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MAXIMUM-LIKELIHOOD ESTIMATION

OF TIME-VARYING DELAY

1. INTRODUCTION

In their classic paper, "The Generalized Correlation Method for

Estimation of Time Delay," Knapp and Carter presented the solution to the

problem of maximum-likelihood (ML) estimation of constant delay, d0

between signals received at two spatially separated sensors in the presence

of uncorrelated noise. The received waveforms were modeled mathematically as

ra(t) = s(t) + na(t), -0< t < +00 (1-la)

rb(t) = 's(t - do ) + nb(t), -G < t < +0 , (l-lb)

where -a was a relative attenuation constant and s(t), n a(t), and nb(t)

were uncorrelated, stationary Gaussian random processes. Knapp and

Carter showed that the ML estimator of d can be realized by a pair of0

prefilters followed by a crosscorrelator. Their solution is identical to

2,3
that proposed by Hannon and Thomson' whose motivation for estimating

delay was to improve estimates of the spectra, cross spectra, and coherence

of stationary time series. Here we present a major generalization of these

preceding analyses that includes (1) arbitrary time-varying delay, d(t);

(2) nonstationary random signal process; and (3) arbitrary observation

interval.

Previous attempts to extend the theoretical solution described in

references 1, 2, and 3 have been relatively limited in scope. Assuming a
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stationary signal process and an infinite observation interval, Knapp and

Carter4 obtained an approximate ML estimator of both differential delay

and Doppler for a source whose relative velocity is much less than the

signal propagation velocity. Here the estimator structure included a

time-compander following one of the two prefilters before crosscorrelation

to compensate for the Doppler time scaling of the waveform. Wax5

generalized the analysis to include differential phase. Several other

authors 6 9 have described the degradation in compensated and uncompensated

crosscorrelator outputs due to motion of the source. Beyond these

relatively limited theoretical studies, there has been both a need for and a

continuing effort to develop practical algorithms that estimate time-varying

delay more generally. 10 16  The new and general theory presented here can

provide guidance to that effort, as well as fresh insights into previous

theoretical results.

We model the problem of time-varying-delay estimation as follows:

A vector of real waveforms,

r ,]) s~t) 1 ~t)

: = + ,(1 -2)r(t) r2 ( t) Ls(t -d(t) Lw2(t)

is observed on the interval [Tit Tf], where Ti and Tf denote initial

and final observation time, respectively. For convenience, we define r(t)

as zero for t outside this interval. The signal s(t) is a sample function

of a zero-mean Gaussian random process having covariance function

Rs(tl,t 2 ) = E{S(tl)S(t 2 )} (1-3)

2
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The delayed and attenuated signal 'as(t - d(t)) is related to s(t)

through a nonrandom but unknown invertible linear operator,

Ld(t),{s(t)}= as(t - d(t)) . (1-4)

The noise waveforms wI(t) and w2(t) are sample functions of white

Gaussian random processes having covariance functions

N
Rwll~2) = R2tt 2 )  2 1(t - t 2)(I5

The signal process and noise processes are mutually independent. The

attenuation factor Z and delay function d(t) in (1-2) and (1-4) are

nonrandom but unknown. Since d(t) represents delay, we will assume here

that d(t) > 0. This restriction can be removed with a somewhat more lengthy

analysis. The attenuation constant - can be any nonzero real number. The

problem is to estimate d(t) and T.

The model in (1-2) through (1-5) assumes white noise processes and a

nondispersive (frequency independent) propagation medium for simplicity.

One can extend the developments of the following sections to include

nonwhite noise by applying noise whitening techniques similar to those

described in reference 17, p. 290. One can also include dispersion, as well

as time varying delay, by replacing the operation (1-4) by a more general

18
invertible time-varying linear system. Hamon and Hannan have previously

described an approximate ML solution to the time-delay-estimation problem

for dispersive systems.

3
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Although the details of our derivation differ substantially from

those in reference 1, the estimation criterion is identical. We seek a

function, the log-likelihood function InA(D(t), ), whose value is an

indicator of the likelihood that a hypothetical delay function, D(t), and

attenuation constant, A, caused a particular received vector waveform, R(t),

Ti < t < Tf. The function D(t)]ML and the constant AIML jointly

maximizing lnA(D(t),Z) are the ML estimates of d(t) and ', respectively,

when R(t) is the received vector waveform.

This report is organized as follows: The log-likelihood function

lnAD(t),MA), derived in section 2, is shown to depend upon the minimum mean

square error (MMSE) estimators of s(t) and -as(t - d(t)) from r(t)

conditioned on given attenuation and delay. We show how to implement these

estimators in section 3. In section 4 we obtain the four alternative

4 systems for computing lnA(D(t),Z). In section 5 we show that the general

solution to the problem of ML estimation of d(t) reduces to the generalized

crosscorrelator receiver in reference 1 for the special case that d(t) is a

constant. the signal process is stationary, and the observation interval is

long.

44
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2. DERIVATION OF THE LOG-LIKELIHOOD FUNCTION

The derivation of the log-likelihood function, lnA(D(t),A), is somewhat

lengthy and, therefore, has been separated into three parts. The first part

of the derivation, described in subsection 2.1, obtains a series form for

lnA(D(t),j) using the generalized Karhunen-Loeve expansion. The result is

given in equations (2-16), (2-17), and (2-18). The second and third parts,

in subsections 2.2 and 2.3, show that the series (2-17) and (2-18) can be

put into the closed forms (2-19) and (2-36), respectively, that, in turn,

depend upon the noncausal and the causal MMSE estimators of s(t) and

Ws(t - d(t)) from r(t) conditioned on given attenuation and delay.

The developments in subsections 2.1, 2.2, and 2.3 are basically

extensions of the material in references 17 (pp. 203-205 and 221-223) and 19

(pp. 22, pp. 170-173) from scalar to vector random processes.

2.1 SERIES FORM
'p

The problem of estimating attenuation and time-varying delay can be

reframed as a parameter-estimation problem. One way to do this is to

represent the time-varying delay, d(t), by a generalized Fourier series,

d(t) = dI4i (t) t < Tf (2-1)

i =1

where

5
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fTf

d1 = d(t),'i(t)dt (2-2)

and where 14 (t)I is any convenient set of basis functions that is

complete and orthonormal (CON) over the interval [TiTf]. Because d(t)

is nonrandom but unknown, the coefficients di, d2 P d3, ... are

nonrandom but unknown. The substitution of (2-1) into s(t - d(t)) yields a

function that depends upon the basis set H'i(t)l , the vector of unknown

coefficients d = (d l,d2 ... ), and t. To show the dependency on d

explicitly, we will denote this function by s(t;d); that is,

s(t;d) _ s(t -E dii(t)). (2-3)

i l

It follows from notation (2-3) that

s(t;O) = s(t) (2-4)

We now write r(t) of (1-2) as

L M t = s_ t ;4 , ) + W _C ) ( 2 - 5 )

where

r(t) (rl(t) r2 (t)) T (2-6a)

s(t;d-,a) = (s(t;O) as(t;d)) , (2-6b)

and

6
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T
11(t) = (wi(t) w2(t)) (2-6c)

The problem of estimating the unknown delay d(t) and relative

attenuation constant Z from r(t) in (1-2) is equivalent to that of

estimating the unknown vector d and scalar T from r(t) in (2-6). We have

considered the generalized Fourier series representation of d(t) in (2-1)

because it is both well-known and general. Other techniques for representing

d(t) as a vector may be preferred in a particular application. For example.

if it is known a priori that d(t) = a0 + alt + a2t
2 for Ti < t < Tf

(where aO ,  al, and a2 are unknown), one can set d = (aO, al,
T2

a2)
T to obtain a four-parameter-estimation problem involving the unknown

attenuation 7 and the physically meaningful constants a0 , al, and a2.

Notice that if d(t) is a known function, D(t), and if Ta is a known

constant A, then 's(t - d(t)) is related to s(t) simply by a known linear

transformation, LD(t),(s(t)} = Xs(t - D(t)). Therefore, for given Z" and

d(t), the signal s(t) and its delayed, attenuated version 'as(t - d(t)) are

jointly Gaussian random processes. Let 0 be the vector of coefficients

corresponding D(t). Then, for d = D and -a = , r(t) in (2-6) is a Gaussian

random vector process having mean zero and 2 X 2 matrix covariance function,

T%

Kr;d,i(t,u,;_,A) = Elr(t)r T (u)Id = D,a=

T T~
= EJs(t;D, )s (u;D,A) + Elw(t)w (u)}

N
=K d(t,u;D,W) + - I 6(t - u) , (2-7)

s~d 2

7.
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where I is the 2 X 2 identity matrix.

We proceed by representing vector process r(t) as an infinite

dimensional vector r using the generalized Karhunen-Loeve expansion

(references 17 (pp. 221-223) and 20). We define

N

rN(t) -(t;,W )  
(2-8)

i =1

where

fTf T t

r i =J T _(t;,)(t)dt ; i = 1. 2, ... , N (2-9)

and where the oi(t;D,Z) are the normalized vector elgenfunctions of the

matrix covariance function Ks;d_,-at,u;D,A). We assume that {0_(t;D,A)}

is complete. The normalized vector eigenfunctions are two-element-column

vectors that satisfy the equations

Xi(D,)_Mi(t;D,X) = fKs -(t,u;D,X)O_(u;D,A) du ; Ti< t < T
1- -i - s;d,a 1- 1- f

T (2-10)

and

fTf 0 iT(t;DW)- i(t;D, A) dt = 6ij (2-11)

T.

1

where X,(D,) is the (scalar) eigenvalue associated with o i(t;DA).

With the oi(t;D, ') so specified, it follows that

8
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-EMt - 1.i-m. rNMt (2-12)
N +,o

This is the generalized Karhunen-Loeve expansion of r(t).

Because 101 (t;_,A)l is complete, one can represent r(t) by (2-12)

(using (2-8) and (2-9)) for hypothetical or assumed values of 0 and A. It

is easy to show that if the assumed values of D and A are the true values of

the unknown quantities d and 3. respectively, then the r.'s in (2-9) are

statistically independent Gaussian random variables having zero- means and

variances,

N

Eir i  _ 0, a u = (0,A) 0 ; i = 1, 2, ... , N (2-13)2

The joint probability density function of the r. conditioned on d - D and

= A is, therefore,

2
N R 2

P r *d , ( N ; ,A ) N 1 e x p R
--'i=l2 NN

2w[X.(DW) 7r0
ilfX1QZ +-N0 2[X.(DA +!-

(2-14)

T T

where f = (r I  r 2  ... rN) and RN - (R l  R2  ... . To

obtain the likelihood function associated with r(t), we take the logarithm

and the limit N -o0. This leads to a convergence difficulty that can be

bypassed in the usual way (see reference 17, p. 274) of dividing (2-14) by

the function

9+9.:

* .-. 1
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)= { } (2-15)

0

The result of this division is still a likelihood function because f(RN)

does not depend upon D or X. After dividing (2-14) by (2-15), we take the

logarithm and the limit N .a. The result is the log-likelihood function

InA( A,) = tR(D,Z) + AB(2,Z) , (2-16)

where

.go

( 1 Xi (DA )  R2

-. -R(PAR N 0 Xi + NO/2 (2-17)

and

,) - 1 ln[l + 1xi(D, )]  (2-18)

i=l

2.2 CLOSED FORM FOR DATA DEPENDENT TERM IR(2,A)

The first term in (2-16), IR(D,A), can be written as

T

IR(D,A) - No Tff RT(t)Hn(tv;DA)R(v)dtdv (2-19)

0.T.

where

*10
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- A~'Q(DA) - T
Hn (tv;_D,A) - I(-) (t;D,A)i (v;D.A)

i-I x(0,A) + N /2

TI  <S t,v < Tf , (2-20)

and R(t) is the sample vector function of r(t) corresponding to the vector R:

R(t) = _(2-21)

i1=1

with

Tf

Ri f O T (t;D 'W)R(t)dt (2-22)

T.1

Equation (2-19) can be verified by substituting H n(t,v;D,A) in (2.20)

into (2-19) and using (2-22). An interpretation of (2-19) is obtained by

considering the following noncausal linear estimate of s(t;D,A):

Tf

in(t;D, A) Hn(t,v;D,A)r(v)dv T. t < Tf (2-23)

T
i

where the subscript 'n" is used to denote a noncausal estimate or system.

It follows from (2-23) and (2-7) that

11
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E.{(s(t;a!,i) - 1,n(t;D K][T(U)td= q= ~ K, ;d(tU;D.X)

N T f
0 H (tu;D,A) - H(tv;OA)Ks ;d ,,)dv_ ; TI  t,u < Tf.

-n f(uAd

Ti

(2-24)

According to the matrix version of Mercer's 
Theorem:

20

K d,( ; =1- (D,A)(t;D,A)T (u;D,A) ; T < t, u < T

(2-25)

By substituting (2-25) and (2-20) into the right-hand side of (2-24) and

using (2-11) one obtains

N Tf
Ks;d,(t,u;D,A) - H(tu;,A) Hn(t,v;D,A)Ks;di(v,u;D,A)dv

T.
2

= 0 ; Ti < ti , u < Tf (2-26a)

which yields

s , ( t;OA)It(u) I q ,< ; Ti < t,u < T (2-26b)

* Therefore, if D and ' are the true values of d and 'S, then the estimation

error

n(tAdi,2,A) s(t;di) - S(t;DA) (2-27)

12
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is orthogonal to r(u), T S u < T Consequently (see reference 21,

p. 390) .n (t;R,W) in (2-23) is the noncausal point LMMSE estimate of

s(t;d, ) from r(u), Tt S u < Tf, given that d = D and -= and

H n(t,v;D,A) is the impulse response of the noncausal point LMMSE

estimator. Note that the 2-by-2 matrix function H (t,v;D,A) is the-.n

solution to equation (2-26a). As will be described in section 4, the

substitution of (2-23) into (2-19) results in a vector estimator-correlator

realization for IR(A, )

The error convariance matrix of the noncausal point LMMSE estimate of

i(t;d,a) conditioned on d = 0 and T = A is

n(t;D,A) - Een(t;da,D,X)enT(t ;d,a,D,A)jd = D, a = 4}. (2-28)

By substituting (2-27) into (2-28) and using (2-23) and (2-26), one obtains

N

En(t;D,A) -2 H (tt;DA) (2-29)

2.3 CLOSED FORM FOR BIAS TERM IB

The term IB(D,A) in (2-18) can be written in closed form by noting

that, according to (2-10) and (2-11), the eigenvalues Xi(DA) and the

vector eigenfunctions ei(t;O,A) depend upon the final observation time

T To indicate this dependency, we write
f.

Xi(D.A) = Xi(D,ZTf) (2-30)

13

...... '~...
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A~i(t;DA") = e l(t;,,Tf) .(2-31)

It follows that IB(2,A') in (2.18) can be rewritten as

r2
1B(D,A) = - .fdt- d . 20o Xi(-At

I dt dj-t1 lnl X (D,A t)
B 2 iIl N+

L 1 - tf go [dx (DA 't)]/dt (2-32)

T. i=1 1 + (2/N o) (0,A,t)

where Xi(D,,A,T i) = 0. It can be shown by a straightforward extension of

the derivation in reference 17, pp. 204-205, that

dx.i(D,A,t)

d = i(DA, t) Tri (t;D_,tt)ei(t;DAt). (2-33)

When we use (2-33) and the fact that Tr (-) is a linear operator. (2-32)

becomes

I8 (D,A) - 2 TrIE 0  i(t;DAt)o_ T(t;D,At) dtB 2 i l i ( D , , t ) + N o / 2 - _

(2-34)

A closed form for the quantity in the braces in (2-34) is recognized by

rewriting (2-20) with the notation of (2-30) and (2-31):

14
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k .(D .Tf)+N/

(2-35)

The quantity in the braces in (2-34) is H n(t,t;A,A,t). Since

H (t,v;2,A~t) is the matrix impulse response of the point LMMSE estimator

of s(t;dj,') from r(v), T. :S v < t, given d = D and = ',then

1

H (t~v;2,A.t) is, by definition, the matrix impulse response of the

causal point LMMSE estimator of s(t;d,-a) from r(v), given d = 0 and a9 A.

If we denote the causal matrix impulse response by H (t,v;D,), then (2-34)

becomes

fp
1 8 UA)=-Tr[H (ttD,) dt .(2-36)

T.

All the previous equations describing noncausal estimation of

s~t~,~)from r(v) describe causal estimation of s(t;l,-a) from r(v) when t

*is substituted for T f' In particular, with T f= t, equation (2-29)

*describes the error covariance matrix of the causal LMMSE estimate of

s~t~,~),given d = 0 and a- = A:

N
E (t;D, -2 0cttDW (2-37)

-c ~ -A) y-~~; A

The substitution of (2-37) into (2-36) yields an alternative expression

* ~for f 0 )
B'

Tf

f £B(Q,.A) N 1f Tr(E c(t;0,4)] dt .(2-38)

0 T.

15
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3. THE MATRIX IMPULSE RESPONSE H (t,v;D,A)

In this section we derive a simple explicit form for the matrix impulse

response H (t,v;D,9). It is relatively difficult to obtain this form by-'1

solving equation (2-26a). The constructive approach of subsection 3.2 has

the advantage of being both mathematically and conceptually simple. Before

proceeding with the constructive solution, it will be helpful to derive the

explicit form for the inverse of the operator (1-4).

3.1 INVERSE OF OPERATOR (1-4)

By definition, the inverse operator satisfies

L- 1  Is(t;D,) = L-l ,A jAs(t D(t)4 = s(t) (3-1)

Let v(t) be an arbitrary waveform and try an inverse having the form

-l = v(B(t)) , (3-2)

where B(t) is to be determined. Define

f(t) = t - D(t) (3-3)

so that by the definition (3-1)

16
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L D( t),W jv~fILjJ A v(t) (-a

Replacing t by f(t) in (3-2) gives

LD~t~Iv~~t)4= 1(3-4b)

-*1 '~~ft)1 -v(1(f(t)))

which, when compared with (3-4a), yields

1(f(t)) =t . (3-5)

Therefore, the inverse operator is given by (3-2), where B(.) is the inverse

of the function f(t). Since LD(t)~ . is invertible, the function f(t)

is one-to-one. We now proceed to the constructive derivation of

H n(t,v;D,Z).

3.2 CONSTRUCTIVE DERIVATION OF H (t,v;j!,X)

-n

The f irst step i n the deri vati on of H n(t ,v;D, X) i s to (noncausalIlIy)

transform r(t), T. < t < T into the vector process r'(u),

f(T.) < u < 14. where

r(u) =0f(i < u < 1T (3-6a)

[r (u) + A r2(M3u))

1 21
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r'(u) = ; f(Tf) u < Tf (3-6c)

and f(u) is defined in (3-3). In (3-6), Z can be regarded as an assumed

value for the unknown relative attenuation constant I, and 0(t) as an

assumed function for the unknown delay function d(t). (We naturally

require D(t) 2 0, which implies that f(t) S t.) Notice that (3-6b) assumes

that f(Tf) is not less than T. This is equivalent to the assumption

that the signal delay does not exceed the observation interval. Since this

assumption is likely to be met in most applications, we will retain it in

the following. It is not hard to generalize our results to include the case

of f(Tf) < Ti.

The transformation r(t) 4 r'(u) is illustrated in figure 3-1, where,

for simplicity in interpretation, the noise processes w1 (t) and w2(t)

. have been drawn as small ripples. A system block diagram for the

- transformation is shown in figure 3-2. An examination of equation (3-6),

figure 3-1, or figure 3-2 will reveal that the transformation from r(t) to

f'(u) is linear and invertible. Thus, r(t), Ti  t < Tf, can be

recovered from r'(u), f(Ti) : u < Tf. using a linear transformation. It

follows from the reversibility theorem (reference 17, p. 289) that the

noncausal LMMSE estimate n(t;D,A) in equation (2-23), given d = 0 and

a , can be obtained from r'(u). Before describing the structure of the

LMMSE estimator, it will be helpful to observe that if d = D and =

then, from equations (2-5), (2-6), and (3-6),

*18
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r. (t)

Ti Tf

( r2(t)

T1 r

f  T, t

) r2 (fl(u))(c) L .- -

f(T,) T f(Tf) T, U

r (u ) '121 rr (uK

'C) 'r / 2 r ()U) - 1(u)

(d) r

f(TI) T, f(T,) T , U

Ar2 (U 1

(e) 0 1 j[r.(u - - r2 (f(uf"'J  C

TT T'

Figure 3-1. Components of r(t) = (r(t) r2(t)) and r (t)

(rlM)r2(t))T: (a) rl(t), (b) r2(t), (c) Output of

Inverse Operator L in Figure 3-2,

(d) rl(u), (e) r2(u)

19
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LD,A{. 2 r (u)
"(a)

(b) rLt) r'(u)
':-" ~ ~~~r2(t -M-DA' I r u

LDr1(t) • r(u)

," (C)

0
r;(u)

Figure 3-2. System Block Diagram Corresponding to Transformation (3-6):

(a) f(Ti) < u < Ti; (b) Ti < u < f(Tf), (c) f(Tf) < u < Tf

920
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r'(u) = 0 ; u < f(Tj). (3-7a)

1() r s(u)1 + [nl(u)1 3-b
r u n2(u); f(T) < u < Tf , (3-7b)

and

r(u) O ; Tf < U , (3-7c)

where

1 1
n (u) A w (B(u))n2 u f(Ti) < u < Ti , (3-8a)

n I(u Wl(U) + A w2(O(u)) 
(-

Ln(u2 w (u) - ;Ti< u < f(Tf), (3-Bb)

and

;(u) w(u f(Tf) < u < Tf (3-8c)

[n2(u)j L J

We present the form of the LMMSE estimator of s(t), f(T) t < T,

in the following theorem:

Theorem. The noncausal point LMMSE estimator of s(t) from r'(u),

f(Ti) < t, u < Tf, conditioned on d = 0 and ' = Z, is given by the

system in figure 3-3, where f(t,u;,A) is the impulse response of the

noncausal point LMMSE estimator 'n1(t) of n1 (t) from n2(u),

21
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r (u) ,A)
@ gn (t,u;D,A)

r'(u)

Figure 3-3. Structure of the Noncausal Conditional LMMSE Estimator of

s(t) From r'(u), f(Ti) < u < Tf (When d = D and a= Z, then x(t)

equals the noncausaj LMMSE estimate of s(t). The impulse

responses f(t,u;DA) and gn(tu;D,a) are defined by the

theorem in section 3. f(tu;D,Z) is specified by

equations (3-30) and (3-31), and gn(t,u;D,A) is

specified by equations (3-44) and (3-41).

22
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f = ~ ;,~ (ud ; f (Ti) < t < Tf ,(3-9)

f (Ti)

and g n(t~u;D) is the impulse response of the noncausal point LMMSE

estimator s n(t) of s(t) from s(u) + n 1(u) -~()

Sn(t) J f n(tu;PA) [s(u) + nl(u) - 1(u)]du ; f(T1) < t < Tf (3-10)

f(Ti)

Proof. According to the orthogonality principle (reference 21 , p. 390)

a linear functional p = L(_g] is the LMMSE estimate of a random variable p

from data vector q(g) 4cD (where 0 is the domain of the data) if and only if

A
the estimation error p -p is orthogonal to _q for all geD,

E J(p - p)qg)j = g cD .(3-11)

Therefore, a necessary and sufficient condition that S nt) be the LMMSE

estimate of s(t) from rl(u), given that d D and 79= ' is that the vector

v(t,u) r'(u) j n(t)]=l D, a =(3-12)

be identically zero for f(T) < t,u < T Us ing (3-7) we note that the

components of v (t,u) are

v (t~u) =El[smt n (t)] [s(u) n n1()] (3-13)

and

23
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v2(t,u) = E I Cs(t) - ' (t)] n2 (u)l (3-14)

for f(T1 ) < tu < Tf

By the definitions of f(t,u;,A) and gn(t, u;_Ox),

EI[nl(t) - 1(t)]n 2 (u)l = 0 ; f(Ti ) < tu < Tf (3-15)

and

EI[s(t) - (t)][s(u) + n(u) - (u)]j = 0 ; f(Ti}  < tu < T f.

(3.16)

Recall that the signal process s(t) is orthogonal to the white noise

processes w (t) and w2 (t). Therefore, s(t) is also orthogonal to the

noise processes n1 (t) and n 2(t) defined in (3-8).

It follows that (3-14) simplies to

v2 (t,u) = -Efn (t)n2(u) (3-17a)

which, with the aid of (3-10). becomes

IT f
v2(t,u) = -E f gn(t,o;D,A) [s(o) + n1 (a) - 1(o)]do]n2(u)

(f(T.)

f gn (t o;OA)E{[n1 (o) 1 (a)]n 2(u)} do

f(Ti)

= 0 ; f(T) < t, u < Tf. (3-17b)

24
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where the last step follows from (3-15). The result that v2(t,u) in

(3-14) equals zero and the fact that l1(t) depends linearly upon n2 (t)

together imply

Enfs(t) - An(tfl (U)} = 0 ; f(Tt) < t, u < Tf (3-18)

Substracting (3-18) from (3-13) leads to

vl(tu) = E{[s(t) - 'n(t)] [s(u) + n1(u) - l(u)]}. (3-19)

Comparing (3-19) with (3-16), we see that

vl(tu) = 0 ; f(T.) t, u < Tf (3-20)

This completes the proof.

The LMMSE estimator of Ss(t - d(t)), Ti : t < T, from r(u),

Ti : u < Tf, conditioned on d = D and T = Z, follows easily from the

fact that -s(t - d(t)) is a linear transformation of s(t). Because all

available data have been used to obtain n(t), f(Ti) < t < Tf, the

noncausal LMMSE estimate of Ts(t - d(t)), given d = D and W = A, is simply

the scaled and delayed version of n (t) in (3-10), namely, As n(t - 0(t)).

The explicit form for f(t,u;D,A) follows easily from (3-9) and (3-15),

which together imply

25
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En,(t)n 2(U)I f f f(t,o;D,'K)EIn2 (o)n2(u) Jdo, , f(T1 ) < t, u < Tf

f(T.)
1 (3-21)

This can be simplified by using (3-8) and (1-5), which imply

Eln2(11n2(u)} = [(t - u) + 0-2 6(3(t)- 8(u))]; Ti < u < f(Tf)

0 ; otherwise (3-22)

and

Efn1(t)n2(u)J=1 [6(t - u)- 6(B(t)-()]; T < u < f(Tf)

t0; otherwise (3-23)

Since B(t) is a one-to-one function, then

1

6(0(t) - O(u)) - 1 uI 6(t - u) (3-24)I (u)l

where the dot denotes the derivative of a function. It follows from (3-3)

and (3-5) that

3(u) - (3-25)
1 - (1(u))

Note that s(t - D(t)) is locally reversed in time where 6(t) > 1 and

frozen in time where [(t) 1 1. Therefore, it is reasonable to define D(t)

as a valid delay function if and only if

6(t) < 1 , (3-26)

26
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where the equality holds only at isolated values of t. It Is easy to see

that the above condition guarantees that f(t) is invertible. By combining

(3-24), (3-25), and (3-26), we obtain

6(0(t) - B(u)) [1 - D(B(u))] 6(t - u) (3-27)

Therefore, (3-22) and (3-23) become, respectively,

1 + x2 6(t - u) ; Ti < t < f(Tf)Ein 2tMn 2(u) }  -:

0 ; otherwise (3-28)

t.

and

N 0 MUM 6(t-u) T < u < f(Tf)

E~l(~ 2(u)f .

0 {Jotherwise (3-29)

The substitution of (3-28) and (3-29) into (3-21) yields

f(t,u;D,Z) = k(u) 6(t - u) , (3-30)

where

A - ri - T(B(u))| ; i < u < f(Tf)
k(u) _ j2 + [1 - o(3(u))] -

0 ; otherwise. (3-31)

Therefore,

27
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61(t) = k(t)n 2(t) (3-32)

Note that the MMSE estimate of n1 (t) from n2 (t) requires only

multiplication of n 2(t) by a time-varying gain.

It is interesting to observe from (3-29) that if

D(t) = D0 + (1 - 2 )t (3-33)

then n1 (t) and n2(t) become statistically independent and

(t) = 0 (3-34)

Equation (3-33) is a necessary and sufficient condition for (3-34). A

sufficient condition arises when the delay is constant,

D(t) = Do , (3-35a)

and the magnitude of the attenuation constant is unity,

A = +1 (3-35b)

These results are a consequence of the fact that the statistics of w2 (t)

are unchanged by the inverse operator (3-1) when D(t) and A satisfy (3-34).

The point is that if d(t) and - are known a priori to satisfy (3-33) then

the hypothetical quantities D(t) and Z can also be assumed to satisfy

(3-3). This results in a simplified receiver because under these conditions

k(u) is identically zero.

28
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An equation specifying gn (t,u;g,A) can be obtained by using the fact

that n(t,u;O,z) is the LMMSE estimator of s(t), f(Tt) < t < TfV from

z(u) = s(u) + n(u) ; f(Ti) u < Tf * (3-36)

where

n(u) nl(u ) - 1 (u) ; f(Ti) : u < Tf (3-37)

The noise process n(u) is zero mean and uncorrelated with the signal process

s(u). Its covariance function is

Ejn(t)n(u) = Ej[nl(t) - Rl(t)](nl(u) - (0)

= Ej(nl(t) - 1l(t)]nl(u)l

= Ejnl(t)nl(u)t- k(t)Ejn 2(t)nl(u)f. (3-38)

By a derivation similar to that leading to (3-28) one finds

N
0 (1 - D(B(u))] 6(t - u) ; f(Ti) < t < T.

2A2 A 2

N r 1
En(t)nl( 6(t - u) ; . < t < f(T(3-39)

8 x2 J (f

N
2 6(t - u) ; f(Tf) < t < Tf .

Combining (3-38), (3-39), and (3-31) gives

EIn(t)n(u) = Q(u)6(t - u) ; f(Ti) < u < T , (3-40)

29
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where

N
0[1- 0(3(u))] ; f(Tt) < u < T

(u) N N -

2[A2  
D( u)1 ; T. < u < f (Tf )

2[ - _1 . u.f

N
2 ; f(Tf) < u < Tf (3-41)

and it follows that n(t) is nonstationary white noise. The equation

specifying g n(t,u;D,K) is now obtained by substituting

n(t) = gn(t o;DW)z(o)da f(Ti)  < t < Tf (3-42)

f(Ti)

into the orthogonality condition

Ej[s(t) - s n(t)] z(u)t = 0 ; f(T.) < t.u < Tf. (3-43)

This leads directly to

R(t ,u) f gn(to;D,W) Rs(o,u) do

f(Ti)

+ Q(U)gn (tu;O, ) ; f(Ti) < t u < Tf (3-44)

Note that the problem of finding g n(t,u;D,X) is equivalent to the

problem of deriving the noncausal LMMSE estimator of s(t) from s(t) *n(t),

where the process n(t) is nonstationary white noise uncorrelated with s(t).

30
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If s(t) is a state representable process, then n(t) can be obtained using

optimal linear smoothing (reference 22, chapter 5).

3.3 EXPLICIT FORM FOR ENTRIES IN Hj(t,u;D,X)--

We have now specified the structure of Hn(t,u;D,A). This structure

is shown in figure 3-4, where the filter g n(t,u;D,X) is given by the

solution to (3-44) and where k(t) is given by (3-31). Using this structure,

we now derive the explicit form for the individual entries h. (t,u;D,Z) in

H (t,u;O,A). This can be done be noting that, by definition, the output
-n

of H (t,u;D,A) is (see figure 3-4)

x(t) = hl1 (t,u;D,W)r (u)du + h12(t,u;D,W)r2(u)du (3-45)

T. T.1 1

f f Tf ( ~ ; , ) u u( -6 -

y(t) : h2 1(t,u;O,A)r (u)du + f h2 2 (tu;D,)r 2 (u) du (3-46)

T. T.To 1

On the other hand, by tracing the signals through the system in figure 3-4,

we can express x(t) and y(t) in terms of gn(t,u;D,X) and k(u). To keep

the notation simple, we will subsequently write g (tu;Dq,) as gn(tu).
n n

An examination of figure 3-4 with the aid of figure 3-2 and equation (3-6)

yields, after a little labor,
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x(t) = fi gn(t,u) r- r2 ((u))du

f (T 1)A

(f(Tf)1

" J gn (t, u) Cl( - k(u)] r,(u)du

T.

" 9(T (tn U) L [1 + k(u)] r 2(13u))du
f~1 2W

+ ff gn (t,u)r(u)du 1  (3-47)

f(Tf)

By changing variables in the first and third integrals (set a 1(u))

(3-47) becomes, after a little more labor,

x(t) f(J g (tMa - N(o)) r- r(a) £1 - D(a)]da

T.i

+ff(Tf) 9 (t,u) Cl1 k(u)]rl(u)du

T.
1

+ f gn(t -0())I [1 + k(a -D(c))Ir 2(a) [1 - (a) Ida

13(Ti) 24

j J n g(t,u)r I(u)du. (3-48)

f(Tf)
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By comparing (3-48) with (3-45) we obtain for Ti t, u < Tf

(tu)k[l - k(u)] TI < u f(Tf)

gn(t~u) ; f(Tf) < u < Tf (3-49)

g (t,u - D(u)):[1 - 6(u)] ; Ti < u < (T)n A

h12 (t'u;O-'A) =tgn Mu -D(u)) l-([1 + k(u - D(u))][l - 6(u)] ; B(T i ) < u < Tf

(3-50)

We note that since o - D(a) = f(o) then from (3-5) and (3-31)

(a ) - [ -=()w2 (3-51)

2+ [ - (o)]

The formulas for h 21(t,u;_,Z) and h22 (t,u;D, ') in (3-46) can be obtained

easily by noting from figure 3-4 that

y(t) = Kx(t - D(t)) , (3-52)

which leads to

h2 1(t,u;DgA) = Ah11 (t - D(t),u;D,-A) (3-53)

h22(t,u;_,Z) = Kh12(t - D(t),u;D,A) , (3-54)

where T < t u < T
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3.4 EXPLICIT FORM FOR BIAS 1 B (2,z)

We can obtain the explicit form for the entries of the causal matrix

impulse response H c(tu;,A) by noting that if Tf = t then none of the

data r(v), T, < v < Tf, are future data. Thus, for Tf = t and for d =

D and T = K, H n(t,v;,W) becomes the impulse response Hc(t,v;,X) of the

causal LMMSE estimate 'c (t;D,W) of s(t;d,-J) from r(v), Ti <_ v < t, and

gn (t,a) in (3-42), (3-43), and (3-44) becomes the causal LMMSE estimator

gc(t,a) of s(t) from z(a), f(Ti) < a < t. Therefore, we can obtain the

components of H c(t,v;D,W) by replacing gn(t,u) in equations (3-49),

(3-50), (3-53), and (3-54) with gc(t,u), where g c(t,u) is the solution

to (3-44) for Tf = t, with gc (t,u) = 0 for t < u. With H c(tv;D,A) so

determined, t(D,X) and c(t;D,) can be obtained directly from (2-36)

and (2-37), respectively. For example, by straightforward substitution,

(2-36) becomes
i(Tf)

1B(D,A) = jf(T() 9c 2 - k(a)]da

T.

1 f'

- T (,a) d

f(Tf)

f3(T.i)

- Agc(a - 0(a), a - D(a))[l - 0(o)Ida
f A
Ti

- Agc(a - D(a), a - D(0))I [l + k(a D(a))][l D(c)))da.
B(Ti )  2A

(3-55)
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This result can be put into a simpler form by changing the variable of

integration in the last two integrals. With a - 0(d) 4 a, (3-55) becomes

= - g c(j,)dT .(3-56)

f(Ti )

The minimum mean square error associated with gc(t,u) is

4c(t) = E(s(t) - ACM))
2

t

= Rs(t ,t) - c(t,u)Rs(t,u)du

f(T.)

= Q(t)g c(t,t) , (3-57)

where the last step follows from (3-44), with Tf = t. An alternative

expression for 18 (D,A) can be obtained by substituting (3-57) into

(3-56). This observation is important because if s(t) is a state

representable process, then goc(t) can be obtained from the matrix

Riccatti equation (reference 22, chapter 4.3).
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4. CANONICAL REALIZATIONS

Our formulation of the delay estimation problems leads naturally to

four canonical realizations, which are based upon well-known receiver

structures for the detection of Gaussian signals in white Gaussian noise

(reference 19, section 2.1). Here we simply point out the potential

application of these structures in delay estimation. A more detailed

development and comparison of these structures, with the view to obtaining

practical estimation algorithms, appears to be a fertile area for future

research.

The substitution of (2-23) into (2-19) (with r(.) replaced by R(.))

yields

DA) RT(t n(t;D,W)dt (4-1)

0-T'

The resulting ML estimator of d(t) and 'S is shown in figure 4-1, where,

following the terminology of Van Trees, it is referred to as Canonical

Realization No. 1. Observe that this realization is a vector estimator-

correlator analogous to the scalar estimator-correlator in figure 2-2 of

reference 19. Here's how it works: The system tentatively hypothesizes

that the unknown delay d(t) is D(t) and that the unknown attenuation 2 is ,

where 0(t) is a possible delay function and X is a possible relative

attenuation constant. The received vector waveform R(t) is input to the

noncausal conditional LMMSE estimator of s(t;d,T), which is designed with
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the assumption that 0 and A represent the true values of delay vector d and

A

attenuation scalar a. The output of the estimator is sn(t;D,A) in

(2-23). A possible realization of the estimator was shown in figure 3-4.

The vector correlator then yields IR( 1,X) in (4-1), which, when added to

18(2,A)  of (2-36), (2-38), or (3-55), yields the value of the

log-likelihood function lnA(D(t),A) for the assumed D(t) and '. This

process is repeated for all choices of 0(t) and A that are possible for the

application in question. The particular D(t) and a jointly maximizing

A A

lnA(D(t),A) are the ML estimates O(t)]ML and W]ML of d(t) and a.

An alternative form for Canonical Realization No. 1 can be obtained by

noting that the lower integrator output in figure 4-1 can be written as

y(t) r2(t) dt = N0jT i A x(t - D(t)) r2(t) dt

1 U(Tf)

=N A x(o) r2(B(o)) [1 - D(B(o))] do

f(Ti

(4-2)

The process A r2 (13(u)) is available at the output of the inverse-l
operator LD. Ir2(u)l in !±_n(t,u;D,A), shown in figure 3-2, and

x(t) is the output of g n(t,u;D,A), shown in figure 3-4. Equation (4-2),

therefore, provides a means for eliminating the operator LD(t),- I from

the system in figure 3-4.

Alternative estimator structures can be obtained by straightforward
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generalizations of the material in reference 19, pp. 15-23.

Canonical Realization No. 2, shown in figure 4-2, is a vector

filter-correlator receiver. The matrix impulse response H'(tu;D,Z) is

defined by

n~t~uDX) t > u

(t,u;D,A) = (4-3)

Note that the output of the realizable filter H'(t,u;D,K) is not the

*'.. causal MMSE estimate of s(t;d,W), given d = D and ' = A.

Canonical Realization No. 3, shown in figures 4-3(a) and 4-3(b), are

'S vector versions of the filter squarer receivers shown in figures 2-5 and 2-6

of reference 19. The matrix impulse responses Hfn(t,u;D,X) and

Hfc(t,u;D,A) are the noncausal and causal solutions, respectively, to

Hn(t'u;DA) f tf(z,t;D,A)Hf(z,u;0,A)dz, Ti  < t, u < Tf (4-4)

T.

As with the scalar case, there are an infinite number of noncausal

solutions because. with H n(t,u;A,W) given by (2-20),

f (tu;,A) G 0i(t;DA)oiT(u;0,4) T < t, u < Tf

fn E -I~SSS~fl~~.~)z Tfi

l i(D,A) + N 12( -_

(4-5)

is a solution to (4-4) for any assignment of plus and minus signs. The

substitution of (4-4) into (2-19) yields

40
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1R (=dz Hf(z,tD,)R(t)dt 2 (4-6)

0 Ti ITi

A straightforward but lengthy generalization of the material in

reference 3, pp. 19-24, leads to the expression

JR (1,A ) = 2 T (t) sC (t ;D , ) - j (t ;D _, )I 2  d t (4 -7)
T T.

where s (t;_D,) is the LMMSE causal estimate of s(t;d,-) from R(t), given

d = D and -a = A. Equation (4.7) can be realized by the system shown in

figure 4-4, which is referred to as Canonical Realization No. 4. The system

Hc(tu;D,) in figure 4-4 is the matrix impulse of the casual LMMSE

estimator encountered previously. Its structure can be obtained from

H (tu;D,A) by setting Tf = t. If s(t) is state representable, then

gc(t.u) can be realized using the Kalman filter (reference 22, chapter 4).
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5.0 THE SPECIAL CASE OF CONSTANT DELAY, STATIONARY PROCESSES, AND LONG

OBSERVATION INTERVAL (CDSPLOT)

This section links the general solution to the problem of ML time-delay

estimation presented above to the solution of Knapp and Carter in which

the delay is constant, d(t) = do. the signal process is stationary, and

the observation interval is long. We call this the CDSPLOT case. This

exercise has the benefit of providing additional insight into Knapp and

Carter's solution, as well as a more explicit description of the bias term,

B(D 0 ).

As was shown in (2-16) the log-likelihood function, InA(D,Z), consists

of the sum of a data-dependent term, fR(D,a), and a bias term, 0A.

The forms of these terms under the CDSPLOT approximation are derived in the

next two subsections.

5.1 DATA-DEPENDENT TERM IR(D,A) UNDER CDSPLOT APPROXIMATION

The data-dependent term, IR(DA), is given in the general case in

(2-19), where the entries of H (t,v;D,A) are given in (3-49), (3-50),

(3-53), and (3-54). It can be seen that the entries themselves are

specified in terms of g n (t,u) and k(u) in (3-44) and (3-31),

respectively. Under the CDSPLOT approximation, we obtain gn(t,u)

(approximately) by replacing Ti  and Tf in (3-44) by - and + ,

respectively, R s(t,u) by Rs(t - u), and Q(u) in (3.41) by
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N0(u) 2 -00< u < , (5-1a)

where

N

No -2 (5-1b)

(Equation (5-1) is obtained by setting D(t) = 0 in (3-41) and noting

that, with [Ti,Tf] = f -, ], the middle expression for O(u) in (3-41)

applies for all -- < u <ac.) With (3-44) so modified, we try a solution of

the form gn(t;,A) = gn(t - O;Oo*X). Thus, under the COSPLOT

approximation, (3-44) becomes

C N
Rs(t - u) f gn(t - ;, Rs ( - u) do + 2 gn(t - U;DoA) (5-2a)

S J 0

for -ac< t,u <ac*

The above can be notationally simplified by a change of variables and

by again assuming the dependence of g(.) on D and A implicitly. This0

leads to

No

SR(r ) (k) dX + 2 n (5-2b)

- ac

for -ao< -r <o.

The solution to (5-2b) can be obtained easily by Fourier transforms and is
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+Go

Sgn(t) = f G(f) eJ2"ftdf (5-3)

-00

where

G(f) - s , (5-4)

Ss(f) + No/2

and where S s(f) is the power spectral density of s(t). Since s(t) is

real, S (f) and G(f) are real and even. This implies that g n(t) is real

and even:

gn(-t) = gn(t). (5-5)

It can also be seen from (5-2) that gn (t) does not depend on DO .

Also, with D(t) = D and with T = -, f = +, k(u) in (3-31) reduces

to the constant

k(u) X2 k. (5-6)

The substitution of the above with [Ti,Tf) = [--o. ], into (3-49),

(3-50), and (3-53) will cause (3-54) to yield the time-invariant impulse

responses,

hll(t) = 2 gn(t) (5-7)

h 2(t) = A (t + Do) (5-8)
A2 4 +1n 0
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h21(t) 2 gn(t - 0) (5-9)

-2

h22(t) X2 + n(t) , (5-10)

which, when substituted into (2-19), yield

+00 +00

(D A) ffgn(t - v) R1(t) R1 (v) dtdv
, R (0°'A) = foX2 + I

a0 0 0

+Go +00

+ 1 ff X,-,gn(t v + Do) R(t) R2 (v) dtdv

0000 a

+Go0+00

+ (t -v _ DO) R R (v) dtdv

-00 -00

+Go +aO

+ No f X2 + 1gn(t -v) R1(t) R2 (v) dtdv (5-11)

•~G --o -aO

In (5-11) we have written the integration limits as i0 for

convenience. Since r(t) is defined as zero outside [Ti Tf] ,  the

integration is actually still over the long but finite interval

[TiTf]. Therefore, the integrals exist.

A
We are interested in finding the ML estimate of d0, D ]ML, which

will be obtained by choosing D0  to maximize IR(DO .A) I B (D0,A").

We will find in the next subsection that 1B(Do,A) does not depend on

D under the COSPLOT assumption. Thus, it will be equivalent to maximize
0
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IR(oA') in (5-11). Note that only the two middle terms in (5-11)

depend on Do . Using the fact that gn(t) is an even function, we note

that these two terms can be combined and written as

+Go

1R (DoW) = N2 W ff gn (t - a) R1 (t) R2 (d + D0 ) dtdv (5-12)
o W2 + 1

Equation (5-12) can be written another way by introducing functions

hI(t) and h2 (t), satisfying the equation

N0  -2 + gn(t - ) = hl(Z - t) h - ) dz (5-13)

The substitution of (5-13) into (5-12) yields

+00 +00+Gi1' ~ s +0
'R (DoA)= dz h(z - t) t2(z - a) R2 (0 + DO) do , (5-14)

and we see that I (D , A) can be obtained from the "generalized
Ro

correlator" shown in reference 1, figure 1. By taking the Fourier transform

in (5-13) it follows that

- A G(f) = H1(f) H2(f) -- (f) , (5-15)

where 4J(f) is the "frequency weighting function" appearing in reference 1,

equation (6). Combining (5-4) and (5-15) gives
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2 S(f)

4( f) =No 2 + 1 S (f) + No/2 (5-16)

S 0

The function (f) can be written in terms of the coherence function of

r1(t) and r2(t), defined as

S (f)
2= (5-17)

Sr (f) Sr (f)

where

S r(f) = power density spectrum of r1(t ),

N
S (f)f) + - (5-18)

Sr (f) power density spectrum of r2(t).

22

Sr2 (f) A2 Ss(f ) + N (5-19)r 2 (5-19

SrIr2(f) = cross-power-density spectrum of rl(t) and r2(t) ,

and

+j21Tf D

Srlr 2 (f) = A Ss(f) e (5-20)

The detailed algebraic steps are shown below, which starts by

substituting (5-2) into (5-16):
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(f) _ A 2 Ssf)

+ 2 No  S fM + N0  -2

2(1 +A)

AS s(f)

= -2No (N )2

(1 + 2) - S s ( f )  
+

ASs (f

2(f) ] [ S(f) + W Ss2

2 r1r2 jSNW (5-21)
S(f) Sr2 (f) - Srr 2 (f)

By multiplying the numerator and denominator in (5-21) by

lr r 1f~/[Sr I (f) Sr2() ']

we obtain

Y12( f)j 2 SGN(A)
'(f) - (5-22)

isr 1r2(f)I [1 - IY12(f) I

For A > 0. this is the frequency weighting function associated with the ML

2,3
or HT (for Hannon/Thomson processor in reference 1, table 1. Knapp and

Carter do not include the factor SGN(A) because their receiver has a

square law device before the peak detector.

5.
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5.2 BIAS TERM IB(Do, ) UNDER COSPLOT APPROXIMATION

The bias term for the general case is given by (3-56), where gc(t,u)

is the solution to (3-44) for Tf = t, with gc(tu) = 0 for t < u. Under
f!

the COSPLOT approximation, we set D(t) = DOo R s(t,u) = R s(t - u), and

Tf = t in (3-44) to obtain

Rs(t - u) = f gc(t,a) RS(a - u) da + Q(u) gc(tu) (5-23)

T.-D
1 0

for Ti - DO, < u < t. Under the CDSPLOT approximation the function Q(u)

in (3-41) becomes

N
0
2- ; Ti - Do < u < Ti

I

NO

Q(u) = T < u < t - D
2 i 0

N
0 . o (5.24)2 ; t-D o < u <.t

where N was defined in (5-1b). Recall that gc (t,a) is the impulse

response of the casual LMMSE estimator of s(t) from z(t) = s(t) 4 n(t),

where n(t) has covarlance function Q(u)6(t - u) (see (3-36) through

(3-40)). Looking at (5-24) we see that under the CDSPLOT approximation n(u)

is "piecewise" stationary in the three intervals [Ti - D0 , Ti],

[Ti, t - D0]. and [t - Do, t]; but Q(u) changes abruptly at the

interval boundaries. If we let T. - -10, then n(u) will be stationary for

-o< u < t - D and gc(t,u) will be time-invariant in this range. Thus,
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9 (tu) = g l)(t - u) for - c < u < t - , (5-25)

where the function g(1)(v) is the solution to the Wiener-Hopf equation:

R ) (v) Rz(r- v)dv ; 0 <,' (5-26)

with

N

Rz(T)=Rs() R +- 06(r) (5-27)

and

(1 r) 0 T< 0 (5-28)

Since the statistics of n(u) change abruptly at u = t - D and

0

gc(t,u) operates, in general, over all past data, we cannot expect

gc(t,u) to be time-invariant for t - D < u < t. Thus, under the

COSPLOT approximation, g (t,u) is a time-varying casual impulse response

that has the approximate time-invariant form g(l)(t - u) specified in
c

(5-26) for Ti < u < t - Do, but not otherwise. Using these results in

(3-56), with f(t) t - D, we have
0

T. t-D
f (1 o (1)~a (O)do

tB(Do'A) = - f1 ci, ' c)do - 2 fc

T1i0 01

1

- 2 gci0,0)d . (5-29)
t-D

0

Because D is finite, the values of the first and the third integrals in

o

(5-29) are negligible compared with that of the second integral for
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sufficiently large t - T . Consequently,

I (00,A) =-It - 0 - Tt] g (l) (0)

- t - Ti] gi() (0) (5-30)

We can obtain a more explicit form for IB(Do, ) by referring to

(3-57), which, under the COSPLOT approximation (for T = -o < u < t - 0o).

becomes

A 2

goc(u)= E{(s(u)- sc (u))2)

I

No (1

= gc

= Foc .
(5-31)

If the signal spectrum S (f) is rational with finite variance, thens

(reference 17, p. 501)

No +02, (5-32)

oc I In [I +- Ss(f)] df
N

-0 0

Combining (5-30), (5-31), and (5-32), we have

IB (DoA) - t - Ti] [1 + 2 Ss(f)] df , (5-33)

-00 0

and we see that, as in reference 1, the bias does not depend upon D0o

for CDSPLOT.
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6.0 SUMMARY

This report has generalized previous theory concerning ML time-delay

estimation to include time-varying delay, finite observation interval, and

nonstationary signal process. It has presented several receiver structures

that can be used to obtain the ML estimates of time-delay and attenuation in

one of two received signals compared.with the other. Here it is shown that

the general theory reduces to that of Knapp and Carter I for constant

delay, stationary signal process, and long observation interval.

4

4

4
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