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Maximum Likelihood Estimation of Position in

GNSS
Pau Closas, Student Member, IEEE, Carles Fernández-Prades, Member, IEEE,

and Juan A. Fernández-Rubio, Senior Member, IEEE.

Abstract— In this letter, we obtain the Maximum Likelihood
Estimator of position in the framework of Global Navigation
Satellite Systems. This theoretical result is the basis of a com-
pletely different approach to the positioning problem, in contrast
to the conventional two-steps position estimation, consisting
of estimating the synchronization parameters of the in-view
satellites and then performing a position estimation with that
information. To the authors’ knowledge, this is a novel approach
which copes with signal fading and it mitigates multipath and
jamming interferences. Besides, the concept of Position–based
Synchronization is introduced, which states that synchronization
parameters can be recovered from a user position estimation. We
provide computer simulation results showing the robustness of
the proposed approach in fading multipath channels. The Root
Mean Square Error performance of the proposed algorithm is
compared to those achieved with state-of-the-art synchronization
techniques. A Sequential Monte–Carlo based method is used to
deal with the multivariate optimization problem resulting from
the ML solution in an iterative way.

Index Terms— Maximum likelihood estimation, Satellite navi-
gation systems, Position measurement, Synchronization.

I. INTRODUCTION

G
LOBAL Navigation Satellite Systems (GNSS) is the

general concept used to identify those systems that allow

user position computation based on a constellation of satellites.

Specific GNSS systems are the well-known american GPS or

the forthcoming european Galileo. Both systems rely on the

same principle: the user computes its position from measured

distances between the receiver and the set of in-view satellites.

These distances are calculated estimating the propagation time

that transmitted signals take from each satellite to the receiver

[1]. Each satellite is uniquely identified by its own direct–

sequence spread–spectrum signal, transmitted synchronously

by all satellites. GNSS receivers are only interested in esti-

mating delays of direct path signals, hereafter referred to as

line-of-sight-signal (LOSS), as they are the ones that carry

information of direct propagation time. Hence, reflections

distort the received signal in a way that may cause a bias

in delay and carrier–phase estimates [2].
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In this letter, we propose a different approach to the

positioning problem. Whereas in conventional receivers es-

timates of Time Difference Of Arrival (TDOA) are needed

to geometrically obtain user coordinates, the study herein

proposed focuses on the estimation of position directly from

received data. Thus, we allow the system to overcome the

bias produced by multipath or momentary blockage of satellite

links, because in the two-steps approach the estimation of

the synchronization parameters is performed independently for

each satellite, whereas the proposed direct position estimation

is jointly performed taking into account data received from

all in–view satellites. The Maximum Likelihood Estimation

(MLE) of position is obtained from the MLE of synchro-

nization parameters, regarding the invariance principle of such

estimates. The novelty of this approach is that it allows the

use of prior information in a natural way thanks to exist-

ing motion models, as opposite to synchronization–parameter

based positioning approach where the use of prior information

is somehow less apparent, as the evolution of these param-

eters cannot be modeled easily. The aprioristic information

regarding user coordinates can either be obtained from existing

motion models, delivered by an Inertial Measurement Unit in

an ultra–tight integration configuration or by any other possible

source of information available concerning the user motion [3].

The letter is organized as follows. In Section II, we expose

the signal model considered in digital GNSS receivers, depen-

dent of synchronization parameters (time delay, Doppler shift

and carrier phase). In contrast to this approach, we propose

a signal model function of all possible variables of the user

motion model. Section III addresses the calculation of the

MLE and the position-dependent cost function is presented.

Computer simulation results are provided in fading multipath

channels where conventional Delay Lock Loop (DLL) perfor-

mance is seriously degraded. Improved versions of the DLL

algorithm are employed in GNSS receivers to estimate TDOA,

e.g. Narrow [4] and Double Delta [5] Correlator algorithms.

Besides, the concept of Position-based Synchronization is pre-

sented in section IV, relying on position estimates to obtain an

estimate of synchronization parameters. Appendix I contains

the proof of the consistency of the proposed estimator.

II. SIGNAL MODEL

Measurements are considered to be a superposition of plane

waves corrupted by thermal noise and non-modeled interfer-

ences and multipath. The antenna receives M scaled, time-

delayed and Doppler-shifted signals corresponding to each in-

gps
Cuadro de texto
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view satellite. The received complex baseband signal is

x(t) =

M
∑

i=1

aisi(t − τi) exp{j2πfdi
t} + n(t) (1)

where si(t) is the transmitted complex baseband low rate

BPSK signal spreaded by the pseudorandom code of the i–

th satellite, considered known, ai is its complex amplitude, τi

is the time-delay, fdi
the Doppler deviation and n(t) is zero-

mean additive white Gaussian noise (AWGN) of variance σ2

n.

If a receiver captures K snapshots, the model in equation

(1) can be expressed as

x = aD(υ) + n (2)

where

• x ∈ C
1×K is the observed signal vector,

• a ∈ C
1×M is a vector whose elements are the amplitudes

of the M received signals a = [a1 . . . aM ],

• υ =
[

τ
T , fT

d

]T
∈ R

2M×1, is a vector containing the

time-delay and the Doppler-shift of each satellite,

• D(υ) = [d(t0) . . . d(tK−1)] ∈ C
M×K ,

known as the basis–function matrix, being

d(t) = [d1 . . . dM ]
T

∈ C
M×1, where each

component is defined by di = si(t − τi) exp{j2πfdi
t}

the delayed-Doppler shifted narrowband signal envelopes,

• n ∈ C
1×K represents zero-mean AWGN with piecewise

constant variance σ2

n during the observation interval.

A. Pseudorange modeling

The model exposed in (2) refers to measurements as a func-

tion of time–delays, Doppler–shifts and complex amplitudes.

Nevertheless, the final objective is to obtain an algorithm to

compute position estimates directly from measurements, so

that the model must depend on the unknown user position

coordinates (p = [x, y, z]
T

) and the bias of the receiver clock

(δt). Regarding that user position is calculated from time-

delay estimates, the non-linear relation between the user’s

position and the time-delay of the i–th satellite is given by

the pseudorange ρi as

ρi = cτ i = ̺i + c
(

δt − δti
)

+ εi (3)

where c is the speed of light, satellites are indexed by i =
1, . . . ,M and with the following definitions:

• τ i is the time-delay estimate at the receiver for the signal

emitted at the i–th satellite.

• ̺i =

√

(xi − x)
2

+ (yi − y)
2

+ (zi − z)
2

is the geo-

metric distance between the receiver and the i–th satel-

lite. pi =
[

xi, yi, zi
]T

are the coordinates of the i–

th satellite in the Earth-Centered Earth-Fixed (ECEF)

coordinate system, which can be computed from the low–

rate navigation message [1].

• δt is the bias of the receiver clock w.r.t GPS time, which

is unknown.

• δti is the clock bias of satellite i w.r.t. GPS time, known

from the navigation message contained in si(t).
• the term εi includes errors from various sources such

as atmospheric delays, ephemeris mismodeling and rela-

tivistic effects among others. In the sequel, it is assumed

that these effects can be compensated with differential

techniques that are out of the scope of this paper [1].

B. Pseudorange rate modeling

The observed carrier frequency at the receiver differs from

its nominal frequency due to the Doppler effect. These fre-

quency shifts are caused by user-satellite relative motion and

by frequency errors and drifts in user and satellite clocks.

Accurate Doppler-shift estimates yield to precise velocity

calculations, useful in positioning and navigation applications

with high user dynamics. The Doppler–shift due to the relative

motion of the user and the i–th satellite is expressed as

fdi
=

(

vi − v

c
ui

)

fc (4)

where v and vi are the velocity vectors of the user and the

i–th satellite respectively and fc represents the corresponding

carrier frequency used in navigation systems. Being the oper-

ator || · || the L2–norm of a vector, ui represents the unitary

direction vector of the i–th satellite relative to the user,

ui =
pi − p

||pi − p||
(5)

Differentiating (3) w.r.t. time, the pseudorange rate (ρ̇) regard-

ing the i–th satellite is related to the Doppler shift as

ρ̇i =
(

vi − v
)

ui + c
(

δ̇t − δ̇t
i
)

+ ε̇i = c
fdi

fc

+ cδ̇t + εf (6)

being δ̇t the receiver clock drift and εf noise on the phase rate

measurement and non-modeled terms.

C. Measurement model as a function of position coordinates

At this point, we have a relation between the time/frequency

parameterization of the model and its corresponding position-

based model, described by equations (3) and (4). Gathering

all considered user motion parameters in a real vector γ, for

instance position and velocity γ =
[

pT ,vT
]T

, equation (2)

can be rewritten to explicitly express its dependence on γ

x = aD(γ) + n (7)

The equivalence between equations (2) and (7) is valid as

both time delays and Doppler shifts are injective functions with

respect to the motion parameters vector, i.e. given a motion

parameter vector, it can only be related to a single pair of

time–delay and Doppler–shift vectors.

III. MAXIMUM LIKELIHOOD ESTIMATION OF POSITION

We now consider the Maximum Likelihood Estimation

(MLE) of signal parameters taking into account the mea-

surement model presented in equation (2), parameterized by

time-delays and Doppler-shifts of each satellite. Considering

equations (3) and (4), the MLE of receiver position arises

thanks to the invariance principle of the ML estimates.

We first take into account that the MLE is equivalent to

the solution obtained by a Least Squares (LS) criteria under

the assumption of zero-mean AWGN. Neglecting additive and
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multiplicative constants, maximizing the likelihood function

of measurement equation (2) is equivalent to minimizing

Λ (a, τ , fd) , Λ (a, υ) =
1

K
||x − aD(υ)||

2
(8)

and with the following cross-correlations estimation definitions

r̂xx =
1

K
xxH R̂xd(υ) =

1

K
xDH(υ) (9)

R̂dx(υ) = R̂H
xd(υ) R̂dd(υ) =

1

K
D(υ)DH(υ)

it is straightforward to obtain the MLE of amplitudes as

âML = R̂xd(υ)R̂−1

dd (υ)
∣

∣

∣

τ=τ̂ ML,fd=f̂dML

(10)

The ML estimation of synchronization parameters is then

obtained by minimizing the nonlinear cost function resulting

from the substitution of (10) in (8),

τ̂ML , f̂dML
= arg min

υ=[τT ,fT

d ]
T

{Λ (υ)} (11)

= arg min
τ ,fd

{

r̂xx − R̂xd(τ , fd)R̂
−1

dd (τ , fd)R̂
H
xd(τ , fd)

}

Our aim is to obtain an expression of the likelihood function

dependent on γ, that is as a function of user position instead

of the synchronization parameters. Notice that τ , τ(γ) and

fd , fd(γ), as described by equations (3) and (4). Thus the

MLE of user position is given by the vector γ that maximizes

the likelihood function or, equivalently, the vector γ that

minimizes Λ (γ), thanks to the invariance principle of the ML

estimates under injective functions [6]. Hence,

γ̂ML = arg min
γ

{Λ (γ)} (12)

= arg min
γ

{

r̂xx − R̂xd (γ) R̂−1

dd (γ) R̂H
xd (γ)

}

Whereas in the synchronization–parameter based position-

ing a two-dimensional optimization has to be performed for

each tracked satellite, the position-dependent cost function

takes into account signals coming from all satellites to obtain

a position estimate, dealing with a single multivariate opti-

mization problem for all the received satellites. For the sake

of clarity and without loss of generality, we now consider that

one of the coordinates (say z) and the receiver clock bias are

known (or vary slowly with time and can be tracked by other

methods) so that we can plot the three-dimensional likelihood

function. Figure 1 shows the cost function in equation (12)

in a realistic scenario composed of 7 satellites evaluated for

different coordinate errors, denoted as εx and εy. Gradient-

like methods can be used to iteratively minimize the cost

function such as the Newton-Raphson algorithm. However,

these methods highly depend on a proper initialization to

converge to the optimal value due to the high non-linearity of

the function. Alternative methods must be studied to deal with

the optimization in a more suitable and implementable way.

To this aim, Sequential Monte-Carlo (SMC) methods, a set

of statistical simulation-based methods [7], have been investi-

gated and adapted to the multivariate optimization problem at

hand [8]. Basically, the algorithm generates a set of support

points in which the ML cost function is evaluated, the trial
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Fig. 1. The ML cost function in equation (12) as a function of the unknown

2–D user position, γ = [x, y]T .

point associated to the lowest weight is then propagated to the

next iteration until convergence.

In some applications, it might be desirable to provide

external information to the system regarding receiver motion,

aiming at improving performance. SMC methods provide an

appealing way to introduce prior information in the estimation

algorithm. Hence, the possibility of using aprioristic informa-

tion can easily be taken into account when optimizing the

ML with the SMC method used herein. Prior information

can improve, not only the accuracy of the estimates but the

convergence time allowing the system to deal with more

aggressive channel characteristics than a conventional ML

approach does. However, the use of prior information is out

of the scope of this letter and is a key issue for future work.

IV. THE CONCEPT OF POSITION-BASED

SYNCHRONIZATION

Although estimates obtained with the proposed approach

are the user coordinates themselves, it might be desirable to

obtain synchronization parameters. This can be accomplished

by undoing the transformations in (3) and (6), being injective

functions. The estimation of synchronization parameters rely-

ing on position estimates is hereafter referred to as Position-

based Synchronization, used as a figure of merit. We now

consider a multipath replica in the scenario, with a signal-to-

multipath ratio of 3 dB. In Figures 2 and 3, the performance

of both the MLE of position with SMC optimization and con-

ventional DLL-based single-point approach [1] are compared

in terms of positioning error, evidencing great improvements

in the ML approach. Multipath envelopes obtained outperform

those of DLL algorithms, having direct impact in pseudorange

estimation and in position accuracy. This is a useful approach

when tracking satellites with low carrier-to-noise density ra-

tios, for instance, in indoor navigation or in environments

where the loss of tracking with certain satellites might occur

due to severe fading conditions and signal blockages, among

other scenario-dependant nuisance effects. Considering that

position is jointly estimated regarding information of all in–

view satellites, a diversity is introduced in this process as the
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propagation path for each satellite link is different. Position-

based Synchronization takes advantage of this diversity.

V. CONCLUSIONS

In this letter, the MLE of position coordinates has been ob-

tained for GNSS taking into account the invariance principle of

the ML estimates. This theoretical result is the basis of a novel

approach to the positioning problem. Conventional receivers

estimate synchronization parameters of the in-view satellites

and then perform a position estimation with that information.

In our approach, the problem is reduced to a single multivariate

optimization problem targeting user position and, optionally,

other motion parameters. This approach is robust against signal

fading and mitigates multipath and jamming interferences as

the estimation of position is jointly performed taking into

account measurements from all in–view satellites. Thus, if a

satellite link is severely degraded by channel characteristics,

the rest of the in–view constellation can overcome the nuisance

in the global estimate. The main drawback of this approach is

the lack of a computationally efficient optimization algorithm,

due to the high dimensionality of the problem. SMC methods

are serious candidates for the optimization step, providing an

appealing and natural way of introducing prior information in

the motion estimation process. In addition, we have introduced

the concept of Position–based Synchronization, showing that

synchronization parameters can be recovered from position

estimates, with better accuracy results than conventional syn-

chronization algorithms.

APPENDIX I

CONSISTENCY OF THE MAXIMUM LIKELIHOOD

ESTIMATOR OF POSITION

An estimator of a parameter γ is said to be consistent if

its estimates converge in probability to the true value (γ̃)

of the parameter as K → ∞. The asymptotic values of the

correlation terms in (9) are

lim
K→∞

R̂xd = lim
K→∞

1

K
(aD(γ̃) + n)DH(γ) = aCdd(γ̃, γ)

lim
K→∞

r̂xx = rxx , lim
K→∞

R̂dd = Cdd(γ, γ)

where Cdd(n, m) = lim
K→∞

1

K
D(n)DH(m)

The limit of the ML cost function is constructed from

substitution of the latter expressions in Λ (γ), then we have

added and subtracted aCdd(γ̃, γ̃)aH

lim
K→∞

Λ (γ) = rxx − aCdd(γ̃, γ)C−1

dd (γ, γ)CH
dd(γ̃, γ)aH

= aΩaH + lim
K→∞

Λ (γ̃)

Ω = Cdd(γ̃, γ̃) − Cdd(γ̃, γ)C−1

dd (γ,γ)CH
dd(γ̃, γ)

now we have to proof that γ̃ minimizes the ML cost function

lim
K→∞

Λ (γ) ≥ lim
K→∞

Λ (γ̃) ,∀γ

which occurs if Ω is a non–negative definite matrix, since is

straightforward to prove that Λ (γ) is a positive definite matrix.

Notice that Ω is the Schur complement of Cdd(γ, γ) in the

matrix formed as
(

Cdd(γ̃, γ̃) Cdd(γ̃,γ)
CH

dd(γ̃,γ) Cdd(γ,γ)

)

= lim
K→∞

1

K

(

D(γ̃)
D(γ)

)(

DH(γ̃)
DH(γ)

)T

being the matrix non-negative, due to its quadratic form, any

Schur complement of it is also non-negative, q.e.d.

REFERENCES

[1] B. Parkinson and J. Spilker, Eds., Global Positioning System: Theory and

Applications, vol. I, II, ser. Progress in Astronautics and Aeronautics.
Washington DC: American Institute of Aeronautics, Inc., 1996.

[2] R. D. J. V. Nee, “Spread–Spectrum Code and Carrier Synchronization
Errors Caused by Multipath and Interference,” IEEE Trans. Aerosp.

Electron. Syst., vol. 29, no. 4, pp. 1359–1365, October 1993.
[3] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems,

Inertial Navigation, and Integration. John Wiley & Sons, 2001.
[4] A. J. V. Dierendonck, P. Fenton, and T. Ford, “Theory and Performance

of Narrow Correlator Spacing in a GPS Receiver,” Navigation: Journal

of The Institute of Navigation, vol. 39, no. 3, pp. 265–283, Fall 1992.
[5] G. McGraw and M. Braash, “GNSS Multipath Mitigation Using Gated

and High Resolution Correlator Concepts,” in Proceedings of the ION

GPS/GNSS 1999, 1999, pp. 333–342.
[6] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic

Processes, 4th ed. McGraw-Hill, 2001.
[7] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo

Methods in Practice. Springer, 2001.
[8] P. Closas, C. Fernández-Prades, and J. A. Fernández-Rubio, “Optimizing

the Likelihood with Sequential Monte–Carlo methods,” in XXI National

Symposium of the International Union of Radio Science (URSI), Oviedo,
Spain, 2006.




