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Notes and Comment

Maximum likelihood estimation:
The best PEST

ALEX PENTLAND
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

A common experimental problem is to determine
a ‘‘threshold’’ for some psychometric function. This
threshold is often defined by an observer’s response
probability as a function of an independent, physical
variable. As experimenters, we would like to manipu-
late the physical variable in order to determine the
value of the physical variable that yields threshold
response as quickly as possible and with the fewest
number of measurements, Rapid determination of
the threshold not only minimizes the amount of ef-
fort required, but also minimizes the effects of change
in the observer’s criteria.

This is a common problem in many fields, and
over the years several techniques for parameter esti-
mation have been developed. Dixon and Mood (1948)
developed their classical up-down method for ex-
plosives research. Cornsweet (1962) discussed the use
of the staircase method in psychophysics. Wetherill
(1963) examined the problem more abstractly, using
the context of bioassay for discussion.

These techniques generally suffer from the problem
that often little information is gained with many of
the measurements, so the procedures are inefficient.
In order to increase efficiency, Taylor and Creelman
(1967) devised a procedure called PEST (parameter
estimation by sequential testing), which reduced the
number of measurements needed to reach a given
level of accuracy. This procedure was later improved
by Findlay (1978).

Both PEST methods depend on the information
gathered to date to guide further measurements. In
these methods, the sampling efficiency (the amount
of information gathered by each measurement) of
the standard staircase method is kept high by ad-
justing the staircase step size on the basis of the in-
formation already gathered. In common with all
staircase techniques, assumptions must be made
about the form and the range of the psychophysical
function whose threshold value is being measured.
Normally, the psychophysical function is assumed
to be an ogive- or sigmoid-shaped function, and the
range within which the threshold is located is known,

The problem of how to minimize the number of
measurements required in order to determine a thresh-
old to within a given accuracy is, in general, solved
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by trying to predict the setting of the independent
variable that will maximize the amount of informa-
tion that can be obtained from each of the measure-
ments. Each time a measurement is to be made, all
of the previous measurements can be used to obtain
a maximum likelihood estimate of the setting of the
independent variable that will yield the most informa-
tion. Because each measurement yields the maximum
amount of information, the fewest number of mea-
surements need to be made in order to reach a given
accuracy. For the normal sigmoid-shaped psycho-
physical function, the point that will yield the max-
imum amount of information about the positioning
of the entire curve is the 50% response point, at which
the slope of the response curve is greatest.

This maximum likelihood technique starts its search
for the threshold with what is essentially a binary
search, which would be the most efficient search
technique if the psychophysical function were a step
function. As the search narrows down to the region
of uncertainty near the threshold, the maximum like-
lihood technique becomes more like the standard
staircase method, but with variable step size.

It turns out that the computations required in
order to implement this technique are substantial.
This presents no difficulty when experiments are con-
trolled by a small computer, of course, but, at mini-
mum, a small programmable calculator is required.
Some multidimensional or otherwise complicated
problems will not fit on a hand calculator.

Comparison with Other Techniques: A Simulation

Two factors are of concern in assessing the effi-
ciency of parameter estimation techniques: the ac-
curacy of the estimate and the number of trials or
measurements required to achieve that accuracy.
There is always a tradeoff between the speed and
accuracy of this type of procedure.

The maximum likelihood method was compared
with the two previous PEST methods and the con-
ventional staircase technique by determining how the
accuracy of their threshold estimate varies with the
number of measurements taken.

The simulations were made in the manner of both
Findlay (1978) and Taylor and Creelman (1967) in
order to allow easy comparison. The assumed psycho-
metric function was the logistic function:

P4y 10
(+) (1.0+e-L)

where P(+) gives the probability of a positive re-
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sponse as a function of L, the stimulus level. This
function produces a symmetrical ogive with positive
response probabilities near zero for large negative
values of L and near unity for large positive values
of L. It has the value .5 at L =0 and changes from the
value .269 for L= —1t0.731 forL= +1.

In the simulation, the target probability or thresh-
old is the 50% positive response point. The threshold
value was randomly placed between 5 and 10 logit
units from the starting point of the maximum like-
tihood procedure, which is always the center of the
independent variable’s range. These conditions were
chosen by Findlay for his simulation as being rep-
resentative of a typical testing situation. With a start-
ing point further removed from the threshold, the
advantages shown by the maximum likelihood tech-
nique are increased.

The results of the simulation using the maximum
likelihood technique are shown in Figure 1, along
with the results obtained by Findlay in his simulation
for his improved PEST, the Taylor and Creelman
PEST, and the standard staircase technique. The
setting accuracy is given as the standard deviation
of the threshold estimate after n trials, in logit units,
Each point shown is based on 500 simulation trials,
in order to give a noise-free estimate of performance.

It can be seen from Figure 1 that the maximum
likelihood procedure normally requires less than
half the number of trials required by the other tech-
niques, an advantage that becomes even greater when
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Figure 1. A comparison of the standard staircase technique,
the Taylor and Creelman PEST, the Findlay improved PEST,
and the maximum likelihood PEST (the best PEST). The maxi-
mum likelihood PEST can require fewer than half as many mea-
surements to reach the same level of accuracy, The accuracy
measure used here is the standard deviation of the estimator (in
logit units) after n steps of the algorithm have been completed
(i.e., n measurements have been taken). It is not possible to do
substantially better with a standard staircase than the example
shown, because reduced step size results in better asymptotic
accuracy, but also in substantially more measurements being re-
quired.

higher accuracies are desired. The maximum likeli-
hood procedure is, of course, unbiased. It is not
possible to do substantially better with the standard
staircase technique than the example shown, because
using smaller step sizes to obtain greater asymptotic
accuracy results in a much greater number of mea-
surements’ being required.

Discussion

It should be noted that this technique is as fully
general as any staircase technique. Wherever a normal
staircase may be used, it can be replaced with this
maximum likelihood technigue. Thus, several maxi-
mum likelihood staircases may be randomly inter-
woven to eliminate observer expectation effects, as
with standard staircases.

In practice, the maximum likelihood technique has
been shown not only to be more efficient than the other
techniques, but also to be insensitive to occasional
errors by the subject, errors concerning the range
within which the threshold was assumed to exist,
and errors concerning assumptions about the form of
the psychophysical function. 1t has, therefore, proven
of substantial practical use in making psychophysical
measurements of many different types.

Of special note is the ease with which contrast-
sensitivity functions can be measured using this tech-
nique. Using a two-alternative forced-choice para-
digm, we have been able to regularly measure the
contrast-sensitivity function in under 5 min, obtaining
high accuracy measurements at 10 points along the
function. This compares favorably with the method
of Sekuler and Tynan (1977), which is modeled after
the Békésy sweep-frequency audiometer. This tech-
nigque may therefore be suitable for use in clinical
applications.
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APPENDIX

The approach taken to the problem of determining a
threshold is to maximize the information gained with each
measurement. If the amount of information gathered with



each measurement is maximized, then the fewest possible
number of measurements will be required.

For any one point, x, on the response curve, R, we have
the probability, P, of a positive answer. Given n samples
taken at x of which s were positive, our estimate of P is
s/n, the variance is P . (1 — P, }/n, and the width of the con-
fidence intervals about s/n are:

oL L WPTTPY
1L =

where k depends on the level of confidence desired (e.g.,
90%, 95%, etc.). The width of the region corresponding
to this confidence interval in terms of the independent
variable I is (as we make k small) simply:

alvP (1-Py) )
R v '

Thus, to minimize the range of the independent variable 1
for a given number of samples, you should sample at the
point at which Equation 1 is minimized, that is, when the
variance of the response variable times the inverse of the
slope of the response curve is at a minimum. In order to
estimate the position of this point, we should use the maxi-
mum likelihood estimator, because it is known to be the
most efficient unbiased estimator.

In the normal sigmoid-shaped psychophysical function,
the maximum amount of information about the threshold
is gained when sampling at or near the 50% positive re-
sponse point. This is because the slope of the function is
greatest there, and the variance least.

Thus our strategy is to obtain the best possible estimate
of the 50% point and to sample there. This we may do by
calculating the likelihood of the 50% point’s being at each
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point within the independent variables range, and taking as
our estimate of the 50% point the location that is the most
likely point in that range. Thus, after n — 1 measurements,
we find the n'h measurement, my,, by solving:

my, = max Pr[x is 50% point | (m,, r,), (ma, 1)
xE(a.b)

<+« (mp_y, 1)},

where (a, b) is the range of the independent variable x,
and the (mj, r;) denotes the results of the ith measurement
that was taken at value m; of the independent variable. The
value of rj is +1 if the observer gave a positive response,
and —1 if a negative response was obtained.

For the case of the sigmoid-shaped logit function, this
may be rewritten as:

n—1

mp = maxn(l.0+e_ri(mi_x))_l.
xE(a.h;j:,

Before each measurement, we compute my, which is the
maximum likelihood estimate of the position of the 50%
point on the response curve, and then take the nth measure-
ment at position my. Note that at the start we already know
that a measurement taken at point a of the independent
variables range will give a negative response, and a measure-
ment at point b will give a positive response. Thus, the first
measurement is always taken at the center of the indepen-
dent variable’s range.
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