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Abstract

Computational aspects concerning a model for clustered binary panel data are analysed. The

model is based on the representation of the behavior of a subject (individual panel member) in a

given cluster by means of a latent process that is decomposed into a cluster-specific component,

which follows a first-order Markov chain, and an individual-specific component, which is time-

invariant and is represented by a discrete random variable. In particular, an algorithm for

computing the joint distribution of the response variables is introduced. The algorithm may be

used even in the presence of a large number of subjects in the same cluster. Also an Expectation-

Maximization (EM) scheme for the maximum likelihood estimation of the model is described

showing how the Fisher information matrix can be estimated on the basis of the numerical

derivative of the score vector. The estimate of this matrix is used to compute standard errors

for the parameter estimates and to check the identifiability of the model and the convergence

of the EM algorithm. The approach is illustrated by means of an application to a dataset

concerning Italian employees’ illness benefits.
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1 Introduction

Many econometric and statistical models are now available for the analysis of binary panel data

(for a review see Hsiao (1986); Arellano and Honoré (2001); Langeheine and van de Pol (2002)).

Among these models, it is worthwile mentioning those based on the assumption that the response

variables have a simplified dependence structure given a latent process which may be discrete or

continuous.

The first model based on a discrete latent process was introduced by Wiggins (1973). It may be

seen as an extension of the latent class model (Lazarsfeld and Henry (1968); Goodman (1974)) in

which the response variables are conditionally independent given a latent Markov (LM) chain. This

model has been applied in many fields, especially in psychological and educational measurement

(Langeheine et al. (1994); Vermunt et al. (1999)) and sociology (Van de Pol and Langeheine (1990);

Mannan and Koval (2003)). Likelihood inference for the LM model was studied by Bartolucci

(2006) who considered, in particular, the problem of testing linear hypotheses on the transition

probabilities of the latent process. The model has also been extended in several directions. In

particular, Van de Pol and Langeheine (1990) proposed the latent mixed Markov model. It is

in practice a finite mixture of LM models which allows the parameters of the latent process to

be different between subjects. Moreover, Vermunt et al. (1999) introduced a version of the LM

model in which the initial and transition probabilities of the latent process depend on individual

covariates.

Among the first authors dealing with models based on a continuous latent process, it is worth-

while mentioning Heckman and Willis (1977), Heckman (1981a) and Butler and Moffitt (1982).

These models are often used in economic contexts as, for instance, in the analysis of labor market

data (Hyslop (1999)), consumer choices (Chintagunta et al. (2001)) and debt repayments (Haji-

vassiliou and McFadden (1998)). Most of them are based on the assumption that there exists an

AR(1) latent process given which the response variables satisfy a first-order Markovian dependence

structure, so that state dependence (Heckman (1981b)) is properly taken into account together

with available covariates. In economic contexts, state dependence is normally due to habit, risk

aversion or transition costs.

All the models mentioned above are based on the assumption that the subjects (individual

panel members) are independent of each other. In several situations, however, this assumption

may not be realistic. We are referring, in particular, to situations in which the panel members

are clustered according to specific criteria, such as residence in a certain region or being employed
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in a certain firm. This obviously gives rise to a within-cluster correlation that, if ignored, may

lead to less efficient estimators of the parameters, the standard errors of which may be strongly

underestimated. A simple way to take this correlation into account could be to include in one of

the models mentioned above a dummy explanatory variable for being in a certain cluster. This

measure, however, is not completely satisfactory because we would add as many parameters as the

number of clusters, making the inference unreliable in most situations. The number of parameters

to add would be even larger if we want to assume that each cluster-specific effect has its own

dynamics.

In this paper, we deal with an extended version of the LM model of Wiggins (1973) for the anal-

ysis of clustered binary panel data in which the latent process describing the behavior of a subject

in a cluster is decomposed into a dynamic component common to all the subjects in the cluster and

a time-invariant component for the presence of unobserved individual heterogeneity. The dynamic

component is represented by a first-order Markov process, whereas, following Heckman and Singer

(1984), the time-invariant component is represented by a discrete random variable. In this way,

the correlation between the responses provided by different subjects in the same cluster is properly

taken into account. The model also allows us to take into account state dependence and available

covariates by means of a logit parameterization of the distribution of every response variable given

the latent variables. For this model, we introduce an efficient algorithm for computing the joint

distribution of the response variables and particular moments of the conditional distribution of the

latent variables given the response variables. Note that direct evaluation of the joint distribution

of the response variables requires a number of operations which grows exponentially with the sam-

ple size of the largest cluster, whereas the proposed algorithm has a numerical complexity which

grows linearly with the overall sample size. As we show, the algorithm also allows us to implement

an Expectation-Maximization (EM) scheme (Dempster et al. (1977)) for the maximum likelihood

(ML) estimation of the parameters of the proposed model. We also deal with the estimation of the

Fisher information matrix on the basis of the numerical derivative of the score vector. The latter

may be computed by means of an algorithm related to that used to compute the joint distribution

of response variables. On the basis of the estimated information matrix we can compute standard

errors for the parameter estimates and check the identifiability of the model and the convergence

of the EM algorithm. The algorithms described in this paper have been implemented in a series of

Matlab functions which are available from the web page www.stat.unipg.it/∼bart.

To our knowledge, models with a structure similar to that of the model here discussed have

not been previously considered. The literature on clustered binary panel data is in fact rather
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scarce; one of the few contributions is due to Goldstein et al. (2000). Nevertheless, the issues of

unobserved individual heterogeneity and cluster-specific dynamics apply to many macroeconomic

settings. For instance, a potentially fruitful application of the model and estimation approach here

proposed is the analysis of sovereign debt crises on which there is renewed interest (see Fuertes and

Kalotychou, 2006).

To illustrate our approach, we discuss the analysis of a dataset on individual work histories

derived from the administrative archives of the Italian National Institute of Social Security (INPS).

The response variable of interest is a binary variable for an employee receiving illness benefits in a

certain year. The analysis shows positive state dependence, strong persistence in the latent process

and significant covariates.

The paper is organized as follows. In the next Section we introduce the basic notation and we

describe the proposed extension of the LM model for clustered binary panel data. In Section 3 we

illustrate the algorithm for computing the joint distribution of the response variables and of certain

moments of the conditional distribution of the latent variables given the response variables. The

EM algorithm for the ML estimation of the parameters is described in Section 4 where we also deal

with the estimation of the information matrix. The application to labor market data is described

in Section 5, whereas in Section 6 we draw the main conclusions.

2 The model

Let T denote the number of time periods, n denote the number of subjects in the panel and suppose

that these subjects are clustered, according to some criteria, into H clusters of size n1, . . . , nH

respectively. Also let yhit, h = 1, . . . ,H, i = 1, . . . , nh, t = 1, . . . , T , denote the binary response

variable of interest for subject i in cluster h at time period t and xhit denote the corresponding

vector of fixed covariates, or equivalently the observed value of strictly exogenous covariates if these

are random. The response variables referring to the same subject i in cluster h will be collected into

the vector yhi = {yhit, t = 1, . . . , T}, whereas the response variables referred to the same cluster h

will be collected in the matrix Y h = {yhit, i = 1, . . . , nh, t = 1, . . . , T}. Finally, the set of all the

response variables will be denoted by Y = {yhit, h = 1, . . . ,H, i = 1, . . . , nh, t = 1, . . . , T}.

Following a standard econometric approach, we assume that every response variable yhit is a

discretized version of a latent continuous variable which is interpretable as a measure of the utility
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or propensity to experience a certain situation. More precisely, we assume that

yhit =

 1(x′
hitβ1 + ηhi1 > 0), t = 1,

1(x′
hitβ2 + yhi,t−1γ + ηhit > 0), t = 2, . . . , T,

where 1(·) is the indicator function, which takes value 1 if its argument is true and 0 otherwise,

β1 and β2 are vectors of regression coefficients for the observed covariates and γ is a regression

coefficient for the lagged response variable, which therefore provides a measure of the true state

dependence effect (Heckman (1981b)). Note that, in order to take into account the initial condition

problem (Heckman, 1981c), we allow the regression coefficients for the first time period (β1) to be

different from those for the following periods (β2). We also assume the following decomposition of

the error terms:

ηhit = α1ht + α2hi + εhit, h = 1, . . . ,H, i = 1, . . . , nh, t = 1, . . . , T,

where the random variables α1ht capture the cluster-specific dynamic effects, the random variables

α2hi capture the unobserved heterogeneity between subjects and the random variables εhit represent

residual error components. All these random variables are assumed to be mutually independent and

independent of the covariates, with the exception of those in α1h = {α1ht, t = 1, . . . , T} which, for

h = 1, . . . ,H, are assumed to follow a first-order Markov chain with states φc, c = 1, . . . , C, initial

probabilities πc, c = 1, . . . , C, and transition probabilities πc|b, b, c = 1, . . . , C. We also assume that

each random variable α2hi, h = 1, . . . ,H, i = 1, . . . , nh, has a discrete distribution with support

points ψs, s = 1, . . . , S, and probabilities ρs, s = 1, . . . , S. Finally, we assume that the random

variables εhit, h = 1, . . . ,H, i = 1, . . . , nh, t = 1, . . . , T , have a standard logistic distribution.

Note that the error terms ηhit referred to the same subject i in cluster h are allowed to be

dependent across time with a dynamics depending on the cluster to which the subject belongs.

Also the error terms referred to different subjects but to the same time period t are allowed to

be dependent when these subjects belong to the same cluster. In this way, our model takes into

account the cluster effect beyond the effect of unobserved individual heterogeneity. On the other

hand, the above assumptions imply that the error terms are independent of the covariates. In

certain contexts, it may be worthwhile to relax this assumption. For instance, a correlated random

effect specification in which the latent variables are specified as a function of the complete history

of the covariates (Chamberlain (1984)) could be explored. However, this is beyond the scope of the

present paper.

It is also interesting to note that the model based on the above assumptions can be seen as a

hierarchical random effect model in which the intercept is a random parameter having a discrete
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distribution. We in fact have three nested levels of data. At the lowest level we consider the response

variable for every time period t and every subject hi. At the intermediate level we consider the

complete response pattern of every subject hi; this pattern is affected by the time-invariant latent

variable α2hi. At the highest level we consider the response patterns of all the subjects in cluster

h; these patterns are affected by the latent process α1h, which allows us to take into account, for

instance, unobserved economic shocks. It is worthwhile to emphasize the difference with respect

to a conventional LM model based on an independent Markov chain for each subject. This model

obviously ignores the within-cluster correlation, but allows the latent factors affecting the response

variables to have their own dynamics at individual level. Nevertheless, the conventional LM model

may be seen as a particular case of our model in which there is one subject in each cluster and

the individual-specific random variables have only one support point. The choice between the two

models may depend on the object of the study and on the data availability.

Now let p(yhit|cht, shi, yhi,t−1), with the last argument vanishing for t = 1, denote the conditional

probability of yhit given α1ht = φcht
, α2hi = ψshi

and the lagged response variable yhi,t−1. Note

that we indicate the specific support point of α1ht on which we are conditioning by cht, with

cht = 1, . . . , C; similarly, we indicate a specific support point of α2hi on which we are conditioning

by shi, with shi = 1, . . . , S. The assumptions made on the distribution of the error terms ηhit imply

that

p(yhit|cht, shi, yhi,t−1) =


exp[yhi1(φcht

+ ψshi
+ x′

hi1β1)]
1 + exp(φcht

+ ψshi
+ x′

hi1β1)
, t = 1,

exp[yhit(φcht
+ ψshi

+ x′
hitβ2 + yhi,t−1γ)]

1 + exp(φcht
+ ψshi

+ x′
hitβ2 + yhi,t−1γ)

, t = 2, . . . , T.

Our assumptions also imply that for every h and i, the conditional probability of yhi given α1ht =

φcht
, t = 1, . . . , T , and α2hi = ψshi

may be expressed as

p(yhi|ch, shi) =
∏

t

p(yhit|cht, shi, yi,t−1),

with ch = {cht, t = 1, . . . , T}. Moreover, for every h, the distribution of Y h may be expressed as

p(Y h) =
∑
ch

∑
sh

p(ch)p(sh)
∏

i

p(yhi|ch, shi), (1)

where the first sum is extended to all the possible configurations of ch and the second to all the

possible configurations of sh = {shi, i = 1, . . . , nh}, whereas

p(ch) = πch1

∏
t>1

πcht|ch,t−1
, (2)
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and

p(sh) =
∏

i

ρshi
. (3)

Finally, since the random matrices Y 1, . . . ,Y H are mutually independent, we can write

p(Y) =
∏
h

p(Y h). (4)

Direct evaluation of (1) requires a number of operations which increases exponentially with

the number of time periods (T ) and the size of the largest cluster (nh). Although in a typical

panel study T is small, nh may be large and hence evaluation of (1), and then that of (4), may be

infeasible.

3 Efficient computation of joint and conditional distributions

We now introduce an algorithm which allows us to compute efficiently p(Y h) for each cluster h, and

then p(Y), along with certain conditional probabilities which are required for the EM algorithm

that will be outlined in the next Section. This algorithm exploits the fact that for every h, the

random vectors yh1, . . . ,yhnh
are conditionally independent given α1h. Therefore, we can write

p(ch,Y h) = p(ch)
∏

i

p(yhi|ch), (5)

where

p(yhi|ch) =
∑
shi

p(shi)p(yhi|ch, shi), (6)

and then

p(Y h) =
∑
ch

p(ch,Y h).

Once p(Y h) is computed for every cluster h, p(Y) can be obtained by using (4). Note, in this case,

that the number of operations grows linearly with the sample size.

The above rules may be simply represented by using matrix notation. So let Mhi be a CT × S

matrix with elements p(shi)p(yhi|ch, shi) arranged by letting ch run by row in lexicographical order

and shi by column. Then the column vector ph with elements p(ch,Y h) for every ch may be

obtained as

ph = diag(q)
∏

i

mhi, mhi = Mhi1S , (7)

where q is a column vector with elements p(ch), the product
∏

i is elementwise and 1S denotes a

column vector of S ones. Finally, we have that

p(Y h) = p′h1CT .

7



For the EM algorithm, we need to compute the conditional probability, given Y h, of (α1h,t−1 =

φch,t−1
, α1ht = φcht

), for h = 1, . . . ,H and t = 2, . . . , T , and of (α1ht = φcht
, α2hi = ψshi

), for

h = 1, . . . ,H, i = 1, . . . , nh and t = 1, . . . , T . The probabilities of the first type may be expressed

as

p(ch,t−1, cht|Y h) =
∑

c−h,t−1,t

p(ch,Y h)
p(Y h)

, (8)

where c−h,t−1,t denotes the subvector of ch without the elements ch,t−1 and cht. Those of second

type, instead, may be expressed as

p(cht, shi|Y h) =
∑
c−ht

p(ch, shi,Y h)
p(Y h)

, (9)

where c−ht denotes the subvector of ch without the element cht and, because of (5) and (6),

p(ch, shi,Y h) = p(ch,Y h)
p(shi)p(yhi|ch, shi)

p(yhi|ch)
.

Also (8) and (9) may be implemented by using matrix notation. In particular, the C2-

dimensional vector rht with elements p(ch,t−1, cht|Y h), arranged by letting (ch,t−1, cht) run in lexi-

cographical order, may be obtained as

rht = Gtph/p(Y h), (10)

where Gt is an aggregation matrix of dimension C2 × CT defined as

Gt =
T⊗

j=1

Gjt, with Gjt =

{
IC if j = t− 1, t
1′

C otherwise
,

and IC denoting an identity matrix of dimension C. The C × S matrix Ehit with elements

p(cht, shi|Y h), arranged by letting cht run by row and shi by column, may be computed as

Ehit = RtDhi/p(Y h), (11)

where

Dhi = diag(ph)diag(Mhi1S)−1Mhi,

is a matrix with elements p(ch, shi,Y h) arranged as in Mhi and Rt is an aggregation matrix of

dimension C × CT defined as

Rt =
T⊗

j=1

Rjt, with Rjt =

{
IC if j = t

1′
C otherwise

.

From the matrixEhit we can obtain the C-dimensional vector containing the probabilities p(cht|Y h)

simply as Ehit1S . These probabilities will also be used in the EM algorithm illustrated in the

following section.
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It is clear from the above description that the proposed algorithm has a numerical complexity

that increases linearly with n, but exponentially with T . This is because it considers all the CT

realizations of the cluster-specific latent Markov chain. In certain situations, it may then be useful

to apply a stochastic version of the algorithm which may be described as follows. Let C denote

an R × T matrix, any row of which corresponds to a randomly drawn realization ch of the latent

Markov chain, and Mhi be the corresponding R × S matrix with elements p(shi)p(yhi|ch, shi).

Then p(Y h) may be computed as p′h1R with ph defined as in (7) with q = 1R/R. Moreover,

the conditional probabilities p(ch,t−1, cht|Y h) may still be computed on the basis of (10), whereas

p(cht, shi|Y h) and p(cht|Y h) may be computed on the basis of (11), with the aggregation matrices

Gt and Rt suitably defined on the basis of C.

As a final comment, note that when the size of a cluster, say the h-th, is large, the corresponding

probability p(Y h) could take extreme values. To avoid this problem, we can multiply each proba-

bility p(yhi|ch, shi) by a suitable constant a. In this way, we obtain the probabilities p∗(ch, shi,Y h),

p∗(ch,Y h) and p∗(Y) which are equal, respectively, to anhp(ch, shi,Y h), anhp(ch,Y h) and anhp(Y).

These, however, may be still used in (8) and (9) to obtain p(ch,t−1, cht|Y h) and p(ch,t−1, shi|Y h).

4 Maximum likelihood estimation

The log-likelihood of the model defined in Section 2 may be simply expressed as

`(θ) = log[p(Y)],

where p(Y) is the joint probability of the observed response variables computed as a function of the

vector of all the identifiable parameters. This vector may be expressed as θ = (θ′1,θ
′
2,θ

′
3)

′, where θ1

contains the identifiability parameters of the conditional distribution of the response variables given

the latent variables, θ2 contains those of the distribution of the cluster-specific latent processes and

θ3 those of the distribution of the individual-specific latent variables. In particular:

• in order to take the intercept into account, the first element of each vector of covariates xhit is

equal to 1. To make the model identifiable, we then constrain the first support point of each

random variable α1ht and α2hi to be equal to 0, i.e. φ1 = 0 and ψ1 = 0, and only the remaining

support points enter the vector θ1 which, consequently, is defined as θ1 = (β′
1,β

′
2, γ,φ

′,ψ′)′,

with φ = {φc, c = 2, . . . , C} and ψ = {ψs, s = 2, . . . , S};

• for the parameters of the distribution of the cluster-specific latent processes we have
∑

c πc = 1

and
∑

c πc|b = 1 for every b. We then exclude from the vector θ2 the first initial probability,
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π1, and the first transition probability π1|b for b = 1, . . . , C. This vector is therefore given by

θ2 = (π′,µ′)′, with π = {πc, c = 2, . . . , C} and µ = {πc|b, b = 1, . . . , C, c = 2, . . . , C};

• taking into account the constraint
∑

s ρs = 1, we have that θ3 = ρ, with ρ = {ρs, s =

2, . . . , S}.

In what follows, we show how, in order to estimate θ, we can maximize `(θ) by means of an EM

algorithm. When dealing with latent variable models, this algorithm has the advantage of being

simpler to implement and more stable with respect to more direct maximization algorithms, such

as the Newton-Raphson.

4.1 The EM algorithm

The EM algorithm is based on the concept of complete data which, in the present context, may be

represented by (ch, sh,Y h), h = 1, . . . ,H, where ch stands for a specific realization of the latent

process α1h and sh for a specific realization of the vector of latent variables α2h = {α2hi, i =

1, . . . , nh} and Y h represents the observed value of all the response variables referred to the same

cluster h. Note that (ch, sh), h = 1, . . . ,H, can not be observed and so they are considered as

missing data. If these data were known, we could compute the complete data log-likelihood

`∗(θ) =
∑

h

log[p(Y h|ch, sh)p(ch)p(sh)] =
∑

h

∑
c

∑
s

gh(c, s) log[p(Y h|c, s)p(c)p(s)],

where gh(c, s) = 1(ch = c, sh = s). Considering (1), (2) and (3), and after some algebra, the above

log-likelihood may be expressed as

`∗(θ) = `∗1(θ1) + `∗2(θ2) + `∗3(θ3),

with

`∗(θ1) =
∑

h

∑
i

∑
t

∑
c

∑
s

whit(c, s) log[p(yhit|c, s, yi,t−1)],

`∗(θ2) =
∑

h

[∑
c

wh(c) log(πc) +
∑

b

∑
c

∑
t>1

wht(b, c) log(πc|b)
]
,

and

`∗(θ3) =
∑

h

∑
i

∑
s

zhi(s) log(ρs),

where whit(c, s) = 1(cht = c, shi = s), wh(c) = 1(ch1 = c), wht(b, c) = 1(ch,t−1 = b, cht = c) and

zhi(s) = 1(shi = s). Since we do not know the true value of these dummy variables, at any iteration
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of the EM algorithm they are replaced by suitable expected values; the resulting function is then

maximized to update the parameter vector θ. More precisely, the EM algorithm alternates the

following steps until convergence:

• E-step: compute the conditional expected value of the dummy variables listed above given

the observed data Y and the current value of θ. Note that these expected values are equal to

w̃hit(c, s) = E[whit(c, s)|Y] = p(α1ht = φc, α2hi = ψs|Y h),

w̃h(c) = E[wh(c)|Y] = p(α1h1 = φc|Y h),

w̃ht(b, c) = E[wht(b, c)|Y] = p(α1h,t−1 = φb, α1ht = φc|Y h),

and

z̃hi(s) = E[zhi(s)|Y] = p(α2hi = ψs|Y h),

and therefore may be computed by using the algorithm described in Section 3. The complete

data log-likelihood, with the dummy variables substituted by the above expected values,

corresponds to the conditional expected value of `∗(θ) given the observed data, which will be

denoted by ˜̀∗(θ) = ˜̀∗
1(θ1) + ˜̀∗

2(θ2) + ˜̀∗
3(θ3).

• M-step: maximize ˜̀∗(θ) by maximizing separately its components as follows:

– Maximization of ˜̀∗
1(θ1): this may be performed by means of a Newton-Raphson

algorithm. To implement this algorithm, we need the first derivative vector and the

second derivative matrix of ˜̀∗
1(θ1). Using matrix notation, these derivatives may be

expressed, respectively, as follows

s∗1(θ1) =
∑

h

∑
i

∑
t

∑
c

∑
s

w̃hit(c, s)[yhit − qhit(c, s)]uhit(s, c),

and

H∗
1(θ1) = −

∑
h

∑
i

∑
t

∑
c

∑
s

w̃hit(c, s)qhit(c, s)[1− qhit(c, s)]uhit(c, s)uhit(c, s)′,

where qhit(c, s, yhi,t−1) = p(yhit = 1|α1ht = φc, α2hi = ψs, yhi,t−1), with the last argument

vanishing for t = 1, and uhit(s, c) is a column vector of the same dimension as θ1 such

that

log
qhit(c, s, yhi,t−1)

1− qhit(c, s, yhi,t−1)
= uhit(c, s)′θ1,

for h = 1, . . . ,H, i = 1, . . . , nh and t = 1, . . . , T . Obviously, uhit(c, s) contains the vector

of covariates xhit together with suitable dummies for the latent variables.
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– Maximization of ˜̀∗
2(θ2): in this case we have an explicit solution given by

πc =
1
H

∑
h

w̃h(c), c = 2, . . . , C,

and

πc|b =
∑

h

∑
t>1

w̃ht(b, c)
/ ∑

h

∑
t>1

∑
j

w̃ht(b, j), b = 1, . . . , C, c = 2, . . . , C.

– Maximization of ˜̀∗
3(θ3): also in this case we have an explicit solution given by

ρs =
1
n

∑
h

∑
i

z̃hi(s), s = 2, . . . , S.

A crucial point concerns the initialization of the algorithm. Let β̃1, β̃2 and γ̃ denote the

regression parameters obtained from a standard logistic model applied to the observed data. Once

a suitable constant τ (e.g. 1) has been chosen, we suggest to use β̃1 − (τ [(C + S)/2− 1], 0, · · · , 0)′

and β̃2−(τ [(C+S)/2−1], 0, · · · , 0)′ as starting values for, respectively, β1 and β2 and γ̃ as starting

value for γ. We then suggest to take {τ(c − 1), c = 2, . . . , C} as starting value for the vector φ

and {τ(s− 1), s = 2, . . . , S} for the vector ψ. Finally, the initial values of the probability vectors

π and ρ may be chosen as 1C−1/C and 1S−1/S, respectively, whereas the transition probabilities

πc|b, collected in the vector µ, may be set equal to 1−λ if b = c and to λ/(C − 1) otherwise, where

λ is a suitable constant between 0 and 1 (e.g. 0.25).

Since the log-likelihood `(θ) may have more local maxima, it is convenient to try different

starting values for the EM algorithm. These may be chosen by randomly perturbating the starting

values defined above. In this case, we take the value of θ at which we have the highest level of `(θ)

as the ML estimate of this parameter vector. It will be denoted by θ̂.

Finally consider that when CT is too large, it may be convenient to perform the E-step on the

basis of the stochastic version of the algorithm described at the end of Section 3. We implemented

the resulting version of the EM algorithm in a way which makes use of only one set of realizations

of the latent Markov chain; these realizations are drawn just at the beginning of the algorithm. On

the basis of a small simulation study, the results of which are not reported here, we verified that

the parameter estimates produced by this stochastic EM algorithm are normally very close to those

produced by the non stochastic algorithm. As we may expect, however, the mean square error of

the ML estimator is larger when it is based on the stochastic EM algorithm. By simulation we

also studied how the efficiency of the estimator varies with the ratio between the average number

of subjects per cluster and the overall sample size. We noticed that, provided that the number of

clusters does not become too small, the efficiency tends to increase with this ratio. In fact, when
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the number of clusters is too small, it happens that there are just a few realizations of the latent

Markov chain and hence there is little information on the corresponding parameters.

4.2 Information matrix estimation

Using the notation defined in Section 3, we can compute the first derivative vector of p(Y h) as

∂p(Y h)
∂θ

=
∂p′h
∂θ

1CT ,

with
∂p′h
∂θ

=
{
∂q′

∂θ
+

[∑
i

∂m′
hi

∂θ
diag(mhi)−1

]
diag(q)

}
diag

( ∏
i

mhi

)
. (12)

From this derivative, we can compute the score vector as

s(θ) =
∂`(θ)
∂θ

=
∑

h

1
p(Y h)

∂p(Y h)
∂θ

.

How to compute the derivatives of q and mhi used in (12), is shown in an Appendix.

We estimate the Fisher information matrix of the model as minus the numerical derivative

of the score vector. This matrix is denoted by F̂ (θ). In particular, on the basis of F̂ (θ̂), i.e.

the estimate of the information matrix at θ̂, we can check if the model is locally identifiable and

compute standard errors for the parameter estimates. More precisely, the model is considered

locally identifiable if F̂ (θ̂) is of full rank (see also Rothenberg (1971)), whereas the standard error

for an element of θ̂ is computed as the square root of the corresponding diagonal element of F̂ (θ̂)−1.

Finally, the matrix F̂ (θ) may also be used to check the convergence of the EM algorithm

illustrated above. In particular, if the largest absolute value of F̂ (θ̂)−1s(θ̂) is smaller than a

suitable tolerance level (e.g. 10−6), we conclude that the algorithm has stopped close enough to

the true maximum of `(θ). Note that this criterion is more reliable than that based on the difference

between the values of `(θ) corresponding to two consecutive EM iterations, since the latter does

not take the curvature of the log-likelihood into proper account. For a discussion on this point see,

among others, McLachlan and Peel (2000, Sec. 2.14).

5 An application

We applied our model to a dataset extracted from the administrative INPS archives, downloadable

from www.laboratoriorevelli.it/whip/. The dataset concerns 3341 employees (both blue-collar

and white-collar) from private Italian firms with at least 1000 workers, aged between 18 and 60 in
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1994. These employees were followed for 6 years from 1994 to 1999. Only those who continuously

worked in the same firm have been considered in our analysis.

The response variable of interest is illness. This is a binary variable equal to 1 if the employee to

which it is referred has received illness benefits in a certain year and to 0 otherwise. In the Italian

system, illness benefits are given for at most 180 days a year and correspond to the 50% of the daily

mean earnings for the first 20 days and to the 66.66% for the following days. As covariates we used

age in 1994, age squared, income (total annual compensation in thousands of Euros), the dummies

area (indicating one of the 5 Italian zones where the employee works: North-West, North-East,

Center, South or Islands), sex (equal to 1 for a woman), skill (equal to 1 for a blue-collar), ptime

(equal to 1 for an employee with a part-time job) and 4 temporal dummies for the years 1996 to

1999.

In Tables 1 and 2 we present some summary statistics of the dataset considered in our analysis.

Table 1, in particular, reports the observed average of the response variable for each year between

1994 and 1999, together with its standard deviation and the standard deviation between firms.

Note that the average corresponds to the frequency of subjects that in a certain year received illness

benefits. It may be observed that this frequency has a positive trend and that the between firms

variability represents a consistent part of the total variability. This suggests that the information

about the firm to which an employee belongs is relevant for our analysis.

Year
1994 1995 1996 1997 1998 1999

average 0.128 0.143 0.154 0.162 0.167 0.171
standard deviation (total) 0.334 0.350 0.361 0.369 0.373 0.377
standard deviation (between firms) 0.164 0.174 0.179 0.184 0.194 0.197

Table 1: Summary statistics for the response variable referred to each year from 1994 to 1999.

In Table 2 we report the average and the standard deviation of the covariates for the overall

sample and for specific subsamples. The third column, in particular, concerns the subsample of

employees who never received illness benefits, the forth column concerns employees who received

illness benefits in each year and the remaining columns concern employees with one or more tran-

sitions from not receiving illness benefits to receiving illness benefits and vice versa. These results

suggest that observable characteristics represent an important source of variability of the response

variable. In particular, the frequency of white-collars among the employees who never received

illness benefits is higher than in the overall sample and these employees have a higher income. Em-

ployees who always received illness benefits are older with respect to the overall sample, are more
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likely to be women and blue-collars, work mostly in the North-West and in the South, have lower

income and have less frequently a part-time position. Employees who experienced one transition to

illness are older, have lower income, are more likely to be blue-collars and to work in the South. A

similar profile may be observed for those who experienced a single transition from illness, but these

are younger. Finally, employees with multiple transitions are younger than in the overall sample,

more frequently are blue-collars, have lower income and more frequently have a part-time position.

single single
full never always transition transition multiple

sample illness illness to illness from illness transitions
sex 0.26 0.26 0.40 0.22 0.26 0.26

(0.44) (0.44) (0.49) (0.42) (0.44) (0.44)
age 38.24 38.24 39.81 40.03 37.92 37.72

(8.67) (8.35) (8.36) (9.23) (9.71) (9.16)
area: North-West 0.39 0.38 0.51 0.34 0.30 0.43

(0.49) (0.48) (0.50) (0.47) (0.46) (0.50)
area: North-East 0.15 0.14 0.17 0.17 0.16 0.19

(0.36) (0.35) (0.38) (0.38) (0.37) (0.39)
area: Center 0.24 0.29 0.10 0.13 0.26 0.17

(0.43) (0.45) (0.30) (0.34) (0.44) (0.37)
area: South 0.16 0.14 0.22 0.31 0.22 0.16

(0.37) (0.35) (0.42) (0.46) (0.42) (0.37)
area: Islands 0.06 0.06 0.00 0.05 0.06 0.06

(0.23) (0.23) (0.00) (0.23) (0.23) (0.23)
skill 0.45 0.24 0.97 0.85 0.77 0.81

(0.49) (0.42) (0.17) (0.35) (0.41) (0.38)
income 17.07 19.47 11.20 13.18 12.61 13.00

(6.68) (6.82) (2.40) (3.41) (3.65) (3.88)
ptime (at least one year) 0.08 0.07 0.04 0.08 0.14 0.12

(0.28) (0.25) (0.20) (0.28) (0.35) (0.32)
illness (number of years) 0.93 0.00 6.00 2.45 2.16 2.32

(1.53) (0.00) (0.00) (1.47) (1.44) (1.24)
number of observations 3341 2123 72 202 105 839

Table 2: Average and standard deviation (in parentheses) of the observed covariates for certain

subsamples of employees.

To analyse the dataset described above, we used the extended LM model illustrated in Section

2. In applying this model, we considered the employees clustered according to the firm where

they work. Note that the dataset do not include covariates for firms characteristics, such as quality

environment or safety measures, which strongly affect the employees’ health status. For this reason,
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we relied on a latent variable process to take into account the variability of the response variable

induced by being employed in different firms. As we already observed on the basis of results

displayed in Table 1, this source of variability is expected to be relevant. On the other hand, the

individual-specific latent variables may capture the propensity to get ill of every subject which is not

explained by the observed covariates. The latter is assumed to be time-invariant. We recall that,

in our approach, these latent variables are assumed to be independent of the individual covariates.

This is perhaps a strong assumption, but this is a common drawback of most random effect models.

In the first step of our analysis we fitted the model with different levels of C and S. We recall that

C indicates the number of states of the cluster-specific latent processes and S indicates the number

of support points of the individual-specific latent variables. Table 3 shows the results obtained from

this preliminary analysis in terms of the Bayesian Information Criterion (BIC; Schwarz, 1978). Note

that, since the maximum number of subjects in the same cluster is 216, direct evaluation of p(Y)

would not be feasible. By using the algorithm illustrated in this paper, instead, we can efficiently

compute this probability until C = S = 4 and obtain the corresponding parameter estimates as

described in Section 4.1.

S

C 1 2 3 4
1 12,699 12,330 12,237 12,245
2 12,217 11,911 11,909 11,802
3 11,830 11,628 11,604 11,611
4 11,855 11,670 11,643 11,652

Table 3: BIC index for different levels of C and S. Figures in bold are referred to the model with

the smallest BIC index.

On the basis of the results reported in Table 3, we chose C = 3 and S = 3; this choice, in fact,

corresponds to the smallest BIC index. The estimates of the most relevant regression parameters,

contained in β2, are displayed in Table 4, together with the corresponding standard errors, t-

statistics and p-values. The signs of the estimates are consistent with the summary statistics

displayed in Table 2. In particular, the probability of receiving illness benefits is positively related

to being a blue-collar, whereas it is negatively related to the level of income and to having a

part-time job. The effect of sex, age and age squared are not significant because the subsample of

subjects who are always ill, though having a higher proportion of women than the overall sample,

has a small size; moreover, age does not present a big variation between the subsamples. More

surprisingly, area does not seem to be very significant. Finally, the coefficient measuring the state
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dependence effect is significantly different from zero and presents a positive sign.

standard
Covariate estimate error t-statistics p-value
constant -12.509 0.861 -14.526 0.000
sex 0.171 0.112 1.527 0.127
age -0.010 0.036 -0.278 0.781
age squared/100 0.034 0.048 0.719 0.472
area: North-East 0.169 0.112 1.507 0.132
area: Center -0.103 0.118 -0.872 0.383
area: South -0.131 0.115 -1.137 0.256
area: Islands -0.197 0.194 -1.011 0.312
skill 3.034 0.160 19.012 0.000
income -0.144 0.012 -12.507 0.000
ptime -1.116 0.164 -6.823 0.000
lagged response 0.441 0.076 5.800 0.000

Table 4: Estimates of the regression coefficients in β2 for the model with C = S = 3.

Again for the C = S = 3 case, we report in Table 5 the estimates of the parameters charac-

terizing the latent structure of the model. We can see that the states of the cluster-specific latent

processes are well separated, with the second state having the highest initial probability; these

processes are also highly persistent. Similarly, the support points of the individual-specific latent

variables are well separated, with the second having the highest probability.

A final comment concerns the estimation of the state dependence effect. It is usually expected

that this effect is overestimated when the heterogeneity between subjects is not adequately rep-

resented in the model. In these situations, in fact, the true state dependence is confounded with

the spurious state dependence (Heckman (1981b)). To verify whether the same happens in our

analysis, we show in Table 6 how the estimate of the parameter γ varies with C and S. These

results are in accordance with the standard theory mentioned above. In particular, in order to

Latent process Latent variable
(cluster level) (individual level)

initial transition support
states probabilities probabilities points probabilities
0.000 0.275 0.862 0.124 0.014 0.000 0.119
4.684 0.666 0.011 0.987 0.001 3.117 0.661
7.692 0.059 0.000 0.027 0.973 4.866 0.220

Table 5: Estimates of the parameters characterizing the latent structure of the model with C = S =

3.
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avoid an overestimate of the state dependence effect, increasing the number of support points of

the individual-specific latent variables is more effective than increasing the number of states of the

cluster-specific latent processes.

S

C 1 2 3
1 1.676 0.806 0.538
2 1.415 0.567 0.445
3 1.228 0.557 0.441

Table 6: Estimates of the parameter for the state dependence effect obtained under different levels

of C and S.

6 Conclusions

We presented a model for clustered binary panel data which allows us to take into account un-

observed individual heterogeneity together with cluster-specific dynamics. The model is based on

latent variables which have a discrete distribution. The use of discrete distributions has the advan-

tage, in comparison to the use of continuous distributions, of allowing a more flexible formulation

of the latent structure of the model (Heckman and Singer (1984)). In our approach, we also control

for state dependence in a suitable way. For this model, we dealt with the computational aspects in-

volved in the ML estimation. In particular, we introduced an algorithm which allows us to compute

exactly the joint probability of the response variables, and then the log-likelihood of the model.

The numerical complexity of the algorithm grows linearly with the sample size. Direct evaluation

of this probability, instead, requires a number of operations which increases exponentially with the

size of the largest cluster. We also described a stochastic version of the algorithm which may be

used even when the number of latent states and/or the number of time periods is very large.

Future developments of the approach concern its extension to the case of ordinal response

variables and to the multivariate case in which we have a vector of response variables for every

time period. Moreover, in our approach we considered all the covariates as strictly exogenous. In

order to take into account that some of them may not be strictly exogenous, the approach has to

be appropriately extended. This may be done by allowing the distribution of the latent variables

to depend on these explanatory variables in a suitable way.
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Appendix: derivatives of q and mhi

We now show how to compute the derivatives of q and mhi with respect to the parameters in θ;

these derivatives are used in Section 4.2 to compute the score vector and to estimate the information

matrix. We recall that q is a CT -dimensional vector with elements p(ch), which depend only on

the parameters πc and πc|b contained in θ2. Taking into account the constraint
∑

c πc = 1, we have

that
∂p(ch)
∂πc

= p(ch)
1(ch1 = c)− 1(ch1 = 1)

πc
, c = 2, . . . , C.

Moreover, taking into account that
∑

c πc|b = 1 for every b, we have that

∂p(ch)
∂πc|b

= p(ch)
∑
t>1

1(ch,t−1 = b)[1(cht = c)− 1(cht = 1)]
πcht|ch,t−1

, b = 1, . . . , C, c = 2, . . . , C.

The derivative of p(ch) with respect to each parameter not in θ1 is obviously equal to 0.

We also recall thatmhi = Mhi1CT , whereMhi is a CT×S matrix with elements p(shi)p(yhi|ch, shi),

which depend only on the parameters in θ1 and θ3. The derivative of these elements with respect

to θ1 may be computed as

∂[p(shi)p(yhi|ch, shi)]
∂θ1

= p(shi)
∂p(yhi|ch, shi)

∂θ1
=

= p(shi)p(yhi|ch, shi)
∑

t

(2yhit − 1)[1− p(yhit|cht, shi, yih,t−1)]uhit(cht, shi),

where the vector uhit(c, s) has been defined in Section 4.1. Finally, taking into account that∑
s ρs = 1, we have that

∂[p(shi)p(yhi|ch, shi)]
∂ρs

=
∂p(shi)
∂ρs

p(yhi|ch, shi)

= [1(shi = s)− 1(shi = 1)]p(yhi|ch, shi), s = 2, . . . , S.

The derivative of p(shi)p(yhi|ch, shi) with respect to each parameter in θ2 is obviously equal to 0.

By summing appropriately the derivatives above, we can obtain the derivative of m′
hi with respect

to θ.
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