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MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS
UNDER A SPATIAL SAMPLING SCHEME"

By ZHiL1aNG YING
University of Illinois, Urbana—Champaign

We study in detail asymptotic properties of maximum likelihood esti-
mators of parameters when observations are taken from a two-dimensional
Gaussian random field with a multiplicative Ornstein—Uhlenbeck covari-
ance function. Under the complete lattice sampling plan, it is shown that
the maximum likelihood estimators are strongly consistent and asymptoti-
cally normal. The asymptotic normality here is normalized by the fourth
root of the sample size and is obtained through higher order expansions of
the likelihood score equations. Extensions of these results to higher-dimen-
sional processes are also obtained, showing that the convergence rate
becomes better as the dimension gets higher.

1. Introduction. In their modeling of computer experiments, Sacks,
Schiller and Welch (1989) and Sacks, Welch, Mitchell and Wynn (1989) have
proposed a use of spatial Gaussian processes. Suppose that U is the set of all
possible computer inputs, usually called design points, upon which experi-
ments may be conducted. Let Y(«) be the computer response after an experi-
ment is run at z € U. Typically, each component in u represents a factor that
is related to the output function Y. In these experiments, no measure-
ment error exists, that is, repeating an experiment at the same design value
gives the same response. Suppose N such experiments have been conducted
at N different points u,,...,u, with their corresponding responses
Y(u,), ..., Y(uy) being observed. It is often desirable to characterize behavior
of Y and to predict responses Y(s) at unexperimented input points s € U,
based on observations Y(x,),..., Y(uy). To do so, Sacks, Schiller and Welch
(1989) and Sacks, Welch, Mitchell and Wynn (1989) modeled Y as a realization
of a multidimensional Gaussian spatial process (random field) whose covari-
ance function belongs to a parametric family. Specifically, with certain rescal-
ing, they considered without loss of generality the situation with U = [0,1]¢ c
R< and found a class of homogeneous Gaussian random fields with multiplica-
tive covariance functions of the form (1.1) below to be widely applicable to the
analysis of computer experiments as well as to be computationally amenable.
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The parametric family of covariance functions is defined by
d d
(1.1) V(0% 0,t,5) =o?[]exp{-06,lt; - 5,} = o exp{ - Y ot - silq},
i=1 i=1

where t = (¢,...,¢,)" and s =(sy,...,5.)7 €U, 02>0, 0 =(0,,...,0,) €
(0,)¢ and g € (0,2]. Here g usually indicates smoothness of the process Y.
For example, g = 1 implies that the process is nowhere differentiable, whereas
g = 2 implies that the process is infinitely many times differentiable. Unfortu-
nately, likelihood functions with g > 1 are rather difficult to handle analyti-
cally, due mainly to the fact that as the sample size increases, the observations
become very highly correlated. However, when g = 1, which will be assumed
throughout this paper, certain Markovian properties can be exploited to
conduct asymptotic analysis. Once ¢ is fixed, the probabilistic structure of Y
relies on the parameters # and o2 Since 8 and o® are unknown, Sacks,
Schiller and Welch (1989) proposed a natural approach of estimating them by
their maximum likelihood estimators using observations Y(u,),...,Y(uy).
Modeling deterministic functions via spatial processes is also examined by
Currin, Mitchell, Morris and Ylvisaker (1991). A wide range of statistical
applications of spatial processes can be found in Cressie (1991) and Ripley
(1981).

Maximum likelihood estimation under spatial sampling of Gaussian pro-
cesses was studied by Mardia and Marshall (1984). Their results on asymptotic
behavior of maximum likelihood estimators rely on the assumptions that
observations -of neighboring points are not highly correlated and that the
Fisher information matrix satisfies certain regularity conditions. Since the set
of all design points here is compact, Mardia and Marshall’s (1984) results are
not applicable to our model. Earlier, Sweeting (1980) established a general
result on asymptotic behavior of maximum likelihood estimates for possibly
non-Gaussian processes under certain regularity conditions. Again these condi-
tions make his result unsuitable for our model. In fact, we are not aware of
any results on asymptotic properties of maximum likelihood estimates when
observations are taken from a Gaussian random field on a compact region.

When d = 1, the parameters 8 and o2 in (1.1), recalling ¢ = 1, cannot be
identified simultaneously because if 602 = 652, then the induced measures
with (9, 02) and (4, ¢2) are mutually absolutely continuous [cf. Ibragimov and
Rozanov (1978)]. However, Ying (1991) showed that the product 662 of the
maximum likelihood estimators 6 and &2, as an estimator of 8¢2, is strongly
consistent and asymptotically normal as the number of sample points tends to
. For d > 2, (1.1) gives a rather different structure because all the parame-
ters 6, i =1,...,d and o? are identifiable. Indeed, the main theme of this
investigation is to show the consistency and asymptotic normality of the
jmaximum likelihood estimators of these parameters.

The paper is organized as follows. In the next section some notation and
assumptions are introduced. In Section 3 we investigate the large sample
behavior of the maximum likelihood estimators and establish their consistency
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and asymptotic normality, whose proofs are provided in Section 4. These
results are extended, in Section 5, to higher-dimensional processes under
somewhat more stringent conditions on the sampling scheme.

2. Notation and assumptions. For notational convenience as well as
technical reasons we first deal with the two-dimensional situation. Let X(s, #),
s,t € [0, 1] denote a zero-mean Gaussian process with a multiplicative covari-
ance function

[y o o2(81,215 82, 82) L E[X(s1,8) X(5,22)]
= oZexp{—Als; — syl — nlt; — t,l},

(2.1)
where A, u and o2 are parameters. Some technical difficulties force us to
consider the situations in which observations are taken from a domain which
forms a complete lattice with m and n partitions in the first and the second
coordinates, respectively. In other words, the set of all observations may be
written as {X(u,,v,): i =1,...,m; k= 1,...,n}. Without loss of generality,
both {u;} and {v,} will be arranged in ascending order. The design need not be
nested in the sense that u;, v, may depend on m and » and we do not assume
that {u,, i =1,...,m} ={u,(m), i=1,...,m} is subset of {u,(m + 1), i =
1,...,m + 1} or {v,(n), k=1,...,n} is a subset of {v,(n +1), 1 =1,...,
n + 1}.

The requirement that observations be taken from a complete lattice-type
subset is crucial to our analysis. In particular, it results in a convenient
dimension reduction as well as an inheritance of a useful Markovian-type
property from the corresponding one-dimensional process. Such a dimension
reduction is easily seen from the likelihood function below and Lemma 2 in
Section 4. Let

(2.2)  A(A) = (e M N1 jem,  B(w) = (67 )1k 1cns
(2.8) x=(x7,...,x7)" withx; = (%0, , 20) 75 % = X(u5,0,).
It is straightforward that the covariance matrix

(2.4) E(xxT) = a®A(X) ® B(p).

Here and in the sequel, ® is used to denote the Kronecker product. Therefore,
the likelihood function of x can be written as

) L, (A, 1, 02) = (2m0?) ""?[det( A(M) @ B(n))]"*
(2.5 1 .
Xexp{—a(;ng(A()\) ® B(ur)) x}

and the loglikelihood function becomes

Lo n(Asms o?)& —2log L, (A, i, o?)
mn log(2ma?) + log[det( A(A) ® B(n))]

(2.6) .
+?xT(A()\) ® B(p)) 'x.
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Consistency and asymptotic normality of maximum likelihood estimators of
A, u, and o? will be proved through various approximations to the loglikeli-
hood function /,, , and its derivatives. To this end, the following assumptions
will be made:
Both m > » and n - » in such a way that m/n are
bounded away from 0 and .
Both {x,,i=1,...,m}and {v,, k = 1,..., n} become dense
in[0,1]as m — v and n — .

(2.7)
(2.8)

3. Consistency and asymptotic normallty In this section, main re-
sults on asymptotic behavior of the maximum likelihood estimators A, & and
6? will be presented in two theorems. The first theorem gives a strong
consistency result while the second one shows that estimators are asymptoti-
cally normal. Proofs of these two theorems are given in Section 4.

THEOREM 1. Let Ay, o and of denote the true parameters and C be a
compact region in R? % (positive orthant) that contains (A, Ko) as an interior
point. Then ()\, a,é ) the maximum likelihood estimator that maximizes L,
over C X R _, is strongly consistent

(3.1) (A, 2,62) = (Mg, mo,08) a.s.

In particular, there always exists a strongly consistent local maximizer of
L, ..
REMARK 1. The above consistency result shows that parameter estimation
for this particular two-dimensional process is very different from its one-
dimensional counterpart. All unknown parameters in the former model are
clearly identifiable whereas parameters in the latter are not, as mentioned in
Section 1. In fact, even without conditions (2.7) and (2.8) on the sampling
procedure, we can easily provide a naive consistent estimator of (Mg, o, o) as
follows. First it is not hard to see, by taking a rather crude first order
expansion of [/, , as in Ying (1991) that A2 - Agu,02 a.s. Moreover,
w1th u, fixed, X(u,,v) is a one-dimensional Gaussian process having
o? exp{—ult — s|} as the covariance function. Thus Theorem 1 of Ying (1991)
shows that the maximum likelihood estimator of w ol us1ng X(uq,v),
k =1,...,n is consistent. Likewise, a consistent estimator of A,o2 can also be
constructed from X(u,,v,),i = 1,..., m. By combining these three estimators
we can easily get consistent estimators of Ay, u, and o2.

REMARK 2. The identifiability of parameters in the Ornstein—Uhlenbeck
covariance functions is somewhat intriguing. The preceding paragraph shows
that it depends on the dimension. We now show that the particular product

form is also important. Consider the corresponding isotropic (d-dimensional)
‘covariance function

n 1/2
Vi(o? a;st,s) =02 exp{—a[ Y (t, - si)2] }

i=1
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Its spectral density function can be written as

9 Co?a
8a(0", a;x) = o(d+1)/2°

(2+lez

where C is a constant depending only on d; compare Yaglom [(1987), page
362]. Thus for d < 8, V(0% «; ) and V,(6?, &; - ) induce two Gaussian mea-
sures that are mutually absolutely continuous if and only if % = ¢%g;
compare Skorokhod and Yadrenko (1973). In other words, o® and a are not
identifiable when d < 3. The proof of Theorem 1 in Section 3 indicates that
identification of A and u relies heavily on higher order expansion of score
equations to separate effects of the two parameters. The product form effec-

tively produces such separation while the Euclidean distance does not.

REMARK 3. The Gaussian assumption is also crucial to the identifiability of
o2, A and u. Consider two independent stationary Gaussian processes Z; and
Z, on [0, 1] with covariance functions 0% ~*!'l and e *!'|, respectively. Define a
two-dimensional random field Z(¢,s) = Z(#)Z,(s). Then Z has the same
covariance function as X but is non-Gaussian. Moreover, o2, A and u cannot
be identified simultaneously, since even if we could observe entire sample
paths of Z, and Z, (therefore Z too), only Ac? and p can be identified. An
intuitive explanation for this is that higher order expansions need moment
conditions higher than two, making the Gaussian assumption necessary.

Under some additional regularity conditions on the sampling scheme, the
estimators A, i and &2 are asymptotically normal. However, their conver-
gence rates are rather different from that of the usual maximum likelihood
estimation. This is the content of the following theorem.

THEOREM 2. With the same notation and assumptions as in Theorem 1, we
have

(3.2) Vmn (A48 = Aopood) ~o N(0,2(Aorod)’).
Furthermore, suppose that {u,} and {v,} are so chosen that

(33)  jmax&—o(m™Vh) and  max §=o(n”),

where & =u; —u;_, and {, = v, — v,_,. Then

(3= )

2X2 /(1 + Ay) 0
-4 N|O,
vm (ﬁv - P'«o) ? ( (

0 2#%/(1 + #0)

(3.4) (
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If, in addition, n/m — p, then

A Ao .
(3.5) Vn|{ & | = {#o]| -4 N(O,3),
G2 ol
where
202 /(1 + Ay) 0 —208r/(1 + Ay)
3= 0 2pu%/ (1 + po) —2podue/(1 + o)

—202ho/(1 + Ag) —2padig/(L + o) 208[(1 +Ao) ™+ p(1 + 1) 7]

Note that 3, is singular (rank(3) = 2).

ReMARK 4. The weak convergence results (3.4) and (3.5) are rather inter-
esting since they are normalized not by the usual square root of the sample
size. For fixed p = u, and o2 = o, the Fisher information number for the
parameter A can be shown to be proportional to the sample size N = mn. The
same is true for the other two parameters. Therefore, it is the collinearity
among the three unknown parameters that brings down the rate of conver-
gence.

ReEMARK 5. The weak convergence result (3.4) also shows that X and /i are
asymptotically independent and that the value of one parameter does not affect
the accuracy of the estimator of the other. Moreover, none of the asymptotic
variances in (3.2), (3.4) and (3.5) involves the underlying design. Therefore,
as far as the estimation is concerned, any choice of {u;, i =1,...,m} and
{v,, k=1,...,n} satisfying (2.7), (2.8) and (3.3) results in the same asymp-
totic accuracy for the maximum likelihood estimators.

REMARK 6. Both Theorems 1 and 2 require that observations be made on a
complete lattice subset. This is certainly a restrictive assumption, but it seems
to be necessary for our proofs to go through. From these two theorems it
appears very plausible that similar results should hold for more general,
nonlattice-type sampling schemes of Y. Further developments in this direction
will certainly be of great interest.

ReEMARK 7. In view of its long history, it is natural to ask whether available
results on maximum likelihood estimates can be used to derive our results.
However, we have not been able to find any of those directly applicable to our
setting. Most results deal with independent observations. For those covering
‘dependent data, some kind of rapidly decreasing dependency (as in time series)
‘is usually assumed. Other more general results, such as Theorem 1.1 of
Ibragimov and Has'minskii [(1981), page 174], require conditions that are
difficult to verify and we feel a direct analysis as given here is more appropri-
ate.
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ReEMark 8. It is also natural to ask whether or not the maximum likelihood
estimators here are asymptotically efficient. In a recent unpublished
manuscript, A. van der Vaart showed, via certain reparametrization and
asymptotic expansions similar to the proof of Theorem 2 given in Section 4,
that it is indeed the case in the sense that the usual convolution and asymp-
totic minimax properties hold.

4. Proofs of Theorems 1 and 2. The proofs of Theorems 1 and 2 are
based on approximations of the loglikelihood function /,, , and its derivatives.
To do so, we first introduce some lemmas.

LemMa 1. Let >0 and —o <s; < --- <s, <o Define r X r matrix
G & (exp{—nls; — 8;1D1<: j<» and r X 1 vector g(s) = (exp{—nls; —sl},...,
exp{—nls, — sDT, where s >s,. From f,, h, form two rl X 1 vectors f =
(FL, ..., DT and h = (AL, ..., KT)T. Then for any | X I matrix H,

(41) G—lg(s) - (0’."’0’e—n(s—sr))T’
fT(GeH) 'h
— fTH—lh
(4.2) ' '
(f, - e—n(s,-—si_l)fi_l)TH—l(hi — e MEeDp, )

1 — e 2n(si—si-1) ?

+_Z

i=2

(43) | det G = I—I (]_ —_ e_2’7(si_si~1)).
i=2

Proor. Since s > s;,i=1,...,r, we can write

g(s) = exp{—n(s — 5,)}8(s,).

But g(s,) is the last column of G. Thus G~ 'g(s,) = (0,...,0,1)” and (4.1)
follows.
To show (4.2), we first partition the matrix G into

G, a
G =
[ )

and then use a matrix inversion formula [¢f. Anderson (1984), Theorem A.3.1]
to get

Ir—l _Gl—la

0 1

I, 0
-aTGit 1

2

0 (1 —aTGl_la)_1

Gt 0 )

(44) G'= (
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where I._, denotes the (r — 1) X (r — 1) identity matrix. From (4.1), we see
that Gyla = (0,...,0,exp{—1nls, — 5,_,/)T. Meanwhile, from (4.4) and apply-
ing multiplication and inversion formulae (22) and (23) of Anderson [(1984),
page 600] for the Kronecker product, we can get

(G®H)_1= Ir—1®Il _(Gl_la)®Il
0 I,
45) y (G,®H)™! 0
’ 0 (1-a"Gi'a) 'H™

I._,®I, 0

With f(r — 1) =(fp,..., f._)" and h(r = 1) = (hy,..., h,_)7, (4.5) implies
FIGoH) '"h=FT(r—1)(G,® H) 'h(r—1)

T
(fr - e—n(sr—sr_1)fr_1) H_l(hr _ e—n(sr—sr-ohr_l)
+ 1 — e_2n(sr_sr—1)

’

which becomes (4.2) by induction. Finally (4.4) implies (4.3) by induction. O

LeEMMA 2. Let A, B, x, x; and x;, be defined as (2.2) and (2.3) and ¢; and
{, as in Theorem 2. Then the loglikelihood function [, , defined by (2.6) has
the following representation:

m
L n(A, ,0%) = mn log(2m) + logo? + 1 log[a?(1 — e~ 24)]
i=2

+ Y log[02(1 - e_z"{k)]
k=2

+ ¥ Y log[o?(1 — e ) (1 — e~ %)
i=2 k=2

=

+—= xTB Y (u)x,

)

mo(x; — e_)‘gixi—l)TB_l(l-’«)(xi —e Mix, )
1— e 2 '

+
=2
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ProoF. From formula (25) of Anderson [(1984), page 600] we get
logdet{ A(A) ® B(u)] = log{[det A(2)]"[det B(u)]")
(4.6) m Coon
=n Y log(l—e ) +m Y log(1 — e %),
i=2 k=2

where the last equality follows from (4.3). Moreover, (4.2) implies that

xT[A(M) ® B(p)] 'z = x{B "} (n)x,

(4.7) . mo(x; - e’\‘fixi_l)TB_I(li)(xi — e Mix; )
i=2

Hence Lemma 2 follows from (4.6), (4.7) and (2.6). O )

1 — e 2

LEMMA 3. Let b > 0. Then for all Ay, A, and & in [—b, b],

(4.8) M~Ys| < |1 - e°| < Mlsl,

(4.9) (1 —e™®) " =571 —1/2] < Mlal,
T—e ™ Ay Ay(A = Ay)

4.10 -2 TETL TP < MsR

(4.10) 1_e™ A 22, =

LEmMA 4. For any constant 8 > 0, there exists an n > 0 such that

inf (y—1-logy)=n.
ly—1]=28,y>0

Both Lemmas 3 and 4 follow easily via the Taylor expansion method.
Moreover, through evaluations of the relevant covariances, the following lemma
can be obtained.

LEMMA 5. Let x;, ¢, and {, be the same as those in Lemma 2.

() Let n, = (x;, — e *ofig,_ ) /(1 — e"22) %5, i = 2,...,m. Then for
each i, n; is independent of {x;, j =1,...,1 — 1}). Moreover,{n;,, i = 2,...,m}
is a sequence of i.i.d. random vectors with N(O, B(uy)) as their common
distribution.

Gi) Let w,, = (n;, — €40, ,_)/(1 — e )2 where =, is the kth
component of m; defined in (). Then w;;, is independent of {x;, j<i—1lor
l<k—1) foreachi, k, and {w;, i = 2,...,m; k= 2,...,n} is a sequence of
i.i.d. random variables with the standard normal distribution.

Proofs of Theorems 1 and 2 involve approximations of the loglikelihood
function by double arrays of normal random variables. The next lemma will be
used to control magnitudes of these double arrays.
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LeEMMA 6. Let {2;,} be a sequence of standard normal random variables.

() If z;, are also independent and m = O(n9) for some q > 0, then

(4.11a) sup lz;,] = o(n°) a.s.,
l<i<m,l<k<n
n
(4.11Db) sup | Y.z, =o(n'?%) a.s.,
l<i<smik=1

for every € > 0.

(i) Suppose that E(z;; 2;.4,2:.0,2:,1,) * O if and only if a permutation of
GGy, k), ..., Gy, ky) can be made so that iy =iy k1 =ky, iy =1, and ky =k,
and that m = O(n). Then .

n
Lz, =o(n*™) a.s,
1E=1

™3

(4.12a)

i

(4.12b) Y 812 Z z;, =o(nl7%) a.s,
-1

=1

for some £, > 0, where 8, = 6(m,n) > 0 satisfying ¥ 5, < 1.
Proor. By Chebyschev’s inequality,

— £Q
P{ sup l2; 4l = n%} < mne " Eetl?l,
l<i<m,l<k=n

Since m = O(n9), the right-hand side of the above equation is summable and
(4.11a) follows from the Borel-Cantelli lemma. Now let 6 >0, y,, =
max(—n®, min(n? 2,,)) and S, = £i_(y,, — Ey,,). By Corollary 4.3.2
of Chow and Teicher (1978), we have Var(y,,) < Var(z;,) = Var(z). Since
l¥;r — Ey;l < 2n° Lemma 10.2.1 of Chow and Teicher (1978) implies that, for
some constant ¢ > 0,
P{ sup [S;| > cnl“s} <me™ ”
l<i<zm

Letting 1/2 > 6 > max{1/2 — ¢, 0}, the Borel-Cantelli lemma again implies
that sup; _; _,,|S;| = o(n'/?*¢0) a.s. Thus (4.11b) holds, since sup, ., ,IS; —
Yr_12:] = 0o(1) a.s. by (4.11a).

To show (4.12a), we again use Chebyshev’s inequality and the assumption
in (ii) to get

4

= O(n_4(1_50)) ,

||[\/]§

m n
Y L ozg|zn

P{
i=1k=1

—60} < n—4(2—eo)E
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which is summable for £, < 3/4. Hence (4.12a) follows from the Borel-Cantelli

lemma. Equation (4.12b) can be shown similarly. O

ProoF oF THEOREM 1. To prove the theorem, we need the following two
approximations that will be verified later on:

£ (s e ) B ) (5 e )
i=2 1—e 2%
)‘01*00‘02 <
= rY X wh
Aw Zak-2
(4.13) - 5
/\0‘73 Aol’«oa'g Ao(k — o) o5
+ (= o) + ~=g | m
| A Al 21
_/\ hoOE Lo(A — A 252
+ 000(/\—/\0)+—(i—2mﬁ—0— n+o(n) as.,
#‘«00’02
(4.14) «TB Y (p)x, = n+o(n) as.,

where w,, are defined in Lemma 5(ii). Applying (4.10) we get

m o2(1 — e—Z)\fi n 0-2 1 - e—2l-L§k
Y log 2( “21 5.) + 2 log 2( —2u {)
T og(l—e Pty T Tog(l-e 0%k)

o?(1 — e 2 (1 — e72mh)

+ 1
igz kgz Ogaoz(l — e Zhofi)(1 — e ZHolk)

(4.15)
Apo?
=(m—1)(n—1)log)t s +n(dg—A) + m(pe — 1)
oM 00
ro? uo?
+mlog/\00‘§ + nlogMOUg +o(n).

Note that in applying (4.10), the requirement (A, u) € C, which is compact and
doees not contain the origin, is needed to ensure that the above approximation
holds uniformly. Although it will not be pointed out explicitly, many subse-
quent approximations, derived from Lemma 3, also implicitly require this for
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the same purpose. From (4.13)-(4.15) follows, with probability 1,

lm,n(/\’ L) 0-2) - ZM,n(AO’ Ko, a-(?)

P PTING £ noZ Aoko0g
= -~ 1| X L wh—(m-1(n-1lg——s
Apo i=2 k=2 i
N Agay) /\0:“00‘02
+m|: P _1_10g)w'2 /\MUZ _1(/~L_M0)
2 2
(4.16) Ao(m = 1) g
2021
2 2
o [T Aol o0
+n[“°§—1—1og°;’ 0020—1)()\—A0)
no no Apo
oo (A — )‘0)2
+————" |t o(n).
20°Au
Since =7 , X7 _(w? — 1) = o(mn) ass., (4.16) equals
® ®
(m—1)(n - 1) Aot ° ~1-log— Aoko ° +o(mn).
Apo?
This and Lemma 4 entail
(4.17) ALGE > Aguood as.
Applying (4.17) to (4.16) we get
. Ai6?2
lm n(A’ﬁ’éz) - lm n AO’MO’
Aok
Aol Aol b —u ol
(418) =m Aoo_ _ Aoo Ao( A 0) 0
AG? AG2 262\ 4
Mo g MHoTo ,“00‘02(;\ - /\0)2
+ AAz—l—logAA2 — +o(n) as,
ac 262\




MLE FOR SPATIAL PROCESSES 1579

which, by Lemma 4, converges to « unless /\ — A, and [ — p, a.s. Hence
Theorem 1 holds in view of the definitions of A and 4.

It remains to show (4.13) and (4.14). By writing x;, — e *%ix; , =x, —
e—)\os‘-ixi_l + (e—)\os‘.i — e—)tf.i)xi_l’ ’

1 —_ e_Z)‘Ofi

——mgnl {B™(p)m;

Lhs.of (4.13) = 0§ ¥ 5

i=2

(e Mofi — e M)

+ T g1 .
(4.19) igz 1 o M Ni-1 (p)x; 1
m (e—)\of,,- _ e—/\gi)(l _ e_z)‘ogi)l/Q
205 Z 1 — e 22 21 B7H ()

=1+ 1II+ III, say,

where 7, are as in Lemma 5(i). From Lemma 1 with / = 1 and H =1,

e_z)\ofi(l — e*(/\—)\o)fi)2

_ o 2A¢;
i=2 1 —e ™

(xi—l,k - e_“{kxi—1,k—1)2

2
X k¥2 1 - e_zl"gk + xi_l’l
(4.20) -
(A = Xo)”
=(1+o(l)———
(1+o0(1) 5

+ 0(1) as,,
where the second equality follows from Lemma 3. Applying Lemma 3 first and
then Lemma 6(i), we get

(e_l-bogk — e_y‘{k)xi—l,k—l

1 — e 216

DY

i=2 k=2

(%_1, — A o(Vn) as,
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which combined with (4.20) gives

()‘ B )‘0)2

II = (1 + o(1))

n — p—Holk 5 2
§lz ( Xi_1,p € xt—l,k—l) +0(‘/;)

X
_ o 2uf
b_9 1 — e “Bé

i

Lo

—Ao) ,U«o‘To2

(421)  =(1+o0(1)) ( T

m n . — o Holk s, z
% Zgi Z (x;—1,k € xz—l,k—l) N 0(\/;)

i=2 k=2 (1 — e 2o%)og

=(1+ (1))——0)—Mg—0 + O(n'?**) a.s.forevery ¢ > 0,
Al

where the last two equalities follow from Lemmas 3 and 6. For III we use
Lemma 1 again to write

_ \1/2
(e~hoki — gmAE)(1 — ¢~ 2hoki)
III = 20, 22 1 — o 26 Xi-1,1M:1
13
m (e Mofi — e_)‘fi)(l — e—z)\ofi)l/z
(4.22) + 20, 3
0'Ol§2 1 _ e—Z)\gi

mo %y~ e My ) (M — €, )
< Z i—1, ;ie_lzﬂ{kt 1

k=2

Similar to the previous derivation of (4.21), Lemmas 3 and 6 can be applied
repeatedly to (4.22) to get

(4.23) Ill = o(n) as.
In view of (4.19) and Lemma 1,
— 200

2
mo1- 2 (M — e*#{k) Ni k-1
I D i i

=09 zgl 1 — e 20 M1t kgz 1 — e 2r&.

m 1 — g 2%& n 1 — g Zrobe

2
=(1+ L b1 PE 21— ot Wik
(4.24) - B -2
m 1 — e 2X¢ n (e—l-bolk — e—ﬂgk)z
2
+ o Z 1 — e 2 kZz 1 — e 21l Ni k-1
s -

— e 2Méi n gTHOL — g HE

2

m

+ 205 X 1 — o B 1 — o 2als Mik— (i — € #obkm; 1)
E=2

=2
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recalling that w,;, = (n;, — e #o%n, ,_;)/(1 — e~ ?*%)!/2_ Applying Lemmas 3
and 6 we can get

m m '
(4.25) Y mi = Z (n2,-1)+m—1=m+o(m/?*) as,
i=2 -

— e 2Mt 1 — e_zl-bogk

m n 1
P e s g T

i=2 k=2
Agg I 2 /\ 1
(4.26) =200 Y w2 —Ag)n
A Zo ko2 A
Agu
= O(M—Mo)m‘f'O(n) a.s.,
Au
m 1 — e 2*¢ n (e—uogk_e—ulk)Z
Z —2A§- L —2ul N k-1
(4.27) i—2 1 - Ppog L —enH

2
Ao(m — mo)
= ——m +o(n) as,
2Au
— e_Z)‘sz e /'LO{k — e F‘zk

1
(4.28) [Th, T 1—e 2 1 —e 2 M, k=1 — €740, 4 1)

=o(n) a.s.

Combining (4.24)-(4.28) with (4.21) and (4.23) we get (4.13). From Lemma 1
we get

2
_ “ (x1 R e Ry 1)
x1TB 1(P«)xl = Z 1 — e 20b

+x121

_ o 2up¢ — pTHof, z
1-e Ok(xl’k e kal,k—l)

iy 1 —e 0 g2(1 — e Prol)

(4.29)

(e—#ofk — e—ﬂgk)z
2
1 — e—2rik *1Le-1

B — — e kof
1— e 204 N N N
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which, along with a similar argument using Lemmas 3 and 6(i) as before, gives
(4.14). O

PRrOOF OF THEOREM 2. By setting the derivative of I, .(A,pu,o?) with
respect to o2 to be 0 at (A, &, 62), we get

~2 Tp—17 A
- —147B
G — xq (f)x,
-~ T ~
= (xi —e i, 1) BTHa)(x; — e_)\fixi—l)
4.30 + -
( ) i§2 1 — e—2¢
1 [Agmeog 2 Ao0§ HoO
= —]— Y Y wih+m——+n 0,(m)|,
mn| AR i-2r-2 A i

where the last equality follows from expansions (4.13) and (4.14). Therefore

V(m =1)(n - 1) (Aaé? — Aguood)
= opoal(m = 1)(n — D] L L (wh - 1) +0,(1).
i=2 k=2

Hence (3.2) holds by the central limit theorem.
To show (3.4), take differentiation

fie_)‘fixin1B_l(M)(xi - e_)‘gixi—1)

= +
48) =nl i met 2 L T
9 m §ie_2)‘§‘
-— Z —— (% - e_)‘gixi_l)TB’l(M)(xi —e Mix; ).

Applying expansion §&e 2Mi/(1 —e™2) = (2071 — 27, + O(£2), we see
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2X i—9 1 — e_z)‘fz
1m g v )
-3 Y 1—e—2)‘§z(x —e Mix; 1) BT a)(x;, — e Mix, )
i=2
4.32 mo g fe.. AT R
432) Loy ¥ o (v - e ) BT (x - e i)
i=2

+0(1) X fi(xi - e_xgixifl)TB_l(ﬁ)(xi - e’j‘fl‘xi_1) +0,(n'?),

i=2

where we have used the first equation in (4.30) to get the second equality.
Through tedious approximations involving Lemmas 1 and 3 and certain
variance calculations, it can be shown that

[0

(% — e_'\g"xi—l)TB_l(“)(xi —eMix )

(4.33)

(434) 3 &(x — ey _y) BN (xi — e Mixy_y) = 0,(n'/?),

i=2

2 n
_ 0
(4.35) B (w)x, = 2% ¥ 22, 4 0,(1),
k=2

where z;, = (x;_1 , — e*%x,_; , /[0l — e”o4)]/2 From (4.32)-(4.35)
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follows
m §ie72)‘§t T .
‘Zz (1 —e 2 )2( i —e M 1) B 1('“‘)(xi — e Mix,_q)
1= i
1 o0y 2
(4.36) = —|mne2 - 22 ¥ 22,
2 Boopoe
T2 L& L wh o, (n?).
2Mi i=2 R=2
Likewise,
m gle Ag;
.22 1 —oig %i-1B 1('“)(xt —€ Aglxz—l)
=
2Xopoog -
4.37 Y EE Y zaw;
( ) 2Ap i=2 k=2 S
(A - ’\O)Moa'g - =
oA Y & X 2h +0,(n'7?),
M i=2 k=2
which, combined with (4.31) and (4.36), implies
d R m n(m—1)
—1 AR, 6% = — L
axlm(d 267 nig‘f‘ A
240 po05 M =
A A ag Z \/El_ Z zzkwtk
Apc i=2 k=2
A Ao)rood =
(4.38) + ( — A)z Y& D 2k
AfLa i=2 k=2
1 1Y
- mng? - —2° 2,
Ao L
Aoko0h & =
- Y& X wh +o,(n'/?)

Since Lh.s. of (4.38) = 0 by definition, it follows that

N Ag
(i =k) = = G
(4.39)

n m
X Y 1V2h X ‘/§_izikwik +22, - 1| + op(nl/z).
k=2 i=2
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Interchanging A with p, we have

A Mo
m (& ko) = —(T-I—_,u,o)——\/m
(4.40)

m n
X 3 |21 b \/ayikwik +y2, -1+ Op(n1/2)’
i=2 E=2

where y;, = (x; 5, — e *fix;_y , )/[0§(1 — e 2E)}/2 To prove (3.4), it
suffices to show that for every ¢,

Vn (A = Xo) + tVm (4 — po)
=5 N(0,22%5/(1 + A) + 2673/ (1 + o))
In view of (4.39) and (4.40), (4.41) is equivalent to

‘/—— k22 [\/ﬂ; X \/—z_zzszk +25, -1

+— V2 (2w, +y2,— 1
Mi§2 Mokgzk YirWir y,2

N(0,2[Ag + 1 + t2(no + 1)]).
The left-hand side of (4.42) can be written as

(4.41)

(4.42)

n ‘/2/\0 m ou, ™
LZaW 2, — 1+ Ly w;
k§2|: Jn i§2\/§ Wik 2,k Jm Z YirWik
t m
m -2

= ng(m n)+ —— Z(yzz 1),

From Lemma 5 it is not difficult to see that for each fixed pair m and n,
conditioning on {y; 5, i = 1,...,m}, {e,(m,n)}, &k = 2,. ,n}is a martingale
difference sequence vvlth respect to the o-filtration 9; =ofx,, | <k, i=
1,...,n}. Moreover, it can also be shown easily that

(4.44) S E{e2(m, n)Fp 1) ~p 2(Ao + 1+ %),

n

(4.45) ¥ Efei(m,n)| %1} =5 0.

k=2
From (4.44), (4.45) and a martingale central limit theorem (cf. Pollard, 1984,
page 171) we obtain

n

Y ex(m,n) =4 N(0,2(/\0 +1+ tZ[.LO)),
k=2
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which implies (4.42) since y?, — 1, i =2,...,m are iid. with mean 0 and
variance 2. Finally, (3.5) follows from (3. 4) and (3.2). O

5. Extensions to higher-dimensional spaces. In this section we gen-
eralize the results of Section 3 to higher-dimensional spatial processes. Let
X(@), t €0, 1]%, denote a spatial Gaussian process with a multiplicative covari-
ance function

(5.1) T(t,s) =oexp{—0.lt; —si| — -+ —0,lt; — s4l}.

Suppose a sample of size N = [1¢_,n, is taken at {(z%,...,u{)): 1 <k, <n,,
1 <i <d}, where, without loss of generality, u{’ <uy < .-+ <u), i=
1,..., d. Therefore the set of observations consists of

(52)  xp,2X(u®,.ud), 1<k <n,i=1,..d.

Again we do not assume sets of design points at different stages to be nested.
By large sample, we shall mean that the set of sample observations from X
becomes denser in the following sense:

n; are of the same order in the sense that

(6.3) o< hmlnfn ./NV? < limsupn,;/N/¢ < fori=1,...,d.
N-ow

(5.4) ~ max (u) —u$) ;) >0, where u§’ =0,u,, =1,
l<i<p;l<k;<n;+1

Let AY = u$ — u$) , and
(5.5) A8;) = (eXP{_eilu(ki) - u(li)l})lsk,lsni‘

Then the likelihood function can be written as
-1/2

d
L(6,0?%) = (21702)_N/2[det( ® Ai(ai))]
i=1

g

with x being the N X1 column vector with entries x, . , . Similar to
Theorems 1 and 2 for two-dimensional processes, the following consistency
and asymptotic normality results hold for the maximum likelihood estimate.

(5.6)

d
® a0

1
X exp{ — é—x

THEOREM 3. Let C be a compact set containing 0¥ as an interior point and
let (8, 6?%) be the maximum likelihood estimator that maximizes the likelihood
function L over C X (0, «). Then under the assumptions (5.3) and (5.4),

(5.7) (él,...,éd,&Z) - (69,...,09,08) a.s.,

where (002, ...,00, 02) denotes the true parameter vector.
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Because of space limitation and its similarity to the proof of Theorem 1, the
proof of Theorem 3 will be omitted.

THEOREM 4. With the same notation and assumptions as in Theorem 3,

suppose that AY = -+ = AD = A® for everyi=1,...,d. Then
d d 2

(5.8) N2\ 6216 -~ og 107 | =5 N(O,Z((rozl_[lﬂ,@)) )
i= i= i=

(5.9) : - IN(0,3,),

(N/nd)l/z(éd - 0,(10))

where 3, is a diagonal matrix diag{20° /(1 + 6),...,269" /(1 + 6}
Moreover, if N4 /n, - p,>0,i=1,...,d, then

. S, b
(5.10) N@-vea| =07yl d
6% - a? o7 208 T (Te )1+ o) ||
i=1‘Jj#i

where 3, = diag(2([T%,p )0 /(1 + 6), ..., 20 1% )8%" /(1 + 69}, bT =

1=

(by,..., by) with b, = —2(1%,.;p )06 /(1 + 6).

The strong consistency and weak convergence (5.7)-(5.10) are multivariate
versions of (3.1), (3.2), (3.4) and (3.5). Although Theorem 3 is a complete
extension of Theorem 1 to d-dimensional spatial processes, the assumption
AD = AD in Theorem 4 is a much stronger requirement than (3.3). It is likely
that our conditions may be relaxed. The convergence rate in (5.9) and (5.10) is
N-@-1/CD which becomes faster as d gets larger. One intuitive explanation
for this is that as d increases, the level of correlation decreases.

Proor oF THEOREM 4. The proof of Theorem 4 is more delicate since we
need to handle all the terms in the approximations of (3/36,)I(8, o) except
o(N@-D/@D) - Ag we shall see, it not only uses techniques in the proof of
Theorem 2, but also depends on the assumption that the partition in each
coordinate is equally spaced. The full proof is tedious and notationally pro-
hibitive. So only a brief sketch will be presented.
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First from equation (8/d02)I(8, %) = 0 we get

1 n
6% = — {x{B7'(6)x,

N

5.11 —pham T 1,3 ~BAD

(5.11) f (e ) B (5 = e )

+ 1 - —ZéIA(l) ’
k=2 e

where x, are (N/n,) X 1 vectors derived from the vector x by deleting all
entries x,  , with k; # %k and By#) = ®/ ,A,(6;). Since (1 -
e‘2”(0)Am)/(1 e 20AY) 1} p=20:80(1 _ 20, “"(m’w)/(l ’29 4% we can
use a similar argument as that leads to (4. 10) to get

— g 20040 00 6O
+(1+ 0(1))———(0 — 6)A®,

l

(5.12)

1 — ¢—20:4% - 0
From (5.11), (5.12) and Theorem 3, it can be shown that
1 0_21—141_ 9(0) n ng
A2 _ 0+li=1%i Z . Z 2
6% = —_— wg. ...
N{ n§'1~19' Ri=2  ky=2 Fi ke
d 1—1 0(0) .
(5.13) + Y — ———(9i — 8®)(1 + o(1))

=1ni HJ 1J

d ool oy, .. 1,0
+ Z Z ( I—I (nj _ 1)) 0ty lz)AJ + OP(N1/2)},
i=11<l,< - <l;<d

JeElly -1} njef(11~--l,-)9j

where w, .., andiid. N(0,1) random variables. From (5.11), it follows that

d d 0(?1’1;1:1950) ny ng
ézﬂf)i—tfozﬂﬂl‘")) =——— ¥ - X (wi. 1)
_ - N
i=1 i=1 k=2 ky=2
maxlgisd'éi - 050)' _
(514) + A Nl/d + OP(N 1/2)

O,(N'*) + 0,

A 0
maxlgisdwi - 01( )l
Nl/d

Thus (5.8) follows if (5.9) holds.
We now prove (5.9). From (5.11),

—26.A0
F] 19, 6% = N(n, — 1) 2A%e 2i’1A
801 n, 1— e_291A(1)
2A‘1)e_'9 a® it} S AL
(5'15) + ,\2(1 _ e_201A(1) Z xk 1 1(0)( - _8 “ xk—l)

A(l)e—zolA(l)

d
B 63(1 — e~ 20147 [( 1:[ ) 7? — x{ By 1(9)351]
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Applying (5.15) and (5.12) we can show that
21—14_ 0(0) ny ng

10,6%) = =5 L - L (2k,-2f1) 1
30, G2 M1_16; ky-2 kd=2( = )
d olT19_,0© 1
+ I—I (nj - 1) —?—‘J_—zi— - =
j=2 02114:10- 0,
R H e
+(6, - 9(10’)—3—— Z AD Z X zf (ki — 1)
(516) n_] 1_] ky=2 k=2 k=2
Hd 20(0) E / _20&0)&1)
R A
ng ng
X Y X Zp,n Ry = Dwy g,
ky=2 ky=2

IS8

+ Z ((él - 050))N(d—1)/d) + OP(N(d_l)/(zd)),
i=1

where for each 1 <k <n; — 1, z,,..., (k) is defined as follows. Let
2
delz)mkd(k) = Xphy kg z}f’.._kd(k) = 2(1) kd(k) - € ”zfelz) 1,kg - (k)’“-:

(d)
z;ei) kd(k) _z(d 1) (k) et (d) kg kg 1( )-

Then z,, ..., (k) = 282, (k). In view of (5.14) and Theorem 3, (5.16) implies
that

1 d A
(W +1)| [1(n, - 1))(09’) —8,)
1 i=2
ng nyg
= L X (s 1)
(517) ’ ny ’ ng ng
+ X V20040 3 - )z, (R Dwe gy

k=2 ky=2 ky=2
d

+Yo (N‘d 1)/d(9 (,(0))) + 0, ( N@-D/eDy,
i=1

By symmetry, approximations similar to (5.17) hold for 8;,i = 2,...,d. From
these d equations and a similar argument as in the proof of Theorem 2 we get
(5.9). Finally, (5.10) is an immediate consequence of (5.8) and (5.9). O
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