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Abstract.—Maximum likelihood estimation of phylogenetic trees from nucleotide sequences is com-
pletely consistent when nucleotide substitution is governed by the general time reversible (GTR)
model with rates that vary over sites according to the invariable sites plus gamma (I C 0) distribu-
tion. [Consistency; general time reversible model; maximum likelihood; phylogeny estimation; rate
heterogeneity.]

The maximum likelihood (ML) method
of estimating phylogenetic trees from dis-
crete characters such as nucleotide sequences
has been widely advocated and used by
many workers (e.g., Felsenstein, 1973, 1978,
1981; Huelsenbeck and Hillis, 1993; Swofford
et al., 1996), in part because it is believed to
have the statistical property of consistency.
In the context of phylogeny reconstruction
this means that, given the correct model of
character change (except for the values of
a �nite number of parameters such as tree
topology, branch lengths, relative substitu-
tion rates, and so forth, which are to be es-
timated by ML), the method will converge
with certainty on the correct tree as the num-
ber of characters (nucleotide sites) increases
without limit. Felsenstein (1973) based his ar-
gument for consistency of ML tree estima-
tion on Wald’s (1949) general proof of the
consistency of ML estimates. Several workers
(e.g., Nei, 1987:325; Saitou, 1988: Yang, 1994,
1996a; Yang et al., 1995; Russo et al., 1996;
Siddall, 1998; Farris, 1999) have expressed
misgivings about this argument, concerned
that the discrete, unordered nature of a tree
topology “variable” prevents it from being
the sort of parameter required by Wald’s
(1949) proof. Their concern seems to arise
from the mistaken assumption that Wald’s
criteria for the consistency of ML estimation
include “that the likelihood function is ev-
erywhere continuous and continuously dif-
ferentiable with respect to the parameter of
interest” (Siddall, 1998). If this were true, a
discrete variable such as tree topology obvi-
ously would not qualify. But, as I will show
in the Appendix of this paper, that assump-
tion is groundless (also see Swofford et al., in

press). Further, Chang’s (1996) proof of the
consistency of ML tree reconstruction, which
he calls “a customized variant of the funda-
mental consistency result of Wald,” explicitly
treats topology as one of the parameters. In
the Appendix I present a somewhat different
adaptation of Wald’s (1949) assumptions and
proof of the consistency of ML estimation
that make the assumptions conform to the re-
quirements of phylogenetic tree estimation.

A key assumption in Wald’s (1949) proof
is that all of the parameters of the likelihood
model are identi�able from the true proba-
bility distribution of the data. For phylo-
genetic reconstruction from sequence data,
this means that only one combination of tree
topology, branch lengths, substitution model
parameters, and so forth could generate any
particular set of expected nucleotide site pat-
tern frequencies. Chang (1996) demonstrated
that the tree topology and the nucleotide sub-
stitution matrices for all branches of the tree
are identi�able for very general substitution
models that are not assumed to be station-
ary or time reversible. However, his proof is
not completely general for continuous-time
Markov models (see Chang, 1996:66). Rogers
(1997) gave a proof of the identi�ability of
the tree topology for continuous-time, re-
versible Markov models. Both of these proofs
assume that rates of substitution are uniform
over all sites of a sequence, which is known
not to be generally true (e.g., Yang, 1996b;
Sullivan et al., 1999). Steel et al. (1994)
showed that the true tree is identi�able from
in�nite sequence data with rate heterogene-
ity over sites if (1) the distribution of rela-
tive rate parameters is known, or (2) rate het-
erogeneity is restricted to a certain unknown
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proportion of invariable sites, with the re-
mainder of sites evolving at the same rate,
or (3) a molecular clock is in effect. Some
authors (e.g., Farris, 1999) apparently have
concluded that these conditions are necessary
for identi�ability. That is incorrect. Steel et al.
(1994) simply demonstrated that they are suf-
�cient for identi�ability—which leaves open
the possibility of identi�ability under other
conditions.

The Steel et al. (1994) demonstration of
identi�ability is restricted to the Cavender–
Farris substitution model for two-state char-
acters and the Kimura three-substitution-
types model for four-state sequences. Both
of these are equal-frequency models; that is,
both assume that the stationary frequencies
of all character states are equal. However,
that is rarely ever true (e.g., Hasegawa et al.,
1985).

In this paper I demonstrate the identi�a-
bility of all parameters, including topology,
branch lengths, substitution rates, and rate
heterogeneity parameters for the stationary,
general time reversible (GTR) substitution
model with rate heterogeneity determined
by the invariable sites plus gamma distribu-
tion (IC0) model.

NUCLEOTIDE S ITE PATTERNS

As noted in the Appendix, the basic ran-
dom variable for ML estimation of phylo-
genetic trees from sequence data is the nu-
cleotide site pattern, that is, the ordered set
of nucleotides observed at a given site of
the sequences under consideration. For ex-
ample, the four short sequences shown in
Figure 1 have four distinct site patterns:
AAAA, AATT, ATAT, and ATCG. Using the
symbolism of the Appendix, we can desig-
nate these four patterns X1, X2, X3, and X4.
In four very long sequences, each of these dis-
tinct patterns would occur with a certain fre-
quency. If the four sequences were in�nitely
long, the observed frequencies of these four
patterns would equal their expected fre-
quencies, f (X1, µ0), f (X2, µ0), f (X3, µ0), and
f (X4, µ0), where, again as explained in the
Appendix, µ0 is the vector of true parameter
values, including the true tree topology. All
other possible distinct site patterns for four
sequences would have similar frequencies.
Using this symbolism, the question of identi-
�ability is whether the set of true frequencies
f (X1, µ0), f (X2, µ0), f (X3, µ0), : : :, f (XN, µ0) of

FIGURE 1. Four hypothetical nucleotide sequences of
four sites each.

all N possible distinct site patterns com-
pletely determines µ0.

THE GTR MODEL OF NUCLEOTIDE
SUBSTITUTION WITH RATE

HETEROGENEITY

In the notation of Swofford et al. (1996),
the GTR model can be expressed by a 4 £
4 stochastic matrix Q such that Qi j is the
instantaneous rate of replacement of nu-
cleotide i by nucleotide j for i 6D j , and
Qi i D ¡

P
j 6Di Qi j . Q has the additional prop-

erty that, if 5 D diag(¼A, ¼C, ¼G, ¼T) is the di-
agonal matrix of stationary frequencies of the
four nucleotides, then 5Q D QT5, that is, Q,
is reversible (Lanave et al., 1984; Rodrṍ guez
et al., 1990). Reversibility allows us to work
with unrooted trees.

The matrix of substitution probabilities
over time ¿ for nucleotide sites with relative
substitution rate r , P (r¿ ), can be found from
Q by the equation

P(r¿ ) D exp(r¿Q), (1)

where Pi j (r¿ ) is the probability that nu-
cleotide i will be replaced by nucleotide j af-
ter ¿ units of time at relative rate r . The matrix
F(r¿ ), where Fi j (r¿ ) is the expected frequency
of �nding the pair of nucleotides i and j at
a site with relative substitution rate r in two
sequences separated by time ¿ , is given by

F(r¿ ) D 5P(r¿ ), (2)
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Conversely,

P(r¿ ) D 5¡1F(r¿ ): (3)

The matrix of substitution probabilities for
all sites, P̄, can be found by taking the expec-
tation with respect to r , that is,

P̄(¿ ) D E[P(r¿ )] D
Z

all r

Á(r)P(r¿ ) dr , (4)

where Á(r) is the probability or probabil-
ity density of rate r . The function Á(r) may
be discrete, continuous, or a mixture. Corre-
spondingly, the “integral” of Eq. 4 may be a
summation over discrete values of r , a de�-
nite integral over a continuous range of r val-
ues, or a mixture. Then, from Eqs. 1, 3, and 4,

P̄(¿ ) D E[exp (r¿ Q)], (5)

and

P̄(¿ ) D 5¡1F̄(¿ ) D 5¡1E[F(r¿ )]: (6)

Because Q is a stochastic matrix, it is diag-
onalizable; that is, it can be represented as
Q D U3U¡1, where 3 D diag(0, ¡¸2, ¡¸3,
¡¸4) is the diagonal matrix of eigenvalues of
Q, with ¸i > 0 for i D 2, 3, 4. U is the ma-
trix of associated eigenvectors. Making this
substitution, Eq. 5 becomes

P̄(¿ ) D E[U exp(r¿ L) U¡1]

D Udiag(1, E[e¡r¿¸2 ], E[e¡r¿¸3 ],

E[e¡r¿¸4])U¡1: (7)

Thus, U is the matrix of eigenvectors of P̄,
and the terms E[e¡r¿¸] are eigenvalues of P̄.
E[e¡r¿ ¸] is also the moment-generating func-
tion of the distribution of r evaluated at ¡¿¸.

IDENTIFIABILITY OF THE STATIONARY
GTR MODEL WITH RATE

HETEROGENEITY

The identi�ability problem is to �nd the
true values of all parameters of the model,
given the set of true frequencies of site pat-
terns f (X1, µ 0), f (X2, µ0), : : : , f (XN, µ0). In the
following sections I demonstrate the identi-
�ability of all of the types of parameters for
the GTRCIC0 model.

Stationary nucleotide frequencies.—The ma-
trix of nucleotide frequencies, 5, can be eas-
ily determined. Letting s be the number of
terminal taxa or observed sequences and ni j
the number of times that nucleotide i occurs
in site pattern j , then the frequency of i is
given by

¼i D
1
s

X

j

ni j f (X j , µ0) : (8)

Instantaneous rate matrix, Q.—Let ¿ be the
sum of path lengths between any two ter-
minal taxa on the true unrooted tree. The
matrix of dinucleotide frequencies, F̄(¿ ), for
these two taxa also is determined by the fre-
quencies of the site patterns. F̄i j (¿ ), the fre-
quency of sites with nucleotide i in one se-
quence and nucleotide j in the other, can
be found by summing the frequencies of
site patterns with this pairing. Then the
substitution probability matrix P̄(¿ ) can be
found from Eq. 6. From Eq. 7 we see that
P̄(¿ ) will have the same eigenvector matrix,
U, as Q. Its vector of eigenvalues will be
(1, E[e¡r¿¸2], E [e¡r¿¸3], E[e¡r¿¸4 ]). Let one of
the nonunitary eigenvalues of P̄(¿ ) be mi D
E[e¡r¿¸i ]. As noted above, this eigenvalue
is also equivalent to the moment-generating
function of the distribution of r evaluated at
¡¿¸i , which may be represented as ¹(¿¸i ).
From the de�nition of a moment-generating
function, then

¹(¿¸i ) D
Z

all r

Á(r)e¡r¿¸i dr : (9)

¹ (¿¸i ) therefore is a nonlinear function of
¿¸i that is equal to 1 when ¿¸i D 0 and de-
creases monotonically and asymptotically to
some constant ° ¸ 0 as ¿¸i increases. Then,
letting ¹¡1 be the functional inverse of ¹,

¹¡1(mi ) D ¿¸i : (10)

Therefore, if the form and correct values of
the parameters of ¹ are known, the values
of ¿¸2, ¿¸3, and ¿¸4 are determined. Because
¿ and ¸2, ¸3, and ¸4 always occur only in
their products, we can arbitrarily set the path
length between some pair of terminal taxa
on the true unrooted tree to ¿ D 1. Then
Eq. 10 for this pair of taxa will determine the
values of ¸2, ¸3, and ¸4. The rate matrix is
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then found from Q D U3U¡1, where 3 D
diag(0, –¸2, –¸3, –¸4).

Tree topology and branch lengths.—Using the
known value of any ¸i , Eq. 10 can be used to
�nd the path distances on the true unrooted
tree between all other pairs of taxa. The set of
true distances between all pairs of taxa deter-
mines the topology and branch lengths of the
true unrooted tree (Buneman, 1971; Chang,
1996).

The I C 0 Model of Rate Heterogeneity

The proof of the identi�ability of the I C 0
model proceeds by showing that any I C 0
moment-generating function º that differs
from the true moment-generating function ¹
in the values of any of its parameters will
not “�t” both P̄(¿ ) matrices for any two pairs
of sequences that are separated by different
path lengths ¿ on the true tree. This result
is illustrated graphically later in Figure 3. In
the case where º D ¹ the curve on the graph
would be a straight line.

Proof.—Assume that º is a possible
moment-generating function of r that is
taken as an estimator of the true, but un-
known, function ¹. Assume further that º has
variables t and li that estimate the parameters
¿ and ¸i , respectively, of ¹. If º D ¹, then

º(tli ) D mi D ¹(¿¸i ) (11)

and

tli D º¡1(mi ) D º¡1(¹(¿¸i )) D ¿¸i (12)

for all pairs of terminal taxa. Assume that ¿1
and ¿2 are the distances between two differ-
ent pairs of terminal sequences on the true
tree. Then for any of the three nonzero eigen-
values i,

º¡1(m1i )=º¡1(m2i ) D ¿1¸i=¿2¸i D ¿1=¿2,
(13)

where m1i is the i th eigenvalue of P̄(¿1) and
m2i is the corresponding eigenvalue of P̄(¿2).
But ¹ and º are nonlinear functions. So, if
º 6D ¹, º¡1(¹(¿¸)) is almost certainly a non-
linear function of ¿¸. If º is a ”reasonable”
function with relatively few parameters, it
will have only as many degrees of freedom as
parameters and so will be unlikely to satisfy
Eq. 13 for very many distinct values of ¿ and
¸. However, improbability does not equal

impossibility. In the following paragraphs I
will demonstrate impossibility for the case in
which º and ¹ are both moment-generating
functions for I C 0 rate heterogeneity models
that differ only in the values of their param-
eters.

The I C 0 model of rate heterogeneity
assumes that a proportion ¼ of sites are in-
variable (r D 0) and that the remainder, with
frequency 1 ¡ ¼ , have varying r distributed
according to the gamma probability func-
tion (Gu et al., 1995). Because r is a relative
rate variable, we can assume that its mean,
or expected value, among the variable sites
is E[r ] D 1. In this case, the gamma distri-
bution has only a single parameter, ®, the
“shape” parameter. Then, if we let ¹(x) be
the moment-generating function of the true
I C 0 model evaluated at –x,

¹(x) D ¼ C (1 ¡ ¼ )(1 C x=®)¡® : (14)

Letting º be an I C 0 distribution with known
parameter values p and a that estimates ¹
with unknown true parameter values ¼ and
®, then

º(y) D p C (1 ¡ p)(1 C y=a)¡a : (15)

From Eqs. 12, 14, and 15,

y D º¡1(¹(x))

D a

(µ
¼ ¡ p C (1 ¡ ¼ )(1 C x=®)¡®

1 ¡ p

¶¡ 1
a

¡ 1

)
:

(16)

Obviously, if p D ¼ and a D ®, then y D x.
Now, assuming that p 6D ¼ or a 6D ® and

taking �rst and second derivatives of y with
respect to x,

dy
dx

D
³

1 ¡ ¼

1 ¡ p

´
(1 C x=®)¡(®C1)

£
µ
¼ ¡ p C (1 ¡ ¼ ) (1 C x=®)¡®

1 ¡ p

¶¡( 1
a C1)

>0

(17)
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and

d2y
dx2 D

³
1 ¡ ¼

1 ¡ p

´ ³
® C 1

®

´
(1 C x=®)¡(®C2)

£
µ

¼ ¡ p C (1 ¡ ¼ ) (1 C x=®)¡®

1 ¡ p

¶¡( 1
a C1)

²
»³

®(a C 1)
a (® C 1)

´ ³
1 ¡ ¼

1 ¡ p

´
(1 C x=®)¡®

£
µ

¼ ¡ p C (1 ¡ ¼ ) (1 C x=®)¡®

1 ¡ p

¶¡1

¡ 1
¼

:

(18)

Setting the second derivative equal to zero
and solving for x gives

x D ®

(µ
(1 ¡ ¼ )(® ¡ a )

a(® C 1)(¼ ¡ p)

¶ 1
®

¡ 1

)
: (19)

Depending on the values of ¼ , ®, p, and a ,
Eq. 19 has either no real solutions or only
one. In the latter case, the solution may be
either negative, zero, or positive. Because we
are interested only in cases where x is some
product ¿¸ of a tree path length and an eigen-
value of Q, only cases in which x ¸ 0 are
relevant. Equations 16–19 show that, in the
range x ¸ 0, y is a continuous, monotonically
increasing function of x having at most one

FIGURE 2. The graph of equation (16) for the case (®, a , ¼ , p) D (10, 0.4, 0.5, 0.2).

in�ection point. From Eq. 16 we see that y D
0 when x D 0. If ¼ > p, then

y ! a

"³
¼ ¡ p
1 ¡ p

´¡ 1
a

¡ 1

#
as x ! 1:

(20)
If ¼ < p, then

y ! 1 as x ! ®

"³
p ¡ ¼

1 ¡ ¼

¡́ 1
®

¡ 1

#
:

(21)

Figure 2 shows the graph of y for (®, a , ¼ ,
p) D (10, 0.4, 0.5, 0.2). For these values there
is an in�ection point at x D 1.378 and y !
4.24496 as x ! 1. This graph is concave up-
ward for 0 < x < 1.378 and concave down-
ward for x > 1.378. For values of ®, a , ¼ , and
p such that ¼ > p and there is no point of
in�ection for x >0, the graph will be entirely
concave downward. For cases in which ¼<
p, the graph will be entirely concave upward
if there is no in�ection point, or will be con-
cave downward for 0 < x < in�ection point
and concave upward for x > in�ection point.
Figure 2 also shows two hypothetical “true”
path length £ eigenvalue products, ¿1¸i and
¿2¸i , and their corresponding y values. For
the two cases illustrated we can assume that
¸i D 1, ¿1 D 1, and ¿2 D 10. Holding the two lat-
ter values constant, varying ¸i over the range
0 ! 1, and plotting the resulting pairs of
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FIGURE 3. Illustration that when the two I C 0 distribution functions ¹ and º are not equal the three ratios of
equation 22 cannot all be equal. The straight line represents a case in which º D ¹. The curve is for the case illustrated
in Figure 2 in which º 6D ¹.

values of º¡1(¹(¿1¸i )) and º¡1(¹(¿2¸i )), we
obtain the graph shown in Figure 3. As in
Figure 2, the graph has an in�ection point,
is concave upwards before the in�ection
point, and is concave downward after the
in�ection point. Similar graphs will be pro-
duced for any pair of path distances such
that ¿2 > ¿1.

Assume that there are two pairs of termi-
nal sequences with one pair connected by
true path length ¿1 and the other by true
path length ¿2, such that ¿2 > ¿1. This will
always be true for any tree that is not a
star tree (all internal branch lengths equal
to zero) with all external branches of equal
length (i.e., a phylogenetically uninforma-
tive set of sequences). As noted above, the
transition probability matrices P̄(¿1) and P̄(¿2)
and their sets of nonzero eigenvalues (m12,
m13, m14) and (m22, m23, m24) for these two
pairs of sequences are uniquely determined
by the true frequencies of site patterns f (X1,
µ0), f (X2, µ 0), : : :, f (XN, µ0). Because º is a
function with known parameter values, the
values º¡1(m12), º¡1(m13), º¡1(m14), º¡1(m22),
º¡1(m23), and º¡1(m24) are determined as
well. Now, from Eqs. 11–13, if º D ¹, then it
must be true that

º¡1(m12)=º¡1(m22) D º¡1(m13)=º¡1(m23)

D º¡1(m14)=º¡1(m24) D ¿1=¿2 : (22)

But if º 6D ¹, then no more than two of the
three ratios can be the same, as shown by Fig-
ure 3. Therefore, if the substitution rate ma-
trix Q has three distinct nonzero eigenvalues,
the parameters of the I C 0 rate heterogeneity
will be uniquely determined. This, of course

FIGURE 4. Two hypothetical nucleotide substitution
rate matrices and their eigenvalues. Matrix (a) is an exact
Jukes-Cantor rate matrix. Matrix (b) is an approximate
Jukes-Cantor matrix.
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leaves open the possible cases in which Q has
only oneor twodistinct nonzero eigenvalues,
such as the Jukes–Cantor (one) or Kimura
two-parameter (two) models. For real data
sets, however, it is very unlikely that any two
or all three of the eigenvalues will be exactly
identical. The proof given above applies to
any case in which two or more of the eigen-
valuesare as close in value to each other as we
wish, short of absolute identity. So the GTR
model can be made to approximate these
two simpler models as closely as we wish
by making two (Kimura two-parameter) or
all three (Jukes–Cantor) of the eigenvalues
of Q approximately equal to any degree
short of absolute identity. Figure 4 contains
a numerical example for the Jukes–Cantor
model.
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APPENDIX: ADAPTATION OF WALD’S
(1949) PROOF OF THE CONSISTENCY
OF ML ESTIMATION TO ESTIMATION

OF PHYLOGENETIC TREES FROM
NUCLEOTIDE SEQUENCES

Initially I give Wald’s de�nition of each term and as-
sumption in italics, followed by comments regarding
its applicability to phylogeny estimation in unitalicized
text. Then I present modi�ed versions of Wald’s lem-
mas and theorems that demonstrate the consistency of
ML estimation of phylogenetic trees.

De�nitions
X1 , X2 , : : : , Xn D n independently and identically dis-

tributed random variables.

In the case of nucleotide sequence data, these are the
nucleotide site patterns over all s sequences at the n nu-
cleotide sites of the sequences.

µ 1 , µ 2, : : : , µ k D a �nite number k of parameters, the val-
ues of which are to be estimated by the maximum likelihood
analysis.

In phylogenetic estimation these may be tree topolo-
gies, branch lengths, substitution rates, rate heterogene-
ity parameters, and so forth. As discussed by Chang
(1996), the tree topology parameter may be given arbi-
trary numerical values, 0, 1, 2, : : : , etc. Only the K D
(2s ¡ 5)(2s ¡ 7) ¢ ¢ ¢ 1 completely bifurcating topologies
need be included. Degenerate topologies, those with
polytomies, correspond to certain bifurcating topologies
with internal branch lengths equal to zero. Nucleotide
frequencies and the proportion of invariable sites fall in
the closed interval [0, 1]. The topology parameter falls in
the closed interval [0, K ]. All other parameters, branch
lengths, and so on, fall in the open interval [0, 1). These
latter parameters of the GTR C I C 0 model can be
rescaled by the transformation µ i D 1 ¡ e¡zi so that they
fall in [0, 1). And because all of the probabilities f (x, µ ),
de�ned below, are �nite and fall in [0, 1] even when any
untransformed parameter zi D 1, the transformed pa-
rameters can be assumed to fall in the closed interval
[0, 1]. This transformation greatly facilitates the proofs
given below

µ D (µ 1, µ 2 , : : : , µ k), aparameter point in the k-dimensional
Cartesian space.

Ä D the parameter space, the set of all possible parameter
points; a subset of the k-dimensional Cartesian space.

F (x, µ ) D prob (Xi < x)
f (x, µ ) D density of F (x, µ) at x if F (x, µ ) is absolutely

continuous:
D prob(Xi D x), if F (x, µ ) is discrete:

For sequence data, F (x, µ ) is always discrete.

f (x, µ , ½) D least upper bound (lub) of f (x, µ 0 ) with re-
spect to µ 0 when jµ ¡ µ 0j · ½, for any positive½.

f ¤(x, µ , ½) D f (x, µ , ½), when f (x, µ , ½) > 1, and D 1
otherwise.

For discrete data, such as sequences, f (x, µ ) and
f (x, µ , ½) are always ¸1. So f ¤(x, µ , ½) always equals
1 and is, therefore, unnecessary.

’(x, r) D lub of f (x, µ ) with respect to µ when jµ j > r,
for any positive r.

This function is also unnecessary for sequence
data.

’¤(x, r) D ’(x, r), when ’(x, r) > 1, and D 1 otherwise:

As with ’(x, r), this function is also unnecessary.

Comment on the Discrete Nature of the
Topology Parameter

In the introduction to his paper Wald (1949:595) stated
explicitly that his proof makes ”no differentiability as-
sumptions (thus, not even the existence of the likelihood
equation is postulated): : : ” As pointed out by Swofford
et al. (in press), if we de�ne the likelihood function as

L(µ ) D
Y

f (Xi , µ ),

then the likelihood equation referred to by Wald is

@ L (µ )
@µi

D 0:

Thus, Wald’s proof does not depend upon the differen-
tiability of L with respect to the parameters of the model,
contrary to the assertions of several workers (e.g., Yang,
1996a; Siddall, 1998; Farris, 1999). So the discrete nature
of the tree topology parameter does not invalidate the
application of the proof to tree estimation.

Assumptions
Assumption 1. F (x, µ ) is either discrete for all µ or is

absolutely continuous for all µ.

This is true for sequence data because nucleotide site
patterns are discrete objects.

Assumption 2. For suf�ciently small ½ and suf�ciently
larger r, the expected values

R 1
¡1 log f ¤(x, µ , ½) dF(x, µ0) andR 1

¡1 log’¤(x, r) d F (x, µ0) are �nite where µ0 denotes the true
parameter point.

This assumption is unnecessary for sequence data.

Assumption 3. If limi!1 µi D µ , then limi!1 f (x, µi) D
f (x, µ ) for all x except perhaps on a set that may depend on the
limit point µ (but not on the sequence µ i) and “whose” prob-
ability measure is 0 according to the probability distribution
corresponding to the true parameter point µ 0: [All assump-
tions are direct quotes from Wald (1949).]

Stated simply, this means that there is no permissible
parameter point µ at which f (x, µ ) is discontinuous, ex-
ceptperhaps for values of x that have a probability of 0
of occurring under the true probability distribution of x.
This is true for the GTR C I C 0 nucleotide substitution
model considered in this paper.

Assumption 4. If µ 1 is a parameter point different from
the true parameter point µ0 , then F(x, µ 1) 6D F (x, µ 0) for at
least one value of x.

This is the identi�ability assumption. This assump-
tion is true if it can be shown that, given the true prob-
ability distribution F (x, µ 0), the true parameter point µ 0

is uniquely determined, or identi�able. Identi�ability of
the tree topology and all other parameters of the GTR C
I C 0 model is demonstrated above in the body of the
paper.
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Assumption 5. If limi!1 jµij D 1, then
limi!1 f (x, µi) D 0 for any x except perhaps on a �xed
set (independent of the sequence µ and “whose” probability
is 0 according to the probability distribution corresponding
to the true parameter point µ 0:

This obviously is not true for substitution models on
phylogenetic trees. In these models, when the branch
lengths approach in�nity, the expected pattern frequen-
cies f (x, µ ) approach some nonzero value for all site pat-
terns x. But with all parameters rescaled to fall in closed
intervals, it is not necessary.

Assumption 6. For the true parameter point µ 0 we haveR 1
¡1 j log f (x, µ0) j d F (x,µ0) < 1 :

For discretedata this is equivalent to ¡
P

x f (x, µ0) log
f (x, µ0) < 1: Letting 0 £ log(0) = 0, this assumption is
obviously always true because it is always true that 0
· f (x, µ ) · 1 for all values of x and µ .

Assumption 7. The parameter space Ä is a closed subset
of the k-dimensional Cartesian space.

This is true for substitution models on phylogenetic
trees because any model parameter µ i , including the tree
topology, can be quanti�ed or transformed so that 0 ·
µ i · c for a �nite constant c . In this case Ä is bounded
as well as closed, and so is compact.

Assumption 8. f (x, µ , ½) is a measurable function of x
for any µ and ½.

As Wald notes, this assumption is unnecessary for
discrete data.

Lemmas
Lemma 1. For any µ 6D µ0 we have E[log f (X, µ )] <

E[log f (X, µ0)], where X is a chance variable with distribu-
tion F (x, µ0).

Wald’s proof of Lemma 1 can be replaced by the fol-
lowing shorter proof in the discrete case.

Proof. For nucleotide data, the inequality above is
equivalent to

X

x

f (x, µ0) log f (x, µ ) <
X

x

f (x, µ0) log f (x, µ0): (23)

From Assumption 4, if µ 6D µ0, then f (x, µ ) 6D f (x, µ0)
for at least one value of x. Goldman (1993) has shown
that, under this condition, Inequality 23 holds for nu-
cleotide data. This completes the proof of Lemma 1.

Lemma 2. lim
½!0

E [log f (X, µ , ½)] D E [log f (X, µ )] :

Wald’s proof of Lemma 2 can be replaced by the fol-
lowing shorter proof in the discrete case.

Proof. From the f (x, µ , ½),

log f (x, µ , ½) ¸ log f (x, µ ), (24)

Then

E[log f (X, µ , ½)] D
X

x
f (x, µ0) log f (x, µ , ½)

¸
X

x
f (x, µ0) log f (x, µ )

D E [log f (X, µ )]: (25)

And from Assumption 3

lim
½!0

log f (x, µ , ½) D log f (x, µ ): (26)

Lemma 2 follows from Inequalities (25) and (26).

Lemma 3. The equation limr!1 E[log ’(X, r)] D
¡1 holds: This Lemma is unnecessary for nucleotide
data.

Theorems
The following theorems and proofs are modi�ed ver-

sions of Wald’s originals.

Theorem 1. Let ! be a subset of all points µ in Ä such
that jµ ¡ µ0 j ¸ " > 0 for some �nite value of ". Then for ob-
servations x1, : : : , xn ,

Prob

2

4 lim
n!1

lub
jµ¡µ0 j¸"

[ f (x1 , µ ) ¢ ¢ ¢ f (xn, µ )]

f (x1 , µ0) ¢ ¢ ¢ f (xn, µ0)
D 0

3

5 D 1 :

Proof. For each point µ in !, let ½µ be a positive number
such that

E
£
log f (X, µ , ½µ )

¤
¡ E

£
log f (X, µ0)

¤
< 0 : (27)

The existence of ½ µ follows from Lemmas 1 and 2 and
the de�nition of !. Because ! is compact, there is a �-
nite number of points µ 1 , µ 2,: : :, µ h in ! such that the set
S(µ1 , ½µ1 ) [ ¢ ¢ ¢ [ S(µh , ½µh ) has ! as a subset. S(µ , ½) rep-
resents the ”sphere” with center µ and radius ½. Then

0 · lub
jµ¡µ0 j¸"

[ f (x1 , µ ) ¢ ¢ ¢ f (xn , µ )]

·
hX

iD1

f (x1, µi , ½µi ) ¢ ¢ ¢ f (xn , µi , ½µi ): (28)

Therefore, to prove Theorem 1, it is suf�cient to show
that

Prob
µ

lim
n!1

f (x1, µi , ½µi ) ¢ ¢ ¢ f (xn, µi , ½µi )
f (x1, µ0) ¢ ¢ ¢ f (xn, µ0)

D 0
¶

D 1

(i D 1, : : : , h) (29)

or

Prob

"
lim
n!1

nX

jD1

£
log f (x j , µi , ½µi ) ¡ log f (x j , µ0)

¤
D ¡ 1

#

D 1 (30)

From the strong law of large numbers and the as-
sumption that the X1 , : : : , Xn are independently and
identically distributed, Eq. 30 is equivalent to

Prob
h

lim
n!1

¡
n E

£
log f (X, µi , ½µi) ¡ log f (X, µ0)

¤¢
D ¡1

i

D 1: (31)
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Equation 31 follows from Inequality 27. Therefore,
Theorem 1 is proved.

Theorem 2. Let µ̄n (x1 , : : : , xn ) be a function of the obser-
vations x1 , : : : , xn that has the property

f (x1 , µ̄ n) ¢ ¢ ¢ f (xn , µ̄ n)
f (x1, µ0) ¢ ¢ ¢ f (xn , µ0)

¸ c > : (32)

for all n and for all x1, : : : , xn. Then

Prob
h

lim
n!1

µ̄n D µ0

i
D 1: (33)

Proof. Equation 33 is equivalent to

Prob
h

lim
n!1

jµ̄n ¡ µ0 j · "
i

D 1, for any " > 0: (34)

If the sequence fµ̄ ngn!1 has a limit point µ̄ such that
jµ̄ ¡ µ0j > ", then

lub
jµ¡µ0 j¸"

[ f (x1 , µ ) ¢ ¢ ¢ f (xn , µ )] ¸ f (x1, µ̄n) ¢ ¢ ¢ f (xn, µ̄n) (35)

for all n and all x1, : : : , xn. But then

lim
n!1

lub
jµ¡µ0 j¸"

[ f (x1, µ ) ¢ ¢ ¢ f (xn, µ )]

f (x1 , µ0) ¢ ¢ ¢ f (xn , µ0)
¸ c > 0: (36)

Because, from Theorem 1, Inequality 36 has probability
zero, Eq. 34 and Theorem 2 are proved.

A ML estimate µ̂n(x1 , : : : , xn) satis�es Inequality 32
with c D 1. Therefore, Theorem 2 proves the consistency
of µ̂ as an estimator of µ0 :
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