation (cf. Boyd and Vandenberghe (2004),
for example), including the method of steepest descent and Newton’s method. Unfortunately, these
methods rely on the differentiability of the objective function, and the function σ is not differentiable.
This can be seen informally by studying the schematic diagram in Figure 1 again. If the ith tent
pole, say, is touching but not critically supporting the tent, then decreasing the height of this tent
pole does not change the tent function, and thus does not alter the integral in (3.2); on the other
hand, increasing the height of the tent pole does alter the tent function and therefore the integral
in (3.2). This argument may be used to show that at such a point, the ith partial derivative of σ
does not exist.

The set of points at which σ is not differentiable constitute a set of Lebesgue measure zero, but
the non-differentiability cannot be ignored in our optimisation procedure. Instead, it is necessary to
derive a subgradient of σ at each point y ∈ R

n. This derivation, along with a more formal discussion
of the non-differentiability of σ, can be found in Appendix B.2.
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The theory of non-differentiable, convex optimisation is perhaps less well-known than its differen-
tiable counterpart, but a fundamental contribution was made by Shor (1985) with his introduction
of the subgradient method for minimising non-differentiable, convex functions defined on Euclidean
spaces. A slightly specialised version of his Theorem 2.2 gives that if ∂σ(y) is a subgradient of σ at
y, then for any y(0) ∈ R

n, the sequence generated by the formula

y(ℓ+1) = y(ℓ) − hℓ+1
∂σ(y(ℓ))

‖∂σ(y(ℓ))‖

has the property that either there exists an index ℓ∗ such that y(ℓ∗) = y∗, or y(ℓ) → y∗ and
σ(y(ℓ)) → σ(y∗) as ℓ → ∞, provided we choose the step lengths hℓ so that hℓ → 0 as ℓ → ∞, but
∑∞

ℓ=1 hℓ = ∞.

Shor recognised, however, that the convergence of this algorithm could be slow in practice, and that
although appropriate step size selection could improve matters somewhat, the convergence would
never be better than linear (compared with quadratic convergence for Newton’s method near the
optimum – see Boyd and Vandenberghe (2004, Section 9.5)). Slow convergence can be caused by
taking at each stage a step in a direction nearly orthogonal to the direction towards the optimum,
which means that simply adjusting the step size selection scheme will never produce the desired
improvements in convergence rate.

One solution (Shor, 1985, Chapter 3) is to attempt to shrink the angle between the subgradient and
the direction towards the minimum through a (necessarily nonorthogonal) linear transformation,
and perform the subgradient step in the transformed space. By analogy with Newton’s method for
smooth functions, an appropriate transformation would be an approximation to the inverse of the
Hessian matrix at the optimum. This is not possible for nonsmooth problems, because the inverse
might not even exist (and will not exist at points at which the function is not differentiable, which
may include the optimum).

Instead, we perform a sequence of dilations in the direction of the difference between two succes-
sive subgradients, in the hope of improving convergence in the worst-case scenario of steps nearly
perpendicular to the direction towards the minimiser. This variant, which has become known as
Shor’s r-algorithm, has been implemented in Kappel and Kuntsevich (2000). Accompanying software
SolvOpt is available from http://www.uni-graz.at/imawww/kuntsevich/solvopt/.

Although the formal convergence of the r-algorithm has not been proved, we agree with the au-
thors’ claims that it is robust, efficient and accurate. Of course, it is clear that if we terminate
the r-algorithm after any finite number of steps and apply the original Shor algorithm using our
terminating value of y as the new starting value, then formal convergence is guaranteed. We have
not found it necessary to run the original Shor algorithm after termination of the r-algorithm in
practice.

If (y(ℓ)) denotes the sequence of vectors in R
n produced by the r-algorithm, we terminate when

• |σ(y(ℓ+1)) − σ(y(ℓ))| ≤ δ

• |y
(ℓ+1)
i − y

(ℓ)
i | ≤ ǫ for i = 1, . . . , n

• |1 −
∫

exp{h̄y(ℓ)(x)} dx| ≤ η

http://www.uni-graz.at/imawww/kuntsevich/solvopt/
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Table 1. Approximate running times (with number of iterations in brackets) for computing the

log-concave maximum likelihood estimator

n = 100 n = 200 n = 500 n = 1000 n = 2000
d = 2 1.5 secs (260) 2.9 secs (500) 50 secs (1270) 4 mins (2540) 24 mins (5370)
d = 3 6 secs (170) 12 secs (370) 100 secs (820) 7 mins (1530) 44 mins (2740)
d = 4 23 secs (135) 52 secs (245) 670 secs (600) 37 mins (1100) 224 mins (2060)

for some small δ, ǫ and η > 0. The first two termination criteria follow Kappel and Kuntsevich
(2000), while the third is based on our knowledge that the true optimum corresponds to a density.
Throughout this paper, we took δ = 10−8 and ǫ = η = 10−4.

Table 1 gives sample running times and the approximate number of iterations of Shor’s r-algorithm
required for different sample sizes and dimensions on an ordinary desktop computer (1.8GHz, 2GB
RAM). Unsurprisingly, the running time increases relatively quickly with the sample size, while the
number of iterations increases approximately linearly with n. Each iteration takes longer as the
dimension increases, though it is interesting to note that the number of iterations required for the
algorithm to terminate decreases as the dimension increases.

When d = 1, we recommend the Active Set algorithm of Dümbgen, Hüsler and Rufibach (2007),
which is implemented in the R package logcondens (Rufibach and Dümbgen, 2006). However, this
method relies on the particularly simple structure of triangulations of R, which means that the cone

Yc =
{

y : h̄y(Xi) = yi for i = 1, . . . , n
}

can be characterised in a simple way. For d > 1, the number of possible triangulations corresponding
to a function h̄y for some y ∈ R

n (the so-called regular triangulations) is very large – O(n(d+1)(n−d))
– and the cone Yc has no such simple structure, so unfortunately the same methods cannot be used.

4. Theoretical properties

The theoretical properties of the log-concave maximum likelihood estimator f̂n are studied in Cule
and Samworth (2010), and in Theorem 4 below we present the main result from that paper. See also
Schuhmacher and Dümbgen (2010) and Dümbgen, Samworth and Schuhmacher (2010) for related
results. First recall that the Kullback–Leibler divergence of a density f from the true underlying
density f0 is given by

dKL(f0, f) =

∫

Rd

f0 log
f0
f
.

It is a simple consequence of Jensen’s inequality that the Kullback–Leibler divergence dKL(f0, f) is
always non-negative. The first part of Theorem 4 asserts under very weak conditions the existence
and uniqueness of a log-concave density f∗ that minimises the Kullback–Leibler divergence from f0
over the class of all log-concave densities.

In the special case where the true density is log-concave, the Kullback–Leibler divergence can be
minimised (in fact, made to equal zero) by choosing f∗ = f0. The second part of the theorem then

gives that with probability one, the log-concave maximum likelihood estimator f̂n converges to f0 in
certain exponentially weighted total variation distances. The range of possible exponential weights
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is explicitly linked to the rate of tail decay of f0. Moreover, if f0 is continuous, then the convergence
also occurs in exponentially weighted supremum distances. We note that when f0 is log-concave, it
can only have discontinuities on the boundary of the (convex) set on which it is positive, a set of

zero Lebesgue measure. We therefore conclude that f̂n is strongly consistent in these norms. It is
important to note that the exponential weighting in these distances makes for a very strong notion
of convergence (stronger than, say, convergence in Hellinger distance, or unweighted total variation
distance), and therefore in particular gives reassurance about the performance of the estimator in
the tails of the density.

However, the theorem applies much more generally to situations where f0 is not log-concave; in other
words, where the model has been misspecified. It is important to understand the behaviour of f̂n in
this instance, because one can never be certain from a particular sample of data that the underlying
density is log-concave. In the case of model misspecification, the conclusion of the second part of
the theorem is that f̂n converges in the same strong norms as above to the log-concave density f∗

that is closest to f0 in the sense of minimising the Kullback–Leibler divergence. This establishes a
desirable robustness property for f̂n, with the natural practical interpretation that provided f0 is
not too far from being log-concave, the estimator is still sensible.

To introduce the notation used in the theorem, we write E for the support of f0; that is, the smallest
closed set with

∫

E
f0 = 1. We write int(E) for the interior of E – the largest open set contained in

E. Finally, let log+(x) = max(log x, 0).

Theorem 4. Let f0 be any density on R
d with

∫

Rd ‖x‖f0(x) dx < ∞,
∫

Rd f0 log+ f0 < ∞ and
int(E) 6= ∅. There exists a log-concave density f∗, unique almost everywhere, that minimises the
Kullback–Leibler divergence of f from f0 over all log-concave densities f . Taking a0 > 0 and b0 ∈ R

such that f∗(x) ≤ e−a0‖x‖+b0 , we have for any a < a0 that

∫

Rd

ea‖x‖|f̂n(x) − f∗(x)| dx
a.s.
→ 0

as n→ ∞, and, if f∗ is continuous, supx∈Rd ea‖x‖|f̂n(x) − f∗(x)|
a.s.
→ 0 as n→ ∞.

We remark that the conditions of the theorem are very weak indeed, and in particular are satisfied by
any log-concave density on R

d. It is also proved in Cule and Samworth (2010, Lemma 1) that given
any log-concave density f∗, we can always find a0 > 0 and b0 ∈ R such that f∗(x) ≤ e−a0‖x‖+b0 , so
there is no danger of the conclusion being vacuous.

5. Finite sample performance

Our simulation study considered the following densities:

(a) standard normal, φd ≡ φd,I

(b) dependent normal, φd,Σ, with Σij = ✶{i=j} + 0.2✶{i 6=j}

(c) the joint density of independent Γ(2, 1) components
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Table 2. Summary of features of example densities:

Log-c: Log-concave density.

Depend: Components are dependent.

Norm: Mixture of one or more Gaussian components.

Mix: Mixture of log-concave distributions.

Skewed: Nonzero skewness.

Bded: Support of the density is bounded in one or more directions.

Log-c Depend Norm Mix Skewed Bded
(a) Yes No Yes No No No
(b) Yes Yes Yes No No No
(c) Yes No No No Yes Yes
(d) Yes No Yes Yes No No
(e) Yes No Yes Yes No No
(f) No No Yes Yes No No

(d-f) the normal location mixture 0.6φd(·) + 0.4φd(· − µ) for (d) ‖µ‖ = 1, (e) ‖µ‖ = 2, (f) ‖µ‖ = 3.
An application of Proposition 1 tells us that such a normal location mixture is log-concave if
and only if ‖µ‖ ≤ 2.

These densities were chosen to exhibit a variety of features, summarised in Table 2. For each density,
for d = 2 and 3, and for sample sizes n = 100, 200, 500, 1000 and 2000, we computed an estimate
of the MISE of the log-concave maximum likelihood estimator by averaging the integrated squared
error (ISE) over 100 iterations.

We also estimated the MISE for a kernel density estimator using a Gaussian kernel and a variety of
bandwidth selection methods, both fixed and variable. These were:

(i) The theoretically optimal bandwidth, computed by minimising the MISE (or asymptotic MISE
where closed-form expressions for the MISE were not available)

(ii) Least-squares cross-validation (Wand and Jones, 1995, Section 4.7)
(iii) Smoothed cross-validation (Hall, Marron and Park, 1992; Duong, 2004)
(iv) A 2-stage plug-in rule (Duong and Hazelton, 2003)
(v) Abramson’s method. This method, proposed in Abramson (1982), chooses a bandwidth matrix

of the form hf̂−1/2(x)A, where h is a global smoothing parameter (chosen by cross-validation),

f̂ a pilot estimate of the density (a kernel estimate with bandwidth chosen by a normal scale
rule) and A a shape matrix (chosen to be the diagonal of the sample covariance matrix to
ensure appropriate scaling). This is viewed as the benchmark for adaptive bandwidth selection
methods.

(vi) Sain’s method (Sain, 2002; Scott and Sain, 2004). This divides the sample space up into
md equally spaced bins and chooses a bandwidth matrix of the form hI for each bin, with h
selected by cross-validation. We used m = 7.

For density (f), we also used the log-concave EM algorithm described in Section 6 to fit a mixture
of two log-concave components. Further examples and implementation details can be found in Cule
(2009).
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Results are given in Figure 3 and Figure 4. These show only the log-concave maximum likeli-
hood estimator, the MISE-optimal bandwidth, the plug-in bandwidth and Abramson’s bandwidth.
The other fixed bandwidth selectors (least-squares cross-validation and smoothed cross-validation)
performed similarly to or worse than the plug-in estimator (Cule, 2009). This is consistent with
the experience of Duong and Hazelton (2003, 2005) who perform a thorough investigation of these
methods.

The Sain estimator is particularly difficult to calibrate in practice. Various other binning rules have
been tried (Duong, 2004), with little success. Our version of Sain’s method performed consistently
worse than the Abramson estimator. We suggest that the relatively simple structure of the densities
considered here means that this approach is not suitable.

We see that, for cases (a)-(e), the log-concave maximum likelihood estimator has a smaller MISE
than the kernel estimator, regardless of choice of bandwidth, for moderate or large sample sizes. Re-
markably, our estimator outperforms the kernel estimator even when the bandwidth is chosen based
on knowledge of the true density to minimise the MISE. The improvements over kernel estimators
are even more marked for d = 3 than for d = 2. Despite the early promise of adaptive bandwidth
methods, they are unable to improve significantly on the performance of fixed bandwidth selectors
for our examples. The relatively poor performance of the log-concave maximum likelihood estimator
for small sample sizes appears to caused by the poor approximation of the convex hull of the data to
the support of the underlying density. This effect becomes negligible in larger sample sizes; see also
Section 9. Note that the dependence in case (b) and restricted support in case (c) do not hinder the
performance of the log-concave estimator.

In case (f), where the assumption of log-concavity is violated, it is not surprising to see that the
performance of our estimator is not as good as that of the optimal fixed bandwidth kernel estimator,
but it is still comparable for moderate sample sizes with data-driven kernel estimators (particularly
when d = 3). This illustrates the robustness property described in Theorem 4. In this case we may
recover good performance at larger sample sizes by using a mixture of two log-concave components.

To further investigate the impact of boundary effects, we performed the same simulations for a
bivariate density with independent components having a Unif(0,1) distribution and a Beta(2,4) dis-
tribution respectively. The results are shown in Figure 5. In this case, boundary bias is particularly
problematic for the kernel density estimator, but does not inhibit the performance of the log-concave
estimator.

6. Clustering example

In a recent paper, Chang and Walther (2007) introduced an algorithm which combines the univariate
log-concave maximum likelihood estimator with the EM algorithm (Dempster, Laird and Rubin,
1977), to fit a finite mixture density of the form

f(x) =

p
∑

j=1

πjfj(x), (6.1)

where the mixture proportions π1, . . . , πp are positive and sum to one, and the component densities
f1, . . . , fp are univariate and log-concave. The method is an extension of the standard Gaussian EM
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Fig. 3. MISE, d = 2. The solid line is the LogConcDEAD estimate, the dashed line the plug-in kernel

estimate, the dotted line the Abramson kernel estimate and the dot-dashed line the MISE-optimal bandwidth

kernel estimate. The grey line (density f only) is for a 2-component log-concave mixture.
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Fig. 4. MISE, d = 3. The solid line is the LogConcDEAD estimate, the dashed line the plug-in kernel

estimate, the dotted line the Abramson kernel estimate and the dot-dashed line the MISE-optimal bandwidth

kernel estimate. The grey line (density f only) is for a 2-component log-concave mixture.
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Fig. 5. MISE, d = 2, Bivariate uniform/Beta density. The solid line is the LogConcDEAD estimate, the dashed

line the plug-in kernel estimate, and the dotted line the Abramson kernel estimate.

algorithm, e.g. Fraley and Raftery (2002), which assumes that each component density is normal.

Once estimates π̂1, . . . , π̂p, f̂1, . . . , f̂p have been obtained, clustering can be carried out by assigning

to the jth cluster those observations Xi for which j = argmaxr π̂rf̂r(Xi). Chang and Walther
(2007) show empirically that in cases where the true component densities are log-concave but not
normal, their algorithm tends to make considerably fewer misclassifications and have smaller mean
absolute error in the mixture proportion estimates than the Gaussian EM algorithm, with very
similar performance in cases where the true component densities are normal.

Owing to the previous lack of an algorithm for computing the maximum likelihood estimator of a
multidimensional log-concave density, Chang and Walther (2007) discuss an extension of the model
in (6.1) to a multivariate context where the univariate marginal densities of each component in
the mixture are assumed to be log-concave, and the dependence structure within each component
density is modelled with a normal copula. Now that we are able to compute the maximum likelihood
estimator of a multidimensional log-concave density, we can carry this method through to its natural
conclusion. That is, in the finite mixture model (6.1) for a multidimensional log-concave density
f , we simply assume that each of the component densities f1, . . . , fp is log-concave. An interesting
problem that we do not address here is that of finding appropriate conditions under which this model
is identifiable – see Titterington, Smith and Makov (1985, Section 3.1) for a nice discussion.

6.1. EM algorithm

An introduction to the EM algorithm can be found in McLachlan and Krishnan (1997). Briefly, given

current estimates of the mixture proportions and component densities π̂
(ℓ)
1 , . . . , π̂

(ℓ)
p , f̂

(ℓ)
1 , . . . , f̂

(ℓ)
p at
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the ℓth iteration of the algorithm, we update the estimates of the mixture proportions by setting

π̂
(ℓ+1)
j = n−1

∑n
i=1 θ̂

(ℓ)
i,j for j = 1, . . . , p, where

θ̂
(ℓ)
i,j =

π̂
(ℓ)
j f̂

(ℓ)
j (Xi)

∑p
r=1 π̂

(ℓ)
r f̂

(ℓ)
r (Xi)

is the current estimate of the posterior probability that the ith observation belongs to the jth
component. We then update the estimates of the component densities in turn using the algorithm

described in Section 3, choosing f̂
(ℓ+1)
j to be the log-concave density fj that maximises

n
∑

i=1

θ̂
(ℓ)
i,j log fj(Xi).

The incorporation of the weights θ̂
(ℓ)
1,j , . . . , θ̂

(ℓ)
n,j in the maximisation process presents no additional

complication, as is easily seen by inspecting the proof of Theorem 2. As usual with methods based
on the EM algorithm, although the likelihood increases at each iteration, there is no guarantee that
the sequence converges to a global maximum. In fact, it can happen that the algorithm produces
a sequence that approaches a degenerate solution, corresponding to a component concentrated on
a single observation, so that the likelihood becomes arbitrarily high. The same issue can arise
when fitting mixtures of Gaussian densities, and in this context Fraley and Raftery (2002) suggest
that a Bayesian approach can alleviate the problem in these instances by effectively smoothing the
likelihood. In general, it is standard practice to restart the algorithm from different initial values,
taking the solution with the highest likelihood.

In our case, because of the computational intensity of our method, we first cluster the points accord-
ing to a hierarchical Gaussian clustering model and then iterate the EM algorithm until the increase
in the likelihood is less than 10−3 at each step. This differs from Chang and Walther (2007), who
used a Gaussian mixture as a starting point. We found that this approach did not allow sufficient
flexibility in a multivariate context.

6.2. Breast cancer example

We illustrate the log-concave EM algorithm on the Wisconsin breast cancer data set of Street, Wol-
berg and Mangasarian (1993), available on the UCI Machine Learning Repository website (Asuncion
and Newman, 2007):

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29.

The data set was created by taking measurements from a digitised image of a fine needle aspirate of a
breast mass, for each of 569 individuals, with 357 benign and 212 malignant instances. We study the
problem of trying to diagnose (cluster) the individuals based on the first two principal components
of the 30 different measurements, which capture 63% of the variability in the full dataset. These
data are presented in Figure 6(a).

It is important also to note that although for this particular data set we do know whether a particular
instance is benign or malignant, we did not use this information in fitting our mixture model.

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+ %28Diagnostic%29
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(b) Gaussian mixture classification
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(c) Log-concave mixture classification (d) Estimated log-concave mixture

Fig. 6. Panel (a) plots the Wisconsin breast cancer data, with benign cases as solid squares and malignant

ones as open circles. Panel (b) gives a contour plot together with the misclassified instances from the Gaussian

EM algorithm, while the corresponding plot obtained from the log-concave EM algorithm is given in Panel (c).

Panel (d) plots the fitted mixture distribution from the log-concave EM algorithm.
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Instead this information was only used afterwards to assess the performance of the method, as
reported below. Thus we are studying a clustering (or unsupervised learning) problem, by taking
a classification (or supervised learning) data set and ‘covering up the labels’ until it comes to
performance assessment.

The skewness in the data suggests that the mixture of Gaussians model may be inadequate, and in
Figure 6(b) we show the contour plot and misclassified instances from this model. The corresponding
plot obtained from the log-concave EM algorithm is given in Figure 6(c), while Figure 6(d) plots
the fitted mixture distribution from the log-concave EM algorithm. For this example, the number of
misclassified instances is reduced from 59 with the Gaussian EM algorithm to 48 with the log-concave
EM algorithm.

In some examples, it will be necessary to estimate p, the number of mixture components. In the
general context of model-based clustering, Fraley and Raftery (2002) cite several possible approaches
for this purpose, including methods based on resampling (McLachlan and Basford, 1988) and an
information criterion (Bozdogan, 1994). Further research will be needed to ascertain which of these
methods is most appropriate in the context of log-concave component densities.

7. Plug-in estimation of functionals, sampling and the bootstrap

Suppose X has density f . Often, we are less interested in estimating a density directly than in
estimating some functional θ = θ(f). Examples of functionals of interest (some of which were given
in Section 1), include:

(a) P(‖X‖ ≥ 1) =
∫

f(x)✶{‖x‖≥1} dx
(b) Moments, such as E(X) =

∫

xf(x) dx, or E(‖X‖2) =
∫

‖x‖2f(x) dx
(c) The differential entropy of X (or f), defined by H(f) = −

∫

f(x) log f(x) dx
(d) The 100(1 − α)% highest density region, defined by Rα = {x ∈ R

d : f(x) ≥ fα}, where fα

is the largest constant such that P(X ∈ Rα) ≥ 1 − α. Hyndman (1996) argues that this is
an informative summary of a density; note that subject to a minor restriction on f , we have
∫

f(x)✶{f(x)≥fα} dx = 1 − α.

Each of these may be estimated by the corresponding functional θ̂ = θ(f̂n) of the log-concave
maximum likelihood estimator. In examples (a) and (b) above, θ(f) may also be written as a
functional of the corresponding distribution function F , e.g. P(‖X‖ ≥ 1) =

∫

✶{‖x‖≥1}dF (x).
In such cases, it is more natural to use the plug-in estimator based on the empirical distribution
function, F̂n, of the sample X1, . . . , Xn, and indeed in our simulations we found that the log-concave
plug-in estimator did not offer an improvement on this method. In the other examples, however,
an empirical distribution function plug-in estimator is not available, and the log-concave plug-in
estimator is a potentially attractive procedure.

To provide some theoretical justification for this, observe from Section 4 that we can think of the
sequence (f̂n) as taking values in the space B of (measurable) functions with finite ‖ · ‖1,a norm for

some a > 0, where ‖f‖1,a =
∫

ea‖x‖|f(x)| dx. The conclusion of Theorem 4 is that ‖f̂n−f
∗‖1,a

a.s.
→ 0
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as n→ ∞ for a range of values of a, where f∗ is the log-concave density that minimises the Kullback–
Leibler divergence from the true density. If the functional θ(f) takes values in another normed space

(e.g. R) with norm ‖ · ‖ and is a continuous function on B, then ‖θ̂ − θ∗‖
a.s.
→ 0, where θ∗ = θ(f∗).

In particular, when the true density is log-concave, θ̂ is strongly consistent.

7.1. Monte Carlo estimation of functionals

For some functionals we can compute θ̂ = θ(f̂n) analytically. Suppose now that this is not possible,
but that we can write θ(f) =

∫

f(x)g(x) dx for some function g. Such a functional is continuous (so

θ̂ is strongly consistent) provided merely that supx∈Rd e−a‖x‖|g(x)| <∞ for some a in the allowable

range provided by Theorem 4. In that case, we may approximate θ̂ by

θ̂B =
1

B

B
∑

b=1

g(X∗
b ),

for some (large) B, where X∗
1 , . . . , X

∗
B are independent samples from f̂n. Conditional on X1, . . . , Xn,

the strong law of large numbers gives that θ̂B
a.s.
→ θ̂ as B → ∞. In practice, even when analytic

calculation of θ̂ was possible, this method was found to be fast and accurate.

In order to use this Monte Carlo procedure, we must be able to sample from f̂n. Fortunately, this can
be done efficiently using the rejection sampling procedure described in Section B.3 in the Appendix.

7.2. Simulation study

In this section we illustrate some simple applications of this idea to functionals (c) and (d) above.
An expression for computing (c) may be found in Cule (2009). For (d), closed-form integration
is not possible, so we use the method of Section 7.1. Estimates are based on random samples of
size n = 500 from a N2(0, I) distribution, and we compare the performance of the LogConcDEAD

estimate with that of a kernel-based plug-in estimate, where the bandwidth was chosen using a
plug-in rule (the choice of bandwidth did not have a big influence on the outcome; see Cule (2009)).

This was done for all of the densities in Section 5, though we present results only for density (c)
and d = 2 for reasons of space. See Cule (2009) for further examples and results. In Figure 7
we study the plug-in estimators R̂α of the highest density region Rα, and measure the quality of
the estimation procedures through E{µf (R̂α △ Rα)}, where µf (A) =

∫

A
f(x) dx and △ denotes

set difference. Highest density regions can be computed once we have approximated the sample
versions of fα using the density quantile algorithm described in Hyndman (1996, Section 3.2). The
log-concave estimator provides a substantial improvement on the kernel estimator for each of the
three levels considered. See also Figure 8.

In real data examples, we are unable to assess uncertainty in our functional estimates by taking
repeated samples from the true underlying model. Nevertheless, the fact that we can sample from
the log-concave maximum likelihood estimator does mean that we can apply standard bootstrap
methodology to compute standard errors or confidence intervals, for example. Finally, we remark
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Fig. 7. Error for the highest density regions. The solid lines are the LogConcDEAD estimates; the dashed
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highest lines are the 75% HDR.

that the plug-in estimation procedure, sampling algorithm and bootstrap methodology extend in an
obvious way to the case of a finite mixture of log-concave densities.

8. Assessing log-concavity

In Section 4 we mentioned the fact that one can never be certain that a particular data set comes
from a log-concave density. Even though Theorem 4 shows that the log-concave maximum likelihood
estimator has a desirable robustness property, it is still desirable to have diagnostic tests for assessing
log-concavity. In this section we present two possible hypothesis tests of the null hypothesis that
the underlying density is log-concave.

The first uses a method similar to that described in Walther (2002) to test the null hypothesis that
a log-concave model adequately models the data, compared to the alternative that

f(x) = exp(φ(x) + c‖x‖2)

for some concave function φ and c > 0. This was originally suggested to detect mixing, as Walther
(2002) proves that a finite mixture of log-concave densities has a representation of this form, but in
fact captures more general alternatives to log-concavity such as heavy tails. In order to do this, we
compute

f̂c
n = arg max

f∈Fc

L(f)

for fixed values c ∈ C = {c0, . . . , cM}, where Fc =
{

f : f(x) = exp(φ(x) + c‖x‖2) with φ concave
}

.
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Fig. 8. Estimates of the 25%, 50% and 75% highest density region from 500 observations from the N2(0, I)
distribution.
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We wish to assess how much f̂c
n deviates from log-concavity; one possible measure is

T (c) =

∫

{h̄(x) − log f̂c
n(x)}f̂0

n(x) dx

where h̄ is the least concave majorant of log f̂c
n. In order to generate a reference distribution, we

draw B bootstrap samples from f̂0
n. For each bootstrap sample and each value c = c0, . . . , cM ,

we compute the test statistic defined above, to obtain T ∗
b (c) for b = 1, . . . , B. Let m(c) and s(c)

denote the sample mean and sample standard deviation respectively of T ∗
1 (c), . . . , T ∗

B(c). We then
standardize the statistics on each scale, computing

T̃ (c) =
T (c) −m(c)

s(c)

and

T̃ ∗
b (c) =

T ∗
b (c) −m(c)

s(c)

for each c = c0, . . . , cM and b = 1, . . . , B. To perform the test we compute the (approximate) p-value

1

B + 1
#

{

b : max
c∈C

T̃ (c) > max
c∈C

T̃ ∗
b (c)

}

.

As an illustration, we applied this procedure to a sample of size n = 500 from a mixture distribution.
The first component was a mixture with density

0.5φ0.25(x) + 0.5φ5(x− 2),

where φσ2 is the density of a N(0, σ2) random variable. The second component was an independent
Γ(2, 1) random variable. This density is not log-concave, and is the type of mixture that presents
difficulties for both parametric tests (not being easy to capture with a single parametric family) and
for many nonparametric tests (having a single peak). Figure 9(a) is a contour plot of this density.
Mixing is not immediately apparent because of the combination of components with very different
variances.

We performed the test described above using B = 99, m = 11 and C = 3. Before performing this
test, both the data and the bootstrap samples were rescaled to have variance 1 in each dimension.
This was done because the smallest c such that f(x) = exp(φ(x) + c‖x‖2) for concave φ is not
invariant under rescaling, so we wish to have all dimensions on the same scale before performing the
test. The resulting p-value was less than 0.01. Figure 9(b) shows the values of the test statistic for
various values of c (on the standardized scale). See Cule (2009) for further examples. Unfortunately,
this test is currently not practical except for small sample sizes because of the computational burden
of computing the test statistics for the many bootstrap samples.

We therefore introduce a permutation test that involves fitting only a single log-concave maximum
likelihood estimator, and which tests against the general alternative that the underlying density f0
is not log-concave. The idea is to fit the log-concave maximum likelihood estimator f̂n to the data
X1, . . . , Xn, and then to draw a sample X∗

1 , . . . , X
∗
n from this fitted density. The intuition is that if

f0 is not log-concave, then the two samples X = {X1, . . . , Xn} and X ∗ = {X∗
1 , . . . , X

∗
n} should look

different. We would like to formalise this idea with a notion of distance, and a fairly natural metric
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Fig. 9. Assessing the suitability of log-concavity. The left-hand panel gives a contour plot of the density. In

the right-hand panel, the grey line illustrates the value of the test statistic and the dotted lines the bootstrap

reference values.

between distributions P and Q in this context is d(P,Q) = supA∈A |P (A)−Q(A)|, where A denotes
the class of all (Euclidean) balls in R

d. A sample version of this quantity is

T = sup
A∈A0

|Pn(A) − P ∗
n(A)|, (8.1)

where A0 is the set of all balls centered at a point in X ∪ X ∗, and Pn and P ∗
n denote the empirical

distributions of X and X ∗ respectively. For a fixed ball centre and expanding radius, the quantity
|Pn(A)−P ∗

n(A)| only changes when a new point enters the ball, so the supremum in (8.1) is attained
and the test statistic is easy to compute.

In order to compute the critical value for the test, we ‘shuffle the stars’ in the combined sample X∪X ∗;
in other words, we re-label the points by choosing a random (uniformly distributed) permutation of
the combined sample and putting stars on the last n elements in the permuted combined sample.
Writing Pn,1 and P ∗

n,1 for the empirical distributions of the first n and last n elements in the
permuted combined sample respectively, we compute T ∗

1 = supA∈A0
|Pn,1(A)−P ∗

n,1(A)|. Repeating
this procedure a further (B − 1) times, we obtain T ∗

1 , . . . , T
∗
B , with corresponding order statistics

T ∗
(1) ≤ . . . ≤ T ∗

(B). For a nominal size α test, we reject the null hypothesis of log-concavity if
T > T ∗

((B+1)(1−α)).

In practice, we found that some increase in power could be obtained by computing the maximum
over all balls containing at most k points in the combined sample instead of computing the maximum
over all balls. The reason for this is that if f0 is not log-concave, then one would expect to find
clusters of points with the same label (i.e. with or without stars). Thus the supremum in (8.1) may
well be attained at a relatively small ball radius. On the other hand, in the permuted samples, the
supremum is likely to be attained at a ball radius that includes approximately half of the points in
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Table 3. : Proportion of times out of 200 repetitions that the null

hypothesis was rejected

n ‖µ‖ = 0 ‖µ‖ = 1 ‖µ‖ = 2 ‖µ‖ = 3 ‖µ‖ = 4
200 0.01 0 0.015 0.06 0.475
500 0.01 0 0.015 0.065 0.88
1000 0 0.005 0.005 0.12 0.995

the combined sample, so by restricting the ball radius, we will tend to reduce the critical value for
the test (potentially without altering the test statistic). Of course, this introduces a parameter k to
be chosen. This choice is similar to the problem of choosing k in k-nearest neighbour classification,
as studied in Hall, Park and Samworth (2008). There it was shown that, under mild regularity
conditions, the misclassification rate is minimised by choosing k to be of order n4/(d+4), but that in
practice the performance of the classifier was relatively insensitive to a fairly wide range of choices
of k.

To illustrate the performance of the hypothesis test, we ran a small simulation study. We chose the
bivariate mixture of normals density f0(x) = 1

2φ2(x) + 1
2φ2(x− µ), with ‖µ‖ ∈ {0, 1, 2, 3, 4}, which

is log-concave if and only if ‖µ‖ ≤ 2. For each simulation set-up, we conducted 200 hypothesis tests
with k = ⌊n4/(d+4)⌋ and B = 99, and report in Table 3 the proportion of times the null hypothesis
was rejected in a size α = 0.05 test.

One feature of the test that is apparent from Table 3 is that the test is conservative. This is
initially surprising because it indicates that the original test statistic, which is based on two samples
that come from slightly different distributions, tends to be a little smaller than the test statistic
based on the permuted samples, in which both samples that come from the same distribution. The
explanation is that the dependence between X and X ∗ means that the realisations of the empirical
distributions Pn and P ∗

n tend to be particularly close together. Nevertheless, the test is able to
detect the significant departure from log-concavity (when ‖µ‖ = 4), particularly at larger sample
sizes.

9. Concluding discussion

We hope that this paper will stimulate further interest and research in the field of shape-constrained
estimation. Indeed, there remain many challenges and interesting directions for future research. As
well as the continued development and refinement of the computational algorithms and graphical
displays of estimates, and further studies of theoretical properties, these include:

(i) Studying other shape constraints. These have received some attention for univariate data,
dating back to Grenander (1956), but in the multivariate setting these are an active area
of current development; see, for example, Seregin and Wellner (2009); Koenker and Mizera
(2010). Computational, methodological and theoretical questions arise for each different shape
constraint, and we hope that this paper might provide some ideas that can be transferred to
these different settings.

(ii) Addressing the issue of how to improve performance of shape-constrained estimators at small
sample sizes. One idea here, based on an extension of the univariate idea presented in Dümbgen
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and Rufibach (2009), is the following: we first note that an extension of Theorem 2.2 of
Dümbgen and Rufibach (2009) to the multivariate case gives that the covariance matrix Σ̃

corresponding to the fitted log-concave maximum likelihood estimator f̂n is smaller than the
sample covariance matrix Σ̂, in the sense that A = Σ̂ − Σ̃ is non-negative definite. One can
therefore define a slightly smoothed version of f̂n via the convolution

f̃n(x) =

∫

Rd

φd,A(x− y)f̂n(y) dy.

The estimator f̃n is still a fully automatic, log-concave density estimator. Moreover, it is sup-
ported on the whole of R

d, infinitely differentiable, and the covariance matrix corresponding to
f̃n is equal to the sample covariance matrix. The estimator f̃n will exhibit similar large-sample
performance to f̂n (indeed, Theorem 4 also applies to f̃n), but offers potential improvements
for small sample sizes.

(iii) Assessing the uncertainty in shape-constrained nonparametric density estimates, through con-
fidence intervals/bands.

(iv) Developing analogous methodology and theory for discrete data under shape constraints.
(v) Examining nonparametric shape constraints in regression problems, such as those studied in

Dümbgen, Samworth and Schuhmacher (2010), for example.
(vi) Studying methods for choosing the number of clusters in nonparametric, shape-constrained

mixture models.

A. Proofs

Proof of Proposition 1

(a) If f is log-concave, then for x ∈ R
d, we can write

fX|PV (X)(x|t) ∝ f(x)✶{PV (x)=t},

a product of log-concave functions. Thus fX|PV (X)(·|t) is log-concave for each t.

(b) Let x1, x2 ∈ R
d be distinct and let λ ∈ (0, 1). Let V be the (d− 1)-dimensional subspace of R

d

whose orthogonal complement is parallel to the affine hull of {x1, x2} (i.e. the line through x1 and
x2). Writing fPV (X) for the marginal density of PV (X) and t for the common value of PV (x1) and

PV (x2), the density of X at x ∈ R
d is

f(x) = fX|PV (X)(x|t)fPV (X)(t).

Thus

log f
(

λx1 + (1 − λ)x2

)

≥ λ log fX|PV (X)(x1|t) + (1 − λ) log fX|PV (X)(x2|t) + log fPV (X)(t)

= λ log f(x1) + (1 − λ) log f(x2),

so f is log-concave, as required. ✷

Proof of Theorem 2
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We may assume that X1, . . . , Xn are distinct and their convex hull, Cn = conv(X1, . . . , Xn), is a
d-dimensional polytope (an event of probability one when n ≥ d + 1). By a standard argument in
convex analysis (Rockafellar, 1997, p. 37), for each y = (y1, . . . , yn) ∈ R

n there exists a function
h̄y : R

d → R with the property that h̄y is the least concave function satisfying h̄y(Xi) ≥ yi for all
i = 1, . . . , n. Let H = {h̄y : y ∈ R

n}, let F denote the set of all log-concave functions on R
d, and

for f ∈ F , define

ψn(f) =
1

n

n
∑

i=1

log f(Xi) −

∫

Rd

f(x) dx.

Suppose that f maximises ψn(·) over F . We show in turn that

(i) f(x) > 0 for x ∈ Cn

(ii) f(x) = 0 for x /∈ Cn

(iii) log f ∈ H
(iv) f ∈ F0

(v) there exists M > 0 such that if maxi |h̄y(Xi)| ≥M , then ψn

(

exp(h̄y)
)

≤ ψn(f).

First note that if x0 ∈ Cn, then by Carathéodory’s theorem (Theorem 17.1 of Rockafellar (1997)),
there exist distinct indices i1, . . . , ir with r ≤ d + 1, such that x0 =

∑r
l=1 λlXil

with each λl > 0
and

∑r
l=1 λl = 1. Thus, if f(x0) = 0, then by Jensen’s inequality,

−∞ = log f(x0) ≥
r

∑

l=1

λl log f(Xil
),

so f(Xi) = 0 for some i. But then ψn(f) = −∞. This proves (i).

Now suppose f(x0) > 0 for some x0 /∈ Cn. Then {x : f(x) > 0} is a convex set containing Cn∪{x0},
a set which has strictly larger d-dimensional Lebesgue measure than that of Cn. We therefore have
ψn(f) < ψn(f✶Cn

), which proves (ii).

To prove (iii), we first show that log f is closed. Suppose that log f(Xi) = yi for i = 1, . . . , n but that
log f 6= h̄y. Then since log f(x) ≥ h̄y(x) for all x ∈ R

d, we may assume that there exists x0 ∈ Cn

such that log f(x0) > h̄y(x0). If x0 is in the relative interior of Cn, then since log f and h̄y are
continuous at x0 (by Theorem 10.1 of Rockafellar (1997)), we must have

ψn(f) < ψn

(

exp(h̄y)
)

.

The only remaining possibility is that x0 is on the relative boundary of Cn. But h̄y is closed by
Corollary 17.2.1 of Rockafellar (1997), so writing cl(g) for the closure of a concave function g, we
have h̄y = cl(h̄y) = cl(log f) ≥ log f , where we have used Corollary 7.3.4 of Rockafellar (1997) to
obtain the middle equality. It follows that log f is closed and log f = h̄y, which proves (iii).

Note that log f has no direction of increase, because if x ∈ Cn, z is a non-zero vector and t > 0 is
large enough that x+ tz /∈ Cn, then −∞ = log f(x+ tz) < log f(x). It follows by Theorem 27.2 of
Rockafellar (1997) that the supremum of f is finite (and is attained). Using properties (i) and (ii)
as well, we may write

∫

f(x) dx = c, say, where c ∈ (0,∞). Thus f(x) = cf̄(x), for some f̄ ∈ F0.
But then

ψn(f̄) − ψn(f) = −1 − log c+ c ≥ 0,
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with equality only if c = 1. This proves (iv).

To prove (v), we may assume by (iv) that exp(h̄y) is a density. Let maxi h̄y(Xi) = M and let
mini h̄y(Xi) = m. We show that when M is large, in order for exp(h̄y) to be a density, m must be
negative with |m| so large that ψn

(

exp(h̄y)
)

≤ ψn(f). First observe that if x ∈ Cn and h̄y(Xi) = M ,
then for M sufficiently large we must have M −m > 1, and then

h̄y

(

Xi +
1

M −m
(x−Xi)

)

≥
1

M −m
h̄y(x) +

M −m− 1

M −m
h̄y(Xi)

≥
m

M −m
+

(M −m− 1)M

M −m
= M − 1.

(The fact that h̄y(x) ≥ m follows by Jensen’s inequality.) Hence, denoting Lebesgue measure on R
d

by µ, we have

µ({x : h̄y(x) ≥M − 1}) ≥ µ
({

Xi +
1

M −m
(Cn −Xi)

})

=
µ(Cn)

(M −m)d
.

Thus
∫

Rd

exp{h̄y(x)} dx ≥ eM−1 µ(Cn)

(M −m)d
.

For exp(h̄y) to be a density, then, we require m ≤ −1
2e

(M−1)/dµ(Cn)1/d when M is large. But then

ψn

(

exp(h̄y)
)

≤
(n− 1)M

n
−

1

2n
e(M−1)/dµ(Cn)1/d ≤ ψn(f)

when M is sufficiently large. This proves (v).

It is not hard to see that for any M > 0, the function y 7→ ψn(exp(h̄y)
)

is continuous on the compact
set [−M,M ]n, and thus the proof of the existence of a maximum likelihood estimator is complete.
To prove uniqueness, suppose that f1, f2 ∈ F and both f1 and f2 maximise ψn(f). We may assume
f1, f2 ∈ F0, log f1, log f2 ∈ H and f1 and f2 are supported on Cn. Then the normalised geometric
mean

g(x) =
{f1(x)f2(x)}

1/2

∫

Cn
{f1(y)f2(y)}1/2 dy

,

is a log-concave density, with

ψn(g) =
1

2n

n
∑

i=1

log f1(Xi) +
1

2n

n
∑

i=1

log f2(Xi) − log

∫

Cn

{f1(y)f2(y)}
1/2 dy − 1

= ψn(f1) − log

∫

Cn

{f1(y)f2(y)}
1/2 dy.

However, by Cauchy–Schwarz,
∫

Cn
{f1(y)f2(y)}

1/2 dy ≤ 1, so ψn(g) ≥ ψn(f1). Equality is obtained

if and only if f1 = f2 almost everywhere, but since f1 and f2 are continuous relative to Cn (Theo-
rem 10.2 of Rockafellar (1997)), this implies that f1 = f2. ✷

Proof of Theorem 3

For t ∈ (0, 1) and y(1), y(2) ∈ R
n, the function h̄ty(1)+(1−t)y(2) is the least concave function satisfying
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h̄ty(1)+(1−t)y(2)(Xi) ≥ ty
(1)
i + (1 − t)y

(2)
i for i = 1, . . . , n, so h̄ty(1)+(1−t)y(2) ≤ th̄y(1) + (1 − t)h̄y(2) .

The convexity of σ follows from this and the convexity of the exponential function. It is clear that
σ ≥ τ , since h̄y(Xi) ≥ yi for i = 1, . . . , n.

From Theorem 2, we can find y∗ ∈ R
n such that log f̂n = h̄y∗ with h̄y∗(Xi) = y∗i for i = 1, . . . , n, and

this y∗ minimises τ . For any other y ∈ R
n which minimises τ , by the uniqueness part of Theorem 2

we must have h̄y = h̄y∗ , so σ(y) > σ(y∗) = τ(y∗). ✷

B. Structural and computational issues

As illustrated in Figure 1, and justified formally by Corollary 17.1.3 and Corollary 19.1.2 of Rockafel-
lar (1997), the convex hull of the data, Cn, may be triangulated in such a way that log f̂n coincides
with an affine function on each simplex in the triangulation. In other words, if j = (j0, . . . , jd) is
a (d + 1)-tuple of distinct indices in {1, . . . , n}, and Cn,j = conv(Xj0 , . . . , Xjd

), then there exists a
finite set J consisting of m such (d+ 1)-tuples, with the following three properties:

(i) ∪j∈JCn,j = Cn

(ii) the relative interiors of the sets {Cn,j : j ∈ J} are pairwise disjoint
(iii)

log f̂n(x) =

{

〈x, bj〉 − βj if x ∈ Cn,j for some j ∈ J
−∞ if x /∈ Cn

for some b1, . . . , bm ∈ R
d and β1, . . . , βm ∈ R. Here and below, 〈·, ·〉 denotes the usual Euclidean

inner product in R
d.

In the iterative algorithm that we propose for computing the maximum likelihood estimator, we
need to find convex hulls and triangulations at each iteration. Fortunately, these can be computed
efficiently using the Quickhull algorithm of Barber et al. (1996).

B.1. Computing the function σ

We now address the issue of computing the function σ in (3.2) at a generic point y = (y1, . . . , yn) ∈
R

n. For each j = (j0, . . . , jd) ∈ J , let Aj be the d × d matrix whose lth column is Xjl
− Xj0 for

l = 1, . . . , d, and let αj = Xj0 . Then the affine transformation w 7→ Ajw+αj takes the unit simplex

Td =
{

w = (w1, . . . , wd) : wl ≥ 0,
∑d

l=1 wl ≤ 1
}

to Cn,j .

Letting zj,l = yjl
− yj0 and w0 = 1 − w1 − . . . − wd, we can then establish by a simple change of
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variables and induction on d that if zj,1, . . . , zj,d are non-zero and distinct, then
∫

Cn

exp{h̄y(x)} dx =
∑

j∈J

|detAj |

∫

Td

exp(yj0w0 + . . .+ yjd
wd) dw

=
∑

j∈J

|detAj |e
yj0

d
∑

r=1

ezj,r − 1

zj,r

∏

1≤s≤d
s 6=r

1

zj,r − zj,s
(B.1)

The singularities that occur when some of zj,1, . . . , zj,d may be zero or equal are removable. However,
for stable computation of σ in practice, a Taylor approximation was used – see Cule and Dümbgen
(2008); Cule (2009) for further details.

B.2. Non-differentiability of σ and computation of subgradients

In this section, we find explicitly the set of points at which the function σ defined in (3.2) is
differentiable, and compute a subgradient of σ at each point. For i = 1, . . . , n, define

Ji = {j = (j0, . . . , jd) ∈ J : i = jl for some l = 0, 1, . . . , d}.

The set Ji is the index set of those simplices Cn,j that have Xi as a vertex. Let Y denote the set of
vectors y = (y1, . . . , yn) ∈ R

n with the property that for each j = (j0, . . . , jd) ∈ J , if i 6= jl for any l
then

{

(Xi, yi), (Xj0 , yj0), . . . , (Xjd
, yjd

)
}

is affinely independent in R
d+1. This is the set of points for which no tent pole is touching but

not critically supporting the tent. Notice that the complement of Y has zero Lebesgue measure in
R

n, provided that every subset of {X1, . . . , Xn} of size d + 1 is affinely independent (an event of
probability one). Let w0 = 1 − w1 − . . .− wd, and for y ∈ R

n and i = 1, . . . , n, let

∂i(y) = −
1

n
+

∑

j∈Ji

|detAj |

∫

Td

e〈w,zj〉+yj0

d
∑

l=0

wl✶{jl=i} dw. (B.2)

Proposition 5. (a) For y ∈ Y, the function σ is differentiable at y and for i = 1, . . . , n satisfies

∂σ

∂yi
(y) = ∂i(y).

(b) For y ∈ Yc, the function σ is not differentiable at y, but the vector (∂1(y), . . . , ∂n(y)) is a
subgradient of σ at y.

Proof. By Theorem 25.2 of Rockafellar (1997), it suffices to show that for y ∈ Y, all of the partial
derivatives exist and are given by the expression in the statement of the proposition. For i = 1, . . . , n
and t ∈ R, let y(t) = y+ ten

i , where en
i denotes the ith unit coordinate vector in R

n. For sufficiently
small values of |t|, we may write

h̄y(t)(x) =

{

〈x, b
(t)
j 〉 − β

(t)
j if x ∈ Cn,j for some j ∈ J

−∞ if x /∈ Cn,
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for certain values of b
(t)
1 , . . . , b

(t)
m ∈ R

d and β
(t)
1 , . . . , β

(t)
m ∈ R. If j /∈ Ji, then b

(t)
j = bj and β

(t)
j = βj

for sufficiently small |t|. On the other hand, if j ∈ Ji, then there are two cases to consider:

(i) If j0 = i, then for sufficiently small t, we have z
(t)
j = zj − t1d, where 1d denotes a d-vector of

ones, so that b
(t)
j = bj − t(AT

j )−11d and β
(t)
j = βj − t(1 + 〈A−1

j αj , 1d〉)

(ii) If jl = i for some l ∈ {1, . . . , d}, then for sufficiently small t, we have z
(t)
j = zj + ted

l , so that

b
(t)
j = bj + t(AT

j )−1ed
l and β

(t)
j = βj + t〈A−1

j αj , e
d
l 〉.

It follows that

∂σ

∂yi
(y) = −

1

n
+ lim

t→0

1

t

∑

j∈Ji

∫

Cn,j

exp
{

〈x, b
(t)
j 〉 − β

(t)
j

}

− exp {〈x, bj〉 − βj} dx

= −
1

n
+ lim

t→0

1

t

∑

j∈Ji

[

∫

Cn,j

e〈x,bj〉−βj
{

et(1−〈A−1
j

(x−αj),1d〉) − 1
}

dx✶{j0=i}

+

d
∑

l=1

∫

Cn,j

e〈x,bj〉−βj
{

et〈A−1
j

(x−αj),e
d
l 〉 − 1

}

dx✶{jl=i}

]

= −
1

n
+

∑

j∈Ji

[
∫

Cn,j

e〈x,bj〉−βj
(

1 − 〈A−1
j (x− αj), 1d〉

)

dx✶{j0=i}

+

∫

Cn,j

e〈x,bj〉−βj 〈A−1
j (x− αj), e

d
l 〉 dx✶{jl=i}

]

= ∂i(y),

where to obtain the final line we have made the substitution x = Ajw + αj , after taking the limit
as t→ 0.

(b) If y ∈ Yc, then it can be shown that there exists a unit coordinate vector en
i in R

n such that
the one-sided directional derivative at y with respect to en

i , denoted σ′(y; en
i ), satisfies σ′(y; en

i ) >
−σ′(y;−en

i ). Thus σ is not differentiable at y. To show that ∂(y) = (∂1(y), . . . , ∂n(y)) is a subgra-
dient of σ at y, it is enough by Theorem 25.6 of Rockafellar (1997) to find, for each ǫ > 0, a point
ỹ ∈ R

n such that ‖ỹ − y‖ < ǫ and such that σ is differentiable at ỹ with ‖∇σ(ỹ) − ∂(y)‖ < ǫ. This
can be done by sequentially making small adjustments to the components of y in the same order as
that in which the vertices were pushed in constructing the triangulation. ✷

A subgradient of σ at any y ∈ R
n may be computed using Proposition 5 and (B.2) and once we have

a formula for

Ĩd,u(z) =

∫

Td

wu exp

( d
∑

r=1

zrwr

)

dw.

An explicit closed formula for Ĩd,u(z) where z1, . . . , zd are non-zero are distinct is derived in Cule,
Samworth and Stewart (2010). Again, for practical purposes, we use a Taylor expansion for cases
where z1, . . . , zd are close to zero or approximately equal. Details are given in Cule and Dümbgen
(2008); Cule (2009).
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B.3. Sampling from the fitted density estimate

In order to use the Monte Carlo procedure described in Section 7.1, we must be able to sample from
f̂n. Fortunately, this can be done efficiently using the following rejection sampling procedure. As
above, for j ∈ J let Aj be the d× d matrix whose lth column is Xjl

−Xj0 for l = 1, . . . , d, and let

αj = Xj0 , so that w 7→ Ajw + αj maps the unit simplex Td to Cn,j . Recall that log f̂n(Xi) = y∗i ,
and let zj = (zj,1, . . . , zj,d), where zj,l = y∗jl

− y∗j0 for l = 1, . . . , d. Write

qj =

∫

Cn,j

f̂n(x) dx.

We may then draw an observation X∗ from f̂n as follows:

(i) Select j∗ ∈ J , selecting j∗ = j with probability qj
(ii) Select w ∼ Unif(Td) and u ∼ Unif([0, 1]) independently. If

u <
exp(〈w, zj∗〉)

maxv∈Td
exp(〈v, zj∗〉)

,

accept the point and set X∗ = Ajw + αj . Otherwise, repeat (ii).

C. Glossary of terms and results from convex analysis and computational geometry

All of the definitions and results below can be found in Rockafellar (1997) and Lee (2004). The
epigraph of a function f : R

d → [−∞,∞) is the set

epi(f) = {(x, µ) : x ∈ R
d, µ ∈ R, µ ≤ f(x)}.

We say f is concave if its epigraph is non-empty and convex as a subset of R
d+1; note that this

agrees with the terminology of Barndorff-Nielsen (1978), but is what Rockafellar (1997) calls a proper
concave function. If C is a convex subset of R

d then provided f : C → [−∞,∞) is not identically
−∞, it is concave if and only if

f
(

tx+ (1 − t)y
)

≥ tf(x) + (1 − t)f(y)

for x, y ∈ C and t ∈ (0, 1). A non-negative function f is log-concave if log f is concave, with the
convention that log 0 = −∞. It is a log-concave density if it agrees almost everywhere with a log-
concave function and

∫

Rd f(x) dx = 1. Note that all densities on R
d will be assumed to be with

respect to Lebesgue measure on R
d. The support of a log-concave function f is {x ∈ R

d : log f(x) >
−∞}, a convex subset of R

d.

A subset M of R
d is affine if tx + (1 − t)y ∈ M for all x, y ∈ M and t ∈ R. The affine hull of

M , denoted aff(M), is the smallest affine set containing M . Every non-empty affine set M in R
d

is parallel to a unique subspace of R
d, meaning that there is a unique subspace L of R

d such that
M = L + a, for some a ∈ R

d. The dimension of M is the dimension of this subspace, and more
generally the dimension of a non-empty convex set is the dimension of its affine hull. A finite set of
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points M = {x0, x1, . . . , xd} is affinely independent if aff(M) is d-dimensional. The relative interior
of a convex set C is the interior which results when we regard C as a subset of its affine hull. The
relative boundary of C is the set difference between its closure and its relative interior. If M is an
affine set in R

d, then an affine transformation (or affine function) is a function T : M → R
d such

that T
(

tx+ (1 − t)y
)

= tT (x) + (1 − t)T (y) for all x, y ∈M and t ∈ R.

The closure of a concave function g on R
d, denoted cl(g), is the function whose epigraph is the closure

in R
d+1 of epi(g). It is the least upper semi-continuous, concave function satisfying cl(g) ≥ g. The

function g is closed if cl(g) = g. An arbitrary function h on R
d is continuous relative to a subset

S of R
d if its restriction to S is a continuous function. A non-zero vector z ∈ R

d is a direction of
increase of h on R

d if t 7→ h(x+ tz) is non-decreasing for every x ∈ R
d.

The convex hull of finitely many points is called a polytope. The convex hull of d + 1 affinely
independent points is called a d-dimensional simplex (pl. simplices). If C is a convex set in R

d,
then a supporting half-space to C is a closed half-space which contains C and has a point of C in its
boundary. A supporting hyperplane H to C is a hyperplane which is the boundary of a supporting
half-space to C. Thus H = {x ∈ R

d : 〈x, b〉 = β}, for some b ∈ R
d and β ∈ R such that 〈x, b〉 ≤ β

for all x ∈ C with equality for at least one x ∈ C.

If V is a finite set of points in R
d such that P = conv(V ) is a d-dimensional polytope in R

d, then a
face of P is a set of the form P ∩H, where H is a supporting hyperplane to P . The vertex set of P ,
denoted vert(P ), is the set of 0-dimensional faces (vertices) of P . A subdivision of P is a finite set
of d-dimensional polytopes {S1, . . . , St} such that P is the union of S1, . . . , St and the intersection
of any two distinct polytopes in the subdivision is a face of both of them. If S = {S1, . . . , St} and
S̃ = {S̃1, . . . , S̃t′} are two subdivisions of P , then S̃ is a refinement of S if each Sl is contained in
some S̃l′ . The trivial subdivision of P is {P}. A triangulation of P is a subdivision of P in which
each polytope is a simplex.

If P is a d-dimensional polytope in R
d, F is a (d− 1)-dimensional face of P and v ∈ R

d, then there
is a unique supporting hyperplane H to P containing F . The polytope P is contained in exactly
one of the closed half-spaces determined by H, and if v is in the opposite open half-space, then F is
visible from v. If V is a finite set in R

d such that P = conv(V ), if v ∈ V and S = {S1, . . . , St} is a
subdivision of P , then the result of pushing v is the subdivision S̃ of P obtained by modifying each
Sl ∈ S as follows:

(i) If v /∈ Sl, then Sl ∈ S̃
(ii) If v ∈ Sl and conv(vert(Sl) \ {v}) is (d− 1)-dimensional, then Sl ∈ S̃
(iii) If v ∈ Sl and S′

l = conv(vert(Sl) \ {v}) is d-dimensional, then S′
l ∈ S̃. Also, if F is any

(d− 1)-dimensional face of S′
l that is visible from v, then conv(F ∪ {v}) ∈ S̃.

If σ is a convex function on R
n, then y′ ∈ R

n is a subgradient of σ at y if

σ(z) ≥ σ(y) + 〈y′, z − y〉

for all z ∈ R
n. If σ is differentiable at y, then ∇σ(y) is the unique subgradient to σ at y; otherwise

the set of subgradients at y has more than one element. The one-sided directional derivative of σ at
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y with respect to z ∈ R
n is

σ′(y; z) = lim
tց0

σ(y + tz) − σ(y)

t
,

which always exists (allowing −∞ and ∞ as limits) provided σ(y) is finite.
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Hall, P., Marron, J. S. and Park, B. U. (1992) Smoothed cross-validation. Probab. Theory Related
Fields, 92, 1–20.

Hall, P., Park, B. U. and Samworth, R. J. (2008) Choice of neighbour order in nearest-neighbour
classification. Ann. Statist., 36, 2135–2152.

Hand, D. J. (1981) Discrimination and Classification. New York: Wiley.

http://arxiv.org/abs/1002.3448/
http://arxiv.org/abs/1002.3448/
http://cran.r-project.org/package=ks


Log-concave density estimation 37

Hyndman, R. J. (1996) Computing and graphing highest density regions. The American Statistician,
50, 120–126.

Ibragimov, A. I. (1956) On the composition of unimodal distributions. Theory Probab. Appl., 1,
255–260.

Jongbloed, G. (1998) The iterative convex minorant algorithm for nonparametric estimaton. J.
Computational and Graphical Statist., 7, 310–321.

Kappel, F. and Kuntsevich, A. (2000) An implementation of Shor’s r-algorithm. Computational
Optimization and Applications, 15, 193–205.

Koenker, R. and Mizera, I. (2010) Quasi-concave density estimation Ann. Statist., to appear.

Lee, C. W. (2004) Subdivisions and triangulations of polytopes. In Handbook of discrete and com-
putational geometry (eds. J. E. Goodman and J. O’Rourke), second edition, 383–406. New York:
CRC Press.

McLachlan, G. J. and Basford, K. E. (1988) Mixture Models: Inference and Applications to Cluster-
ing. New York: Marcel Dekker.

McLachlan, G. J. and Krishnan, T. (1997) The EM Algorithm and Extensions. New York: Wiley.

Mengersen, K. L. and Tweedie, R. L. (1996) Rates of convergence of the Hastings and Metropolis
algorithms. Ann. Statist., 24, 101–121.

Pal, J. K., Woodroofe, M. and Meyer, M. (2007) Estimating a Polya frequency function. In Complex
Datasets and Inverse Problems: Tomography, Networks and Beyond. Vol. 54 of Lecture Notes -
Monograph Series, pp. 239–249. Ohio: Institute of Mathematical Statistics.

Parzen, E. (1962) On the estimation of a probability density function and the mode. Ann. Math.
Statist., 33, 1065–1076.
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Schuhmacher, D., Hüsler, A. and Dümbgen, L. (2010) Multivariate log-concave distributions as a
nearly parametric model. Tech. rep. 74, Universität Bern. URL http://arxiv.org/pdf/0907.0250v2

Scott, D. W. and Sain, S. R. (2004) Multi-dimensional density estimation. In Handbook of statis-
tics (eds. C. R. Rao and E. J. Wegman), vol. 23: Data mining and computational statistics.
Amsterdam: Elsevier.

Seregin, A. and Wellner, J. A. (2009) Nonparametric estimation of convex-transformed densities
URL http://arxiv.org/abs/0911.4151

Shor, N. Z. (1985) Minimization methods for non-differentiable functions. Berlin: Springer-Verlag.

Street, W. M., Wolberg, W. H. and Mangasarian, O. L. (1993) Nuclear feature extraction for breast
tumor diagnosis. IS & T/SPIE International Symposium on Electronic Imaging: Science and
Technology, 1905, 861–870.

Swales, J. D., ed. (1985) Platt Vs. Pickering: An Episode in Recent Medical History. Cambridge:
The Keynes Press.

Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985) Statistical Analysis of Finite Mixture
Distributions. Chichester: Wiley.

Vapnik, V. N. and Mukherjee, S. (2000) Support vector method for multivariate density estimation.
In Advances in Neural Information Processing Systems, 659–665. Cambridge, MA: MIT press.

Wahba, G. (1990) Spline models for observational data. Philadelphia: Society for Industrial and
Applied Mathematics.

Walther, G. (2002) Detecting the presence of mixing with multiscale maximum likelihood. J. Amer.
Statist. Assoc., 97, 508–513.

Walther, G. (2010) Inference and modeling with log-concave distributions. Statist. Science, to
appear.

Wand, M. P. and Jones, M. C. (1995) Kernel smoothing. CRC Press, Florida: Chapman and Hall.

Zhang, X., King, M. L. and Hyndman, R. J. (2006) Bandwidth selection for multivariate kernel
density estimation using MCMC. Computational Statistics and Data Analysis, 50, 3009–3031.

http://arxiv.org/pdf/0907.0250v2
http://arxiv.org/abs/0911.4151


Log-concave density estimation 39

Further technical arguments

We first establish (B.1). We have

∫

Cn

exp{h̄y(x)} dx =
∑

j∈J

|detAj |e
−βj

∫

Td

exp{〈Ajw + αj , bj〉} dw

=
∑

j∈J

|detAj |e
yj1

∫

Td

exp

( d
∑

r=1

zj,rwr

)

dw.

For ease of notation, we drop the j subscript, and consider

Id(z) =

∫

Td

exp

( d
∑

r=1

zrwr

)

dw.

Observe that I1(z1) = z−1
1 (ez1 − 1), in agreement with (B.1). Assume the result for d − 1 as an

inductive hypothesis. Then

Id(z) =
1

zd
ezd

∫

Td−1

exp

(d−1
∑

r=1

(zr − zd)wr

)

dw −
1

zd

∫

Td−1

exp

(d−1
∑

r=1

zrwr

)

dw

=
1

zd
ezdId−1(z1 − zd, . . . , zd−1 − zd) −

1

zd
Id−1(z1, . . . , zd)

=
1

zd

d−1
∑

r=1

ezr − ezd

(zr − zd)

∏

1≤s≤d−1
s 6=r

1

(zr − zs)
−

1

zd

d−1
∑

r=1

ezr − 1

zr

∏

1≤s≤d−1
s 6=r

1

(zr − zs)

=

d−1
∑

r=1

ezr

zr

∏

1≤s≤d
s 6=r

1

(zr − zs)
−
ezd

zd

d−1
∑

r=1

∏

1≤s≤d
s 6=r

1

(zr − zs)
+

1

zd

d−1
∑

r=1

1

zr

∏

1≤s≤d−1
s 6=r

1

(zr − zs)
. (C.1)

To deal with the middle term in the last line of (C.1) above, define a polynomial

Pd(t) =

d
∑

r=1

∏

1≤s≤d
s 6=r

( t− zs

zr − zs

)

− 1.

This polynomial Pd(t) is of degree at most d − 1, but has roots z1, . . . , zd, so is identically zero.
Examining the coefficient of td−1 in this polynomial, we find

d
∑

r=1

∏

1≤s≤d
s 6=r

1

(zr − zs)
= 0.
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To deal with the final term in (C.1), observe that

1

zd

d−1
∑

r=1

1

zr

∏

1≤s≤d−1
s 6=r

1

(zr − zs)
=

1

z1z2 . . . zd

d−1
∑

r=1

∏

1≤s≤d−1
s 6=r

zs

(zr − zs)
=

(−1)d

z1z2 . . . zd
{Pd−1(0) + 1}

=
(−1)d

z1z2 . . . zd
= −

d
∑

r=1

1

zr

∏

1≤s≤d
s 6=r

1

(zr − zs)
.

Substituting these expressions into (C.1) yields (B.1). ✷

Our final task is to establish that

Ĩd,u(z) =
∑

1≤r≤d
r 6=u

ezr

zr(zr − zu)

∏

1≤s≤d
s 6=r

1

(zr − zs)
−

∑

1≤r≤d
r 6=u

ezu

zr(zr − zu)

∏

1≤s≤d
s 6=r

1

(zr − zs)

+
(−1)d(ezu − 1)

zu

∏d
s=1 zs

+
ezu

zu

∏

1≤s≤d
s 6=u

1

(zu − zs)
. (C.2)

To this end, observe that for u = 1, we have the recurrence relation

Ĩd,1(z) =

R
∑

r=0

ezd−k Ĩd−R−1,1(z1 − zd−r, . . . , zd−R−1 − zd−r)

zd−r

∏

1≤s≤R
s 6=r

(zd−r − zd−s)
+

(−1)R+1

∏R
r=0 zd−r

Ĩd−R−1,1(z1, . . . , zd−R−1),

which holds for R = 0, . . . , d − 2, and may be proved by induction on R. The formulae for other
values of u may be deduced by symmetry. The formula for Ĩd,u(z) in (C.2) is found by using this
expression with R = d− 2 together with the fact that for z 6= 0,

∫ 1

0

w exp(zw) dw =
1

z

(

1 −
1

z

)

ez +
1

z2
.

✷
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