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Abstract — Blind estimation of the OFDM carrier

frequency offset (CFO) is studied in this paper. Max-

imum likelihood estimation is developed in the pres-

ence of virtual carrier. It turned out that the resulting

estimator has an identical form to that of a previously

proposed blind estimation scheme by Liu and Tureli

[1]. We explain, using the projection argument, why

these two estimators are equivalent. For improved

CFO estimation performance, mutliple OFDM blocks

can be utilized. Alternatively receiver diversity may

be used in the CFO estimation. We show that in both

cases, the estimator again reduces to the form similar

to that of the MUSIC-like algorithm as in [1]. Perfor-

mance improvement is shown using both the Cramer

Rao Lower Bound and numerical examples.

I. Introduction

Orthogonal Frequency Division Multiplexing (OFDM),
because of its resistance to multipath fading, has at-
tracted increasing interest in recent years as a suitable
modulation scheme for broadband wireless communica-
tion systems. OFDM was first standardized in Europe
in the mid 90s for digital audio broadcasting (DAB) and
terrestrial digital video broadcasting (DVB). It has also
been proposed for high data rate packet transmission, as
in IEEE 802.11a and HIPERLAN/2.

While OFDM is inherently immune to frequency se-
lective fading due to the expanded symbol interval, it
is more sensitive to timing/frequency offset as compared
with single carrier systems. In particular, the presence of
carrier frequency offset (CFO) will introduce severe inter-
carrier interference, which, if not properly compensated,
would significantly degrade the system performance [2].
In order to mitigate this effect, accurate estimation of
frequency offset is required. Toward this objective, many
techniques have been proposed to estimate the carrier
frequency offset for OFDM systems, among them, vari-
ous blind methods have attracted increasing interest be-
cause of their bandwidth/power efficiency. In [3], van de
Beek, et al developed a maximum likelihood (ML) esti-
mator by exploiting the redundancy in the cyclic prefix

(CP). This method, however, is developed based on the
assumption of nondispersive channel and suffers perfor-
mance degradation in the presence of frequency selective
channel. Schmidl and Cox proposed in [4] a blind estima-
tion method where some restrictions on symbol constella-
tion and guard interval had to be imposed. In [1, 5], Liu
et al took advantage of the presence of virtual carriers in
OFDM signaling and proposed blind estimation methods
reminiscent of spectral analysis techniques in array pro-
cessing, i.e., MUSIC and ESPRIT. The idea is to exploit
the orthogonality between information carrying carriers
and virtual carriers in the absence of the CFO.

In this paper, we investigate the ML estimate for
OFDM carrier frequency offset in the presence of virtual
carriers. It turns out that the ML estimator coincide the
blind estimation method as in [1]. Further, if the CFO
remains constant for multiple data blocks, the estimation
can improved by using all the data blocks having the same
CFO. Again, the ML estimate of CFO using multiple data
blocks can be shown to be equivalent to the form in [1].
If, however, in a highly mobile environment where CFO
tends to vary from block to block, we show that OFDM
data received from multiple antennas can be used as an
alternative to improve the estimation performance.

The organization of the paper is as follows. In the next
section, we develop the ML estimate in the presence of
virtual carriers using a single OFDM block with symbol
rate sampling. The equivalence between the ML estimate
and the MUSIC-like algorithm in [1] is explained using
projection argument. In section III, maximum likelihood
estimate using multiple OFDM blocks are obtained and is
shown to again result in the similar estimator form. Alter-
natively, we show in section IV that spatial oversampling
with receiver diversity can also be used to improve the
estimation performance for fast changing mobile environ-
ment. The Cramer Rao Lower Bounds (CRLB) derived
from the likelihood function are given in V to show the
performance improvement. Simulation results are given
in VI, followed by conclusions in section VII.

Define U as the N × N IDFT (inverse discrete-time
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Fourier transform) matrix with partition

U = [W|V] (1)

where W and V are each of M and N − M columns.
Notice that U is a unitary matrix hence WHV = 0 and
WWH + VVH = I where (·)H denote conjugate trans-
pose.

II. Virtual Carriers Based ML estimate

A Signal Model

In OFDM system with N subcarriers, N information
symbols are used to construct one OFDM symbol. Each
of the N symbols is used to modulate a subcarrier and
the N modulated subcarriers are added together to form
an OFDM symbol. Orthogonality among subcarriers is
achieved by carefully selecting the carrier frequencies such
that each OFDM symbol interval contains integer num-
ber of periods for all subcarriers. Using discrete-time
baseband signal model, one of the most commonly used
scheme is the IDFT-DFT based OFDM systems. Guard
time, which is cyclically extended to maintain intercarrier
orthogonality, is inserted that is assumed longer than the
maximum delay spread to totally eliminate intersymbol
interference [6]. In the presence of virtual carriers, only
M out of N carriers are used to modulate information
symbols. Without loss of generality, we assume that the
first M carriers are used to modulate information symbol,
while the last N − M carriers are virtual carriers. With
symbol rate sampling, the discrete time OFDM model is

s(n) =
1√
N

N−1∑
k=0

dkej 2πnk
N

where each dk is used to modulate the subcarrier ej2πk/N .
Written in matrix form, we have

s = Wd

where W consists of the first M columns of the IDFT
matrix U as defined in (1) and d = [d0, · · · , dM−1]T is
the symbol vector. In the presence of time dispersive
channel, additive noise, and carrier frequency offset, the
OFDM signal at the receiver is now, for n = 0, · · · , N −1,

x(n) =
1√
N

M−1∑
k=0

H(k)dkej( 2πk
N +∆ω·Ts)n + z(n)

where H(k) is the channel frequency response correspond-
ing to subcarrier k, z(n) is additive complex Gaussian
noise, and Ts = T/N is the symbol interval with T being
the IDFT interval (or OFDM symbol interval, excluding
the guard time, as often termed in the literature). Here
the initial phase due to frequency offset is assumed to

be zero (equivalently, the initial phase can be absorbed
into H(k)). Notice if we define φ = ∆ω · Ts, then φ and
the frequency offset ∆ω differ only by a constant scalar,
hence estimation of ∆ω is equivalent to estimation of the
normalized phase shift φ.

The above signal model can be written in a more com-
pact matrix form as following:

x = PWHd + z

where x = [x(0), · · · , x(N − 1)]T , H is a M ×M diagonal
matrix with diagonal element being H(k) and matrix P
accounts for the phase shift due to the frequency offset
and is defined as P = diag(1 ejφ · · · ej(N−1)φ). Denote
by d̃ = Hd, we get

x = PWd̃ + z (2)

B ML estimate

The unknown parameters in (2) are φ and d̃. Assume
z is complex Gaussian with covariance matrix σ2I, the
likelihood function for φ and d̃ is

L(φ, d̃) =
1

(πσ2)N
×

exp
{
− 1

σ2

[(
x − PWd̃

)H (
x − PWd̃

)]}
(3)

Thus the ML estimate for φ and d̃ are

(φML, d̃ML) = arg max
φ,d̃

L(φ, d̃)

Equivalently, we are to minimize

S1

(
φ, d̃

)
= (x − PWd̃)H(x − PWd̃) (4)

Taking gradient of S1

(
φ, d̃

)
with respect to d̃ and setting

it to zero, we get [7, Appendix B]

∇d̃S1

(
φ, d̃

)
= −2WHPH(x − PWd̃) = 0

From above we can solve for d̃ML

d̃ML = WHPHx

Plug it back into S1(φ, d̃), we have,

S1

(
φ, d̃ML

)
=

(
x− PWWHPHx

)H (
x − PWWHPHx

)
= xH(I − PWWHPH)H(I − PWWHPH)x
= xH(I − PWWHPH)x (5)
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To proceed further, notice PPH = PHP = I, hence

S1

(
φ, d̃ML

)
= xHPPH(I − PWWHPH)PPHx

= (PHx)H(I − WWH)PHx

= (PHx)HVVHPHx

=
N−1∑
k=M

‖xHPuk‖2 (6)

where V, as defined in (1), consists of the last N − M
columns of matrix U. Therefore we have arrived at a cost
function that is identical to the MUSIC-like algorithm
proposed in [1].

C Equivalence between ML and MUSIC

The MUSIC-like algorithm in [1] is motivated by the
orthogonality between virtual carriers and information
carrying carriers, i.e.,

uH
k ul = 0

for k = 0, · · · , M − 1 and l = M, · · · , N − 1. In the
absence of channel noise and frequency offset, x = Wd̃
thus x ∈ span(W) where span(W) is the space spanned
by the columns of W. In the presence of frequency off-
set P−1x = PHx = Wd̃ ∈ span(W). Because of the
orthogonality between W and V, we would find φ, hence
the matrix P, such that PHx is orthogonal to span(V).
This immediately leads to the cost function as in (6).

On the other hand, the ML principle leads to the
least squares criterion because of the Gaussian assump-
tion, i.e., it seeks to minimize the error energy S(φ, d̃).
Assume φ (hence P) is known. Then from (4), it is
easy to see that minimizing S(φ, d̃) with respect to d̃
is equivalent to projecting x onto the space spanned by
the columns of PW, span(PW), and the correspond-
ing S(φ, d̃) is the projection error energy. By varying
φ, hence P, we search for the space span(PW) so that
the projection error is minimized. This is illustrated in
Figure 1 where different P’s (or φ’s) result in different
subspaces onto which x is to be projected. Our goal is
to find the subspace (i.e., φ) that has the minimum pro-
jection error. Notice W ⊥ V =⇒ PW ⊥ PV. Further,
it can be easily checked that columns of (PW,PV) form
a basis of N dimensional space. Thus minimizing the
projection error onto span(PW) is equivalent to min-
imizing the projection onto its orthogonal complement
span(PV). This leads to the criterion as in (5) where
Puk with k = M + 1, · · · , N − 1 form a set of basis func-
tions for the subspace span(PV).

Equivalently, we notice that S(φ, d̃) in (5) is in-
deed the projection energy of x onto span(PV).
To recognize this, we note that PWWHPH =

PW
(
WHPHPW

)−1
WHPH is itself a projection ma-

trix onto span(PW), hence (I − PWWHPH) is the
projection matrix onto the orthogonal complement of
span(PW) which is precisely the space spanned by PV.

III. ML Estimate Using Mutliple OFDM Blocks

Estimation of the CFO using a single data block does not
always give satisfactory results due to the lack of data.
Mutliple data blocks can be used assuming that the CFO
remains constant for all the blocks used. If L blocks are
used and that the noise vectors are uncorrelated from
block to block, then the likelihood function can be written
as

L
�
φ, d̃1, · · · , d̃L

�
=

1

(πσ2)NL
exp

�
− 1

σ2
×

LX
l=1

�
xl − ej(l−1)N0φPWd̃l

�H �
xl − ej(l−1)N0φPWd̃l

�)
(7)

where d̃l, with l = 1, · · · , L, is the lth unknown symbol
vectors and N0 is the total OFDM block length, including
the cyclic prefix. Notice that the CFO causes not only
the multiplication of the P matrix, but also the different
initial phases for different blocks. Notice also that the
initial phases not due to the CFO are absorbed into the
unknown data vectors d̃l’s. To maximize the likelihood
function, we are equivalently to minimize

S
�
φ, d̃1, · · · , d̃L

�
=

LX
l=1

�
xl − ej(l−1)N0φPWd̃l

�H�
xl − ej(l−1)N0φPWd̃l

�
(8)

From above, the ML estimate for each d̃l can be solved
straightforwardly to be

d̃ML
l = e−j(l−1)φN0WHPHxl

Substituting it back to (8), we have

S (φ) =
L∑

l=1

xH
l

(
I − PWWHPH

)
xl (9)

which is the cost function to be minized for the ML esti-
mate. By similar algebra as in section C, we can reduce
the above cost function to

S (φ) =
L∑

l=1

N−1∑
k=M

‖xHPuk‖2

which is again identical to that in [1].

IV. Blind Frequency Offset Estimation Using
Receiver Diversity
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Figure 1: Illustration of ML estimate of φ using projection argument. P1 and P2, corresponding to two
different frequency offset values, result in two different subspaces span(P1W) (solid line) and
span(P2W) (dashed line). For each subspace, the optimal d̃ is the corresponding projection
coefficient of x onto that particular subspace, and we want to find the subspace that has the
minimum projection error for x.

Multiple OFDM blocks can be used only when the
CFO remains constant throughout the blocks. If in an
environment involving fast manuveuring (accelerating or
decelerating) mobile hence fast varying Doppler shift, the
CFO estimation may be limited to small number of data
blocks.

A natural alternative would be use of receiver diversity
as in [8]. For simplicity, we assume two receive antennas
are used and we use a single data block from each an-
tenna. In the presence of time dispersive channel, addi-
tive noise, and carrier frequency offset, the OFDM signals
are

x1 = PWd̃1 + z1

x2 = PWd̃2 + z2

where P = diag(1 ejφ · · · ej(N−1)φ), d̃1 = H1d and
d̃2 = H2d with H1,H2 being the diagonal matrices sim-
ilar to H as before.

Under the assumption of z1 and z2 being uncorrelated,
the above signal model leads to the ML estimate with the
cost function similar to that of (9):

S (φ) =
2∑

l=1

xH
l

(
I − PWWHPH

)
xl (10)

where the observation vectors for different blocks as sec-
tion III are now replaced by the observation vectors of the

two subchannels created through spatial oversampling.
This indeed bears the same form of the extension of the
MUSIC algorithm to the case with receiver diversity as
in [8].

V. Performance study through Cramer Rao
Lower Bound

From the likelihood functions of (3) and (7) we can obtain
straightforwardly the Fisher information matrix (FIM)
for the unknown parameters. Taking the corresponding
diagogonal element of the inverse of the FIM, closed form
expression for the CRLB can be obtained for the CFO es-
timation. For simplicity, we assume L = 2 and the CRLB
for the single block and two data blocks are correspond-
ingly:

C1(φ)=
σ2/2

|AWd̃|2 − |WHAWd̃|2

C2(φ)=
σ2/2

|AWd̃1|2 + |AWd̃2|2 − 1
2

∣∣∣WHAW(d̃1 + d̃2)
∣∣∣2

where A = diag(0, 1, 2, . . . , N − 1). To compare the
CRLBs, we set d = d1. It is easy to show from the fact∣∣∣WHAW(d̃1 − d̃2)

∣∣∣2 ≥ 0 that C1(φ) ≥ C2(φ). It is also
straightforward to extend the above results to more than
blocks. Notice the CRLBs are independent of the actual
CFO value though they are dependent on the unknown
symbol vectors.
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VI. Simulations

In this section, we compare through numerical examples
the performance of the ML estimators using single and
multiple data blocks. The parameter setting is as fol-
lows. The total number of information carrying subcarri-
ers is M = 52 as specified in [9]. Implemented using 64-
IDFT, i.e., N = 64, we are in essence assuming 12 virtual
carriers. The discrete time carrier spacing is therefore
ω = 2π/N = 0.0982, with normalized symbol interval
Ts = 1. The guard time, which is cyclically extended, is
assumed to have a length of 11 symbol intervals. For the
time dispersive channel, a six tap multipath channel is
generated with uniformly distributed delay and indepen-
dent complex Gaussian channel gain.

We use normalized mean square error of the frequency
offset estimation as the performance measure.

NMSE =
1

Mc

Mc∑
k=1

(
φ − φ̂(k)

ω

)2

where Mc is the total Monte Carlo runs and φ̂(k) is the
frequency offset estimate of the kth Monte Carlo run.
Throughout all examples, the true frequency offset is as-
sumed to be 0.1ω = 0.0098, and we use Mc = 500 Monte
Carlo runs. The normalized MSEs are plotted in Figure
2 where single as well as multiple data blocks are used for
CFO estimation and we see a consistent improvement as
more data blocks are involved.

VII. Conclusions

In this paper, blind estimation of carrier frequency off-
set for OFDM systems was investigated.The ML estimate
that exploit the presence of virtual carriers is presented.
It is shown that the ML estimator coincides with a pre-
viously proposed blind algorithm, termed as MUSIC-like
algorithm in [1]. Improved performance can be achieved
if multiple data blocks or spatially oversampled data are
used in the estimation. This is corroborated both by the
CRLBs as well as by numerical examples.
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Figure 2: The NMSE of CFO estimation using
one, two, three and four data blocks.
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