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Given the recent advances in gravitational-wave detection technologies, the detection and charac-
terisation of gravitational-wave backgrounds (GWBs) with the Laser Interferometer Space Antenna
(LISA) is a real possibility. To assess the abilities of the LISA satellite network to reconstruct
anisotropies of different angular scales and in different directions on the sky, we develop a map-maker
based on an optimal quadratic estimator. The resulting maps are maximum likelihood representa-
tions of the GWB intensity on the sky integrated over a broad range of frequencies. We test the
algorithm by reconstructing known input maps with different input distributions and over different
frequency ranges. We find that, in an optimal scenario of well understood noise and high frequency,
high SNR signals, the maximum scales LISA may probe are `max . 15. The map-maker also allows
to test the directional dependence of LISA noise, providing insight on the directional sky sensitivity
we may expect.

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is an
ESA led mission in collaboration with NASA planned to
launch in the mid 2030s which will allow us to tune into
a new, vast range of the gravitational-wave (GW) sky, at
unprecedented depth and volume.
The LISA sensitivity curve spans roughly 4 orders of
magnitude in frequency, from 10�5 Hz to 10�1 Hz [1],
with maximum sensitivity around 10�3 Hz, and is such
that we may observe loud GW events out to redshift
z = 6 and beyond [2]. In this range, LISA is expected
to measure a motley of signals with respective signal-
to-noise ratios (SNRs) ranging from a few hundred to
a few, such that data analysis will require careful com-
ponent separation to disentangle the individual coherent
sources. There will also be the need for tools to analyse
the stochastic signals which build up incoherently in the
time stream.
The collection of incoherent, unresolved signals in the
data are typically referred to as the gravitational-wave
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background (GWB), which is considered stochastic in
the limit where there is a statistically significant set of
uncorrelated overlapping waves. There are several GW
sources which will contribute to a stochastic background
in the LISA band. These include galactic, extra-galactic
or even primordial compact binaries, too distant or faint
to be resolved [3], or a relic background from a burst
of inflation or a phase transition at early times [4–9].
All backgrounds mentioned here are the focus of science
objectives of the LISA mission [1]. The detection of a
cosmological GWB in particular is considered to be the
ultimate challenge in cosmology as GWs are the only sig-
nal expected to reach us from before recombination and
the consequent generation of the cosmological microwave
background (CMB), providing unique insight on the ori-
gins of the Universe. In this paper we present a method to
extract the stochastic signal in the LISA data and how
to solve for its directionality, effectively mapping it on
the sky. This will allow us to assess the angular resolu-
tion of the LISA detector for a distribution of extended,
unresolved sources, as a function of SNR.

The mapper we have developed is based on an optimal
quadratic estimator which solves for maps iteratively in
the pixel domain. Our approach is influenced by work
done previously with LIGO data, both as a part of the
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LIGO Virgo Collaboration [10–12] and as independent
efforts [13, 14]. Much work has been done to assess the
ability of LISA to detect and characterise GWBs [15–19],
and also study the sky response of LISA for map-making
purposes [20, 21]. Some studies have focused on how
to distinguish detector noise from the galactic stochas-
tic background, often referred to as a foreground when
compared to other signals, which is expected to imprint
a seasonal modulation on the time stream [22, 23]. These
are particularly relevant here as we will probe the abil-
ity of LISA to map the galactic foreground in Section III
by analysing an idealised signal with a Milky-Way–like
sky distribution. Map-making with space-based detec-
tors is discussed extensively in [24, 25], both in the low
frequency limit and at high frequencies where a higher
resolution may be achieved. However, these approaches
reduce the mapping problem to a least-squares solution
and solve for the spherical harmonic coefficients of the
signal by looking at the individual cross-correlations be-
tween data-streams. Additionally, there is work in the lit-
erature which proposes solving for phase-coherent back-
grounds, which we find is not possible, due to both the
characteristics of the signal and the nature of the mea-
surement. In this work, we present the first all-sky analy-
sis based on the full likelihood of the data given a GWB
intensity signal. The aim is to deliver the framework
of the LISA SGWB map-making pipeline which will be
progressively refined and updated until the data becomes
available.

To test our procedure we will use injected signals from
different input maps in order to verify the reconstruction
of a known sky, with simple spectral dependence. The
inputs will consist in stationary maps of strain intensity
of varying amplitudes and with anisotropies given by a
Gaussian random field. These are not to be regarded as
realistic simulations of any particular GWB and are used
solely for testing purposes.

This paper is organised as follows; in Section II we
review the strain signal of GWBs and detail the LISA
detector response to the intensity of the GWB on the
sky. In Section III we introduce the quadratic estimator
used to obtain maps of the GWB with LISA, and present
results of a number of mapping tests we have run. Fi-
nally, we conclude in Section IV by giving an overview of
the impact of our results and anticipate useful extensions
of our algorithm to be explored in the future.

II. THE SIGNAL OF GRAVITATIONAL WAVE

BACKGROUNDS

Typically the contribution of gravitational waves to the
overall energy content of the Universe is parametrised by
the dimensionless fractional energy density ΩGW [see e.g.
26]. The spectral dependence of this measure is given
by the physical energy density of GWs per logarithmic

frequency interval,

ΩGW(f) =
1

⇢c

d⇢GW

d ln f
, (1)

where ⇢c is the critical energy density. The fraction of
this quantity produced by resolved GW sources is strictly
marginal, since most of the signal is due to unresolved
sources below the confusion limit. The collection of all
unresolved GWs defines the GWB, which includes signals
of both astrophysical and cosmological nature.

Whilst GWBs of different origin will have differing
spectral dependence [18], most will be unpolarised and
incoherent in that the temporal phase of the signal is ex-
pected to be random. The randomisation of the temporal
phase will either be a product of the generation mech-
anism of the background, a consequence of propagation
through the inhomogenous universe, or both [27–32]. Be-
yond the isotropic value of the GWB over the entire sky
we can include any anisotropy by adding a directional
dependence ΩGW(f) ! ΩGW(f, n̂) where n̂ is the unit
vector of a line-of-sight on the sky. Throughout this pa-
per we will assume the frequency and sky dependence of
the GWB are independent to good approximation, i.e.

ΩGW(f, n̂) ⇡ H(f) Ω̃GW(n̂) ; (2)

this applies both to the model of the incoming signal and
the recipe for the signal’s reconstruction. This is widely
accepted to be a reasonable working assumption by the
community, starting from [33]. Indeed, several models
for GWBs predict this property to apply for the ensemble
average of a stochastic GW signal. Specifically, the signal
needs to be stochastic in both the time- and frequency-
domain. It is worth noting that we may not be operating
in the truly stochastic limit, however we will make this
assumption throughout. In this paper, we further assume
that the spectral shape of ΩGW is described by a power
law with parameters (↵, f0) such that

ΩGW(f, n̂) =

✓

f

f0

◆↵

Ω̃GW(f0, n̂) , (3)

in allignment with both theory- and data- driven analyses
of the stochastic GW signal [19, 34, 35]. Specifically for
the monopole component of the stochastic background
this assumption has been relaxed and a fitting technique
has been tested using broken-power-law templates in the
ground-based detector frequency band [36]. This fitting
technique is very effective when tested on idealized sig-
nals, however the application to realistic data requires
improvement as component separation will need to be
taken into account. In the LISA case, a method to go
beyond the single power-law assumption for the recon-
struction of the monopole component ΩGW(f) has been
proposed in [18]. We plan to explore the validity of (3) in
the future, by analysing a realistic, time-domain gener-
ated GWB signal from the LISA Data Challenge (LDC).
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FIG. 1. Illustrations of the TDI 1 (left panel) and TDI 1.5 configuration X (right panel). The three numbered grey circles
represent the spacecrafts arranged in an equilateral triangle. The links are labelled `i in the left panel for clarity, and are the
same as the ones in the right panel.

A. Strain signal

We model the GW strain just outside the detector with
the transverse, traceless tensor hij(t, x) at time t and
position x. hij can be decomposed into the independent
polarisation states h+ and h⇥ and expanded using plane
waves as

hij (t,x) =

Z +1

�1

df

Z

S2

dn̂
X

P=+,⇥

hP (f, n̂) ePij(n̂) e
i2⇡f(n̂·x�t) ,

(4)
where polarisation base tensors eP are

e+ = e✓ ⌦ e✓ � e� ⌦ e� , (5)

e⇥ = e✓ ⌦ e� + e� ⌦ e✓ , (6)

with

e✓ = (cos ✓ cos�, cos ✓ sin�,� sin ✓) ,

e� = (� sin�, cos�, 0) ,
(7)

as in [35] and we are working in units where c = 1. For
a stochastic GWB each Fourier mode will contribute in-
dependently to the overall signal, and h+ and h⇥ are
two random complex fields on the sky. We will as-
sume the amplitudes are drawn from a Gaussian prob-
ability distribution. In the case of an astrophysical
GWB this assumption holds if the signal is sourced by
a sufficiently large number of independent events and
all high signal-to-noise outliers have been subtracted
from the detector time streams, such that the central
limit theorem applies [37]. Under the Gaussian assump-
tion, the statistical properties of the amplitudes are
then characterised solely by the second order moments
hhP (f, n̂)h

?
P 0(f 0, n̂0)i, which, assuming statistical homo-

geneity, correspond to ensemble averages
✓

hh+ h0?
+i hh+ h0?

⇥
i

hh
⇥
h0?
+i hh

⇥
h0?
⇥
i

◆

=
1

2
�(n− n

0) �(f � f 0)⇥

✓

I(f, n̂) +Q(f, n̂) U(f, n̂)� iV (f, n̂)
U(f, n̂) + iV (f, n̂) I(f, n̂)�Q(f, n̂)

◆

,

(8)

where we have introduced the Stokes parameters I, the
intensity, Q and U , giving the linear polarisation, and
V , the circular polarisation. The four Stokes parame-
ters completely describe the polarisation of the observed
signal in analogy with electromagnetic Stokes parame-
ters for the photon. The difference here is that whilst
the electromagnetic Q and U Stokes parameters trans-
form as spin-2 quantities with respect to rotations, their
strain counterparts transform as spin-4 under rotations.
In both cases the intensity I behaves as a scalar under
rotations.
In the following we will restrict our analysis to the

reconstruction of the GWB intensity I(f, n̂) only, corre-
sponding to the combination

I(f, n̂) = hh+(f, n̂)h
?
+(f, n̂)i+ hh

⇥
(f, n̂)h?

⇥
(f, n̂)i ,

(9)
note that this relates to the normalised logarithmic en-
ergy density ΩGW(f) as [33]

ΩGW(f) =
4⇡2f3

G⇢c
I(f) , (10)

such that the assumption in Eq. 3 carries down to the
intensity

I(f, n̂) =

✓

f

f0

◆↵�3

I(f0, n̂) . (11)

This approximation is valid and sufficient for our cal-
culations here, and has been assumed in multiple anal-
yses of the stochastic background. Typically a value
of ↵ = 2/3 is assumed for inspiral-dominated back-
grounds [38], whereas ↵ = 0 may be used to describe
scale-invariant cosmological backgrounds [9, 39].

B. Detector Response

The antenna is comprised of three spacecrafts which
will be positioned on three heliocentric yearly orbits in
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FIG. 2. Normalised auto-correlated response of TDI channel X, AXX , at time t = 0 and in the Solar System Baycentre (SSB)
reference frame, at frequencies f = 10−4 Hz, f = 10−1 Hz, f = 5× 10−1 Hz from left to right respectively.

such a way that they will maintain an equilateral trian-
gle configuration throughout the whole duration of the
mission (4+ years) [1]. The spacecrafts will specify a
detector plane at a 60� angle with the ecliptic consis-
tently throughout the motion of the constellation, which
will appear to rotate on the detector plane with period 1
year. Each pair of spacecrafts will share two laser links,
which we can represent as two opposite vectors along the
virtual detector arm. The arm-length will be time de-
pendent during the mission, however in this work, for the
sake of simplicity, we assume equal and stationary arms.
Consequently, we consider equal and opposite links along
each arm. In this paper we will use the trajectories as
defined in [40], which correspond to analytical elliptical
orbits in the Solar System Barycentre (SSB) frame. The
starting position at zero time is chosen such that `2 in
Fig. 1 is aligned with the negative y axis of the frame,
and the two remaining arms are determined accordingly.

GW detection with LISA will rely on time-delay in-
terferometry (TDI), which involves time-shifting and lin-
early combining independent Doppler measurements [41].
This will occur in post-processing and will require accu-
rate modelling of the response of each link. The study
of the optimal TDI combinations, or channels, for GW
detection is ongoing [42]. Given 6 links it is possible
to construct three correlated channels, referred to as
X, Y, Z, or two independent channels, typically referred
to as A, E channels, plus a Sagnac channel T [43]. The
independent channel basis is found simply by diagonal-
ising the correlated basis and rotating into the diagonal
TDI space. As the measurements are time-delayed, this
rotation will never be perfect and it adds a degree of
complication which may be hard to constrain, hence we
find it is preferable to work in the fully correlated basis,
with the caveats it entails. Specifically, the rotation will
only cancel out the correlations assuming the three arm-
lengths are equal, and that the noise in each spacecraft
is identical. While these assumptions are made in this
work, the method developed here is general and may be
easily extended to accommodate a more complete noise
model and detector response. The simple Michelson-
Morley-style combination is referred to as TDI 1 and it
features three channels, each of which is centered around
a spacecraft such that X is centered around spacecraft

1, Y around spacecraft 2, and Z around 3. A similar,
slightly more sophisticated combination designed to min-
imise the spacecraft breathing noise is referred to as TDI
1.5; both are illustrated in Figure 1. Throughout this
paper we will adopt the TDI 1.5 configuration.
The time stream sC(t,xi) measured by a single 1.5

TDI channel C at time t and ith spacecraft position xi

can be Fourier expanded between t and t + ∆t to yield
the signal as a function of frequency,

s⌧C(f) =
X

P

Z

S2

dn̂RP
C(f, n̂; ⌧)h

P (f, n̂) , (12)

where ⌧ is the time segment label, RP
C is the polarisation

response function for the TDI channel C and hP (f, n̂) is
the incoming GW strain decomposed into its polarisation
components. We will now drop the ⌧ label for simplic-
ity. The response functions for TDIs 1.5, {X,Y, Z} are
derived from the LDC Manual which is an internal docu-
ment. In the case of TDI 1.5 X the measured strain may
be written as

sX(f) = �2i sin(a) e�ia
⇥

e�ia (y`1 � y�`3) + y�`1 � y`3
⇤

,
(13)

where the y ˆ̀
i
terms correspond to the strain measured

along the oriented link `i and the exponential terms cor-
respond to the phase shifts in Fourier space required to
build the TDI 1.5 channel. Here a = 2⇡fL for the sake
of conciseness. The response of each link is

y`i = �
ia

2

X

P

Z

S2

QP
ˆ̀ h

P e�
ia
L
n̂·xi sinc (b) e�ib , (14)

where b = a
2 (1� n̂ · ˆ̀i) and the response of a single arm

` to P - polarised modes, QP
ˆ̀ , is simply the contraction

of the arm tensor with the polarisation basis element,

QP
ˆ̀ = ✏P : ˆ̀⌦ ˆ̀. (15)

Plugging (14) into (13) we recover the sky response

RP
X =

ia

2

�

1� e�2ia
�

e�
ia
L
n̂·~x1

h

QP
ˆ̀
1

T (+ˆ̀
1)�QP

ˆ̀
3

T (� ˆ̀
3)
i

(16)
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where the transfer function T to each sky direction n̂ is

T (+ˆ̀) = sinc
⇣a

2
(1� n̂ · ˆ̀)

⌘

e�
ia
2
(3+ˆ̀·n̂)+

+ sinc
⇣a

2
(1 + n̂ · ˆ̀)

⌘

e�
ia
2
(1+ˆ̀·n̂) ,

(17)

assuming a permanent equal arm configuration, such that
xi = xi�1+`i�1 where i obeys cyclic permutations. One
can then derive RP

Y , R
P
Z by permuting the arms.

A signal composed of an incoherent superposition of
many components, as in the case that we are focused
on here, will vanish when averaged in time. To observe
an incoherent GWB we therefore need to consider the
integration of the square of the signal. Making use of
all three channels we can write the TDI strain vector
as s = (sX , sY , sZ) and construct the quadratic strain
tensor S(f),

S(f) = s(f)⌦ s
?(f) . (18)

We expect its ensemble average to yield

hS(f)i =

Z

S2

dn̂A(f, n̂) I(f, n̂) , (19)

having expanded in the polarisation bases and insert-
ing the relation between the second order moments of
the strain and the Stokes parameters [33]. Note that
we consider a GWB which is stochastic also in polar-
isation; as such the Q, U , and V Stokes parameters
average to zero. The quadratic response tensor A is
simply constructed with the linear response TDI vectors
RP = (RX , RY , RZ)

P

A
⌧ (f, n̂) = R

+ ⌦R
+? +R

⇥ ⌦R
⇥? . (20)

We have recovered the ⌧ label to point out the time-
dependence of the detector response, which is implicitly
expressed in Eqs. (13-20) through the arm and positions
vectors. Note also the directional and frequency depen-
dence of A, a sample of which is given in Fig. 2. Here the
continuous sky response has been discretised to produce
the Mollweide projection in pixel space, A(n̂) ! Ap,
where p labels a pixel on the sky, and it is shown in the
SSB reference frame. The projections and pixel calcu-
lations are carried out using the HealPix package [44].
As in the case of LIGO, the sky response gives rise to an
inhomogeneous and non-compact antenna pattern. How-
ever, in the case of the LISA TDI channels this pattern
is also significantly dependent on the frequency probed,
as may be observed in the different panels of Fig. 2. It is
straightforward to show that in the low frequency limit
the spectral dependence of the quadratic response tensor
A scales as f4 [18], then starts deviating above 10�2 Hz,
as may be observed in Fig. 3. The constant pattern and
flat trend will set the limit to the resolution of LISA at
low frequency, while this substantial deviation and the
high-` pattern will prove crucial to obtain higher resolu-
tion at high frequency.

FIG. 3. Sky-integrated auto-correlated and cross-correlated
responses, AXX and AXY , across the frequency spectrum.
Note that the slopes in the low frequency limit scale as ∝ f4.

For the simulations and study that follows we fix the
coordinate system and polarisation basis to the SSB
frame as it is convenient for the description of both the
spacecraft trajectories and the injected signal’s direc-
tional dependence.
Although we have developed a map–maker that solves

for a map directly in the pixel domain, we can use it to
assess the ability of the cross-correlated TDI channels to
reconstruct the angular power spectrum of a background
defined as

CGW
` =

1

2`+ 1

X̀

m=�`

�

�

�

�

Z

S2

dn̂

4⇡
Y`m(n̂) I(n̂)

�

�

�

�

2

. (21)

It is then informative to decompose the detector response
in spherical harmonic space, similarly to [35], and assess
the sensitivity to CGW

` induced by the isotropised spher-
ical harmonic response,

A` =
1

2`+ 1

X̀

m=�`

�

�

�

�

Z

S2

dn̂

4⇡
Y`m(n̂)A(n̂)

�

�

�

�

2

. (22)

Studying the relative sensitivity of a single TDI channel
to angular scales ` on the sky, the angular resolution of
the LISA TDI 1.5 configuration is predicted to be con-
strained as ` . 10 [15, 19]. This resolution will strongly
depend on the frequency interval examined, such that for
lower frequencies the cutoff will be much more severe.
This discussion is expanded in [45].

III. MAXIMUM LIKELIHOOD MAPS

A. Mapping method

In this section we describe the method we have devel-
oped to extract maximum likelihood maps of the GWB
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from three LISA TDI 1.5 data streams. We start with
some remarks on analogies and differences with CMB
analysis.
The final parts of the analysis of LISA data for the

purpose of constraining GWBs will be split into two
main stages. The first will be an estimate of a map in a
way that is similar to the estimation of CMB maps from
timestream data. This first compression step, from time
(frequency) domain to sky coordinates, will be useful for
identifying systematics in the data and for separating
out different signals contributing to the GWB. The sec-
ond stage will be a further compression to an isotropised
statistic i.e. the angular power spectrum of the (sep-
arated) signal. This is similar to the power spectrum
estimation step in CMB taking the maps to a final C`

estimate.
In CMB observations made with incoherent (bolomet-

ric) detectors, the first stage uses a �2 estimate to obtain
a maximum likelihood map [46]. This is possible because
the signal component of the data does not vanish in the
ensemble mean

hdi ⌘ hs+ ni = m, (23)

where, generically, d, s, and n are the time-domain data,
signal, and noise with hni=0 and model m ⌘ hsi. This
allows the definition of a residual d�m whose covariance
is just the noise covariance N ⌘ hnn†i. This means we
can estimate the signal by considering simply a Gaussian
likelihood for the residual and, since the noise is usually
considered to be independent of the signal, the normali-
sation of the likelihood is constant and we only need to
minimize the �2 part

�2(d|m) = (d�m)†N�1(d�m) , (24)

to obtain a maximum likelihood solution for m using the
closed-form solution to @�2/@m = 0.

This is not possible for data obtained from noise corre-
lated, coherent detectors such as LISA. In this case both
signal and noise components in the time-domain vanish in
the ensemble mean. Transforming to the Fourier domain
does not alleviate this problem unless the background
itself is phase-coherent or if the signal is a single point
source on the sky. In this case no residual can be defined
since hd�mi = 0 and we need to use the full likelihood
of the data with both �2 and normalisation depending
on the signal being estimated. There is no closed-form
solution for the maximum likelihood in this case and it-
erative methods such as quadratic estimators must be
used to estimate the signal [47]. This is analogous to
the second stage in CMB analysis where the map signal
component also vanishes in the ensemble mean limit and
therefore the full data likelihood is used to estimate the
signal. For LISA both stages will require the use of a
quadratic likelihood estimator and we define a method
for the first stage below.
Note that a �2 estimate is possible for LIGO style de-

tectors where the noise can be assumed to be uncorre-
lated between detectors [12–14, 48]. In that case we can

define a likelihood for a residual in the cross-correlated
data where the signal component ensemble mean does
not vanish but the noise does. In the case of LISA TDI
{X, Y, Z} channels, the noise will be correlated between
channels and this approach is not possible.
Firstly, we define the likelihood for the data given a

signal intensity. We decompose the data TDI vector as
d⌧
f = Rh+n, where n is the noise TDI vector, R is the

linear response TDI vector and there is an implicit sum
over polarisations. Assuming the noise is zeromean and
Gaussian with covariance Nf = n ⌦ n and the signal

component is also Gaussian with covariance C⌧
f = AĨ +

N , the likelihood L of a pixel map Ĩ given the TDI data
d is

L /
1

|C|1/2
e�

1

2
dC

�1
d
?

, (25)

Following [47] we find the solution which maximises L,

Ĩp = F�1
pp0 · Tr

X

⌧,f



C
�1 @C

@Ip0

C
�1 (D �N)

�

, (26)

Fpp0 = Tr
X

⌧,f



C
�1 @C

@Ip
C

�1 @C

@Ip0

�

, (27)

where we have explicitly written down the pixel indices
for clarity. D = d⌦d? is constructed thanks to the per-
muting property of the trace. F is the Fisher information
matrix, whereas the trace in Equation (26) is referred to
as the gradient term.
This approach is general and may be used for both a

broad- or a narrow- band analysis, and there is no spe-
cific limit on the time-discretisation as long as the Gaus-
sian ansatz is not violated. In the application considered
here, the trace is taken over the three TDI channels, and
the sum is over all frequencies in the FFT and all ob-
servation times, to maximise sky coverage. We can also
consider integrating over short frequency intervals or sin-
gle frequencies to probe the frequency dependence of the
GWB, within the limits imposed by the conditioning of
the Fisher matrix. We employ an iterative scheme to
reach the maximum likelihood estimate for I, starting
with an initial guess Ĩin to plug into C, get a first esti-
mate of Ĩp, then repeat until convergence. In the anal-
ysis here we assume to perfectly know the noise model
N , and expect that when this method will be applied to
real LISA data it will be possible to rely on an indepen-
dent noise estimation which informs the gradient term.
However, it will be possible yet expensive to extend this
estimator to include the noise as a free parameter, and
solve for both noise and signal components directly.
In case the signal is non-Gaussian, the maximum–

likelihood maps derived below remain unchanged, but
the interpretation of their covariance would be affected
by the presence of higher order cumulants in the under-
lying probability densities. See e.g. [49] for an analysis of
detection methods of non-Gaussianity in a GWB induced
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by short-duration signals, and [50] for a study of how to
use higher-order cumulants to characterize its properties.

It is important to stress that in this approach we as-
sume that the intensity scales simply across the spectrum
by some function E(f). In reality this will not be the case
and the model will have to account for a number of sky
signals, each having a distinct spectral dependence. For
a broad band analysis such as that carried out here one
would have to solve for multiple maps. Alternatively,
an analysis where the data is separated into narrow fre-
quency bands, such as one of the approaches in [14], could
deal with multiple signals through a later component sep-
aration stage.

B. Mapping tests

Here we present the results of the application of the
method detailed above to simulated data of LISA TDI 1.5
{X, Y, Z} channels. These serve as a proof of concept
of the recipe, which is the first stepping stone towards
testing it on mock LISA time streams. We generate cor-
related data in the Fourier domain as D⌧

f = AIin +Nin

over the period of one year divided in two-day segments
for different frequency bands. This FFT time-scale de-
termines the pixelisation resolution, as we consider the
sky response to be stationary throughout the whole time
segment, hence it is chosen to be sufficiently short to al-
low for a high Npix, but sufficiently long so as not to
exclude the lower frequencies. Each segment is heavily
down-sampled in frequency to Nf = 200 samples in order
to lighten the computational load as much as possible
without losing too much resolution in frequency, which
would lead to a loss of information on the sky due to
the coupling between f and n̂ via A. AIin is the signal
component of the data contracted over pixels and Nin is
a Gaussian realisation of the noise model N . The result-
ing data streams for the three channels are then plugged
into Eq. (26), and the Fisher matrix is iteratively com-
puted, where the covariance matrix C is the full covari-
ance of the data and simply @C

@Ip
= Ap. All the terms in

Eqs. (26 - 27) are complex matrices and the reality con-
dition imposed by the data is recovered when integrating
over frequencies.

The nominal SNR of the signal component of the data
is estimated by integrating over observation time and fre-
quency range as follows:

SNR =

s

∆Tobs

Z fmax

fmin

df

✓

AIin
N

◆2

, (28)

where A is the instantaneous response of channel X and
N is the appropriate noise model.

FIG. 4. Data power sample from the autocorrelated X chan-
nel, decomposed into injected signal (orange line) and simu-
lated noise (red line) components. The Injected signal has and
SNR of 0.6, and is evidently buried in the noise. The sample
represents the data accumulated over a two-day period and
then FFTed. The dashed grey lines are the noise model which
informs the noise generation; the darker line is renormalised
by a factor which accounts for the lower sampling rate, while
the lighter line is the true instantaneous noise curve used to
calculate the SNR.

1. Signal generation

The signal component in the data AIin is generated by
simply scanning an input map for the GWB intensity on
the sky Ipin(f0) fixed at a reference frequency f0 with the
quadratic response of our TDI configuration directly in
pixel space,

(AIin)
⌧
f =

4⇡

Npix

X

p

A
⌧
p(f)I

p
in(f0) , (29)

where we include the spectral dependence of the signal
E(f) in the response A for convenience. This is a com-
pletely deterministic calculation which relies on the as-
sumptions that the signal is truly stochastic and obeys
Eq. 2, and that the overall integration over time and fre-
quencies satisfies the ensemble average limit, such that
Eq. 8 holds. All the maps presented here are recon-
structed with number of pixels Nout

pix = 768 which cor-
responds to a HealPix Nside = 8, while the injected maps
are over-resolved with N in

pix = 3072 which corresponds to
a HealPix Nside = 16.
Except where explicitly stated, the Iin maps scanned in

the simulations below are random Gaussian realisations
of an `2C` flat power spectrum with `max = 20, cho-
sen uniquely for testing purposes. This means that we
are assuming that the monopole C0 sets the size of the
anisotropies which scale as a fixed power law C` = C0/`.
In a more realistic modeling of the signal, one should
rather introduce two separate scales: a monopole C0,
which would set the size of the SNR as in 28, and a typi-
cal scale of anisotropies C1. These two scales are simply
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FIG. 5. An example input map from the simulations (left panel) to be compared to the final output maps obtained integrating
with different frequency cutoffs, fmax = 0.1 Hz (central panel) and fmax = 0.01 Hz (right panel). These highlight the different
resolutions the LISA channels have in different ranges of frequency.

FIG. 6. Transfer functions T` for the average reconstructed C`s obtained with different frequency cutoffs (left panel) and
different spectral shapes, ↵ = 3 and ↵ = 0, both in the high frequency case fmax = 0.1 Hz (right panel). Each simulation set
consists of 50 maps, each a different realisation of the same C` input. There appears to be a clear one-to-one relation between
the resolution `max of the instrument and the frequency cutoff. Conversely, there is an average difference of 5% between the
transfer functions obtained with different spectral weightings, however this does not affect the resolution cutoff.

assumed to be the same here. We explore the ability of
LISA to reconstruct these input maps by changing the
frequency integration range, varying the spectral param-
eter ↵, and toggling the sky-integrated amplitude I(f0)
with respect to the noise level set by N .

2. Noise generation

LISA TDI noise is an active area of research, and there
are ongoing studies on which TDI configuration will yield
the lowest noise measurements. However these go beyond
the scope of our project, as these model the orbits and
breathing modes of the constellation more realistically.
In the simplified equal-arm scenario considered here, to
good approximation the noise in each auto-correlation
of TDI channels may be described by the same power
spectrum, SCC , and similarly the noise in each cross-
correlation may be described by SCD. The 3 ⇥ 3 model
TDI noise correlation matrix N is then completely de-
scribed by SCC on the diagonal and SCD on the off-
diagonal terms. The expressions for these power spectra

used in this work are

SCC = 16 sin2 a (Sint + (3 + cos 2a)Sacc) , (30)

SCD = �8 sin2 a cos a (Sint + 4Sacc) , (31)

as presented in [19], where Sint and Sacc are the interfer-
ometer and acceleration noise-components respectively.

The noise realisation Nin must respect the correlations
imposed by N , hence the noise is first generated linearly
in the noise-diagonal space, and then rotated back into
correlated noise space. This is achieved by generating
a random 3-vector in noise-diagonal space and rotating
it into the TDI noise vector nin = (nX , nY , nZ)in using
the eigenvector matrix of N . In the limit of equilateral
configuration and identical noise at the vertices that we
are considering here, the noise-diagonal space is precisely
the space of the {A, E, T} channels, and the same rota-
tion as described in [43] is employed to transform from
one to the other. Nin is then simply the outer product
of nin. An example data segment is provided in Fig. 4.
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FIG. 7. Input (left panel) and reconstructed output (central panel) maps in a low SNR case, integrating over a frequency range
of [10−4, 10−1] Hz. The input map is an `C` flat gaussian realisation with `max = 10. The output map is a heavily smoothed
version of the input, with some loss of power due to the strong conditioning required. The SNR of this particular reconstruction
is shown in the right panel.

3. Results

We have run a variety of simulations to extensively
probe the ability of the TDI configurations {X, Y, Z}
to reconstruct an anisotropic GWB, both in high and
low signal-to-noise ratio (SNR) scenarios. For all the
maps discussed below the inversion problem is strongly
ill-conditioned, hence the Fisher matrix is inverted using
the singular value decomposition technique as in simi-
lar work done with LIGO data [13, 14]. Specifically, the
condition number of the Fisher matrices in the cases pre-
sented below, which are all of dimension Nout

pix ⇥Nout
pix , is

of order 1018. In the case of high SNR the output maps
mildly depend on the conditioning imposed at pseudo-
inversion as the signal will dominate the information,
whereas in the low SNR scenario the output map is ex-
tremely dependent on the conditioning. In these tests,
the choice made was to monitor the monopole level of
the output map and gauge the conditioning such that
it would match the input. This technique may be em-
ployed also with real data, where the measurement of
the monopole can be done independently of the inversion
problem.

To test the limits of the geometric set-up of LISA,
we have generated data with anisotropic, flat spectrum
backgrounds (↵ = 3) of effectively infinite SNR and re-
constructed output maps truncating the frequency inte-
gration at different values of fmax. In this extremely
high signal scenario, the solution converges after a sin-
gle iteration. As may be seen in the example maps in
Fig. 5, the input map is reconstructed remarkably differ-
ently in the case of fmax = 10�1 Hz and fmax = 10�2

Hz. The higher angular modes are well preserved when
allowing the reconstructor to integrate up to higher fre-
quencies, where there is finer structure in the response
pattern, whereas they are aliased into lower modes when
integrating only over the lower frequencies. To study
this trend we have run sets of 50 analogous simulations
when fmax = 10�3 Hz, 10�2 Hz, 5 ⇥ 10�2 Hz, 10�1 Hz
and calculated the average output C`s in each set. We
also compute the transfer functions T` = C`/C

in
` . The

comparison between transfer functions with different fre-

FIG. 8. Sky distribution of the noise in the SSB frame. Note
the imprinted 6-fold symmetry of the orbit, given by the three
concentric orbits of the spacecrafts.

quency cutoffs may be seen in the left panel of Fig. 6.
Different spectral shapes are reconstructed slightly dif-
ferently, as may be seen in the right panel of Fig. 6 where
the high frequency ↵ = 3 set is compared with a high fre-
quency ↵ = 0 set of simulations. The C` reconstruction
and resulting transfer functions differ at certain modes,
on average by 5%, but the cutoff `max appears to be the
same, hence we conclude the frequency weighting in the
signal and reconstruction do not have a strong impact on
the resolution of the reconstructed maps.
An example of map reconstruction in the presence of

high noise is shown in Fig. 7. The map in input here
is a `C` flat Gaussian realisation with maximum angu-
lar scale `max = 10 to make the visual comparison eas-
ier. The spectral shape of the signal is ↵ = 2/3, which
together with the power spectrum is typically associ-
ated with an astrophysical inspiral-dominated GWB [38]
which traces the large scale structure [51]. The signal
component has an SNR of 0.6 and is thus buried under
the noise, as may be seen in the specific data sample
in Fig. 4. As may be observed in Fig. 7, the presence of
loud noise has a similar effect as having a lower frequency
cutoff, as the noise dominates at higher frequencies. Ad-
ditionally, severe conditioning is required to cut out the
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FIG. 9. Sky inputs (left panels) and reconstructed outputs (right panels) for a Milky Way - like GWB distribution. The signal
is injected in the range [10−4, 5×10−3] Hz. The top row is an extremely high SNR case, whereas the bottom row is an SNR 52,
hence it emerges above the noise around 10−3 Hz. Both results are obtained over a full year of integration. These Mollweide
projections are presented in log scale.

noisier high modes, and multiple iterations are necessary
to reach convergence. Specifically, the final conditioning
cuts 97% of the total eigenvalues of the Fisher informa-
tion matrix. The value of the monopole of the recon-
structed map however does not depend strongly on the
conditioning and is in good agreement with that in in-
put. Thus the resulting heavily conditioned output map
appears to be a low-` smoothed version of the initial map
with some loss of power. We also recover the noise distri-
bution on the sky N , shown in Fig. 8, as the diagonal of
the inverse Hermitian square root of the converged Fisher
matrix. This is an incomplete representation of the noise
as the off-diagonal correlations are ignored, however it
already shows that there is more noise off the ecliptic, as
expected.

Finally, an example of reconstruction of a galaxy-like
sky signal both with and without noise over a full year of
integration is shown in Fig. 9. The input signal has spec-
tral shape ↵ = 2/3 in the frequency range [10�4, 5⇥10�3]
Hz, as suggested in [52], and the directional dependence
is that of the Milky Way’s white dwarf binary (WDB)
population from [53]. The high SNR case is extremely
unrealistic but provides a useful visual test of what the
best resolution of LISA can be for a confused GWB at
the frequency range where the signal from the compact

galactic WDB is dominant. By relaxing the condition-
ing and including the higher modes in the Fisher matrix
before inverting, the resolution can be pushed slightly
higher however the pixels appear noisier, as may be ob-
served in the top right panel of Fig. 9. The low SNR case
proves, as in the simulation discussed above, that strong
conditioning is required to recover the input distribution
and that this leads to the exclusion of higher modes in
the Fisher matrix. The level of the noise in this case is
the same as in the one above. The monopole of the signal
is very well recovered in both cases.

IV. CONCLUSIONS

We have presented a mapping algorithm for the LISA
GW detector, which is treated as 3 correlated TDI chan-
nels. The method involves an iterative estimator which
calculates the Fisher information matrix and gradient
term by tracing over the channels, observation time, and
frequencies efficiently. The tests discussed above clearly
show there is a one-to-one relationship between the res-
olution `max of the instrument and the frequency cutoff
in the trace, and this is not particularly dependent on
the input signal’s spectral shape nor the spectral weight-
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ing assumed in the reconstruction. This frequency cutoff
will naturally depend on both the nature of the signal
and the level of the noise. As may be read off of Fig. 6,
the maximum angular resolution for LISA TDI 1.5 chan-
nels is `max ⇠ 15 in the best case scenario when the signal
is loud and clear over the noise up to fmax = 10�1 Hz.
A possible candidate for this type of signal is a stochas-
tic background of astrophysical origin from stellar mass
black hole and neutron star binaries [54]. The outlook is
a lot less optimistic for lower frequency signals which are
strong at f < 10�2, for which `max < 7. An intermediate
signal, which should peak around f ⇠ 5 ⇥ 10�2 [52], is
the galactic background from binary white dwarfs. Con-
sidering this type of signal to be described by a simple
power law in frequency, we have tested its reconstruction
on the sky and have found that the strongest limit is set
by the strong noise modes at high frequency. The recon-
struction of low SNR signals is similarly limited, even if
they are present at high frequencies, due to the shape
and nature of the noise.
In the tests presented above we assume that the size of

the monopole sets both the SNR and the anisotropy level
of the injected signal. However a more realistic model-
ing would see the introduction of two separate scales, a
monopole C0 and a typical anisotropy scale C1. This
would allow to test separately the detectability of back-
ground components with similar monopole values but
different levels of anisotropy. For example, astrophys-
ical extra-galactic backgrounds are expected to have a
level of anisotropy �Ω/Ω̄ = 10�3 whereas cosmologi-
cal backgrounds should present CMB-like ansotropies of
� ⇠ 10�5 [39, 51]. Hence, cosmological backgrounds
from the early universe are expected to have a low SNR
and a highly suppressed scale invariant anisotropy spec-
trum. These include inflationary backgrounds which seed
primordial black holes [55], highly non-Gaussian back-
grounds [56, 57], post-inflationary backgrounds due to
strong first order phase transitions [9] or cosmic defect
networks [58]; see [59] for a full review. Map reconstruc-
tion for these background components will be quite chal-
lenging. The most promising candidate remains an as-
trophysical galactic background, hence we have carried
out a preliminary study here. The LDC has produced
mock time-domain data for a galactic background made
up of thousands of superposed white dwarf binary inspi-
rals which we plan to send through our pipeline soon.
The results obtained in this paper have been derived

under the ideal assumption of a perfectly known noise
PSD model. A natural expansion of this method would
be to parametrise a given uncertainty in the noise model
and performing parameter estimation on the noise and
signal parameters simultaneously. This can happen by
fitting noise parameters for the acceleration and inter-
ferometer components as seen in Equ.s (30–31) for each
cross-correlated channel or in each individual TDI chan-

nel. A technique for simultaneous reconstruction of the
monopole component of the signal and a simplified mode
of the noise power spectra, parametrised by accelera-
tion and optical metrology system contributions only,
has been implemented in [22, 23], and more recently
in [17, 18]. In addition, it has been shown that, un-
der specific assumptions, a similar technique can also be
efficient in the presence of idealised foregrounds [60].

Another significant limit of this study is the assump-
tion that the GWB intensity I(f, n̂) can be reduced to
two independent components: a simple spectral shape
and a constant pattern on the sky. We plan to explore
the validity of this assumption in future work, studying
specific GWB signals in the LISA band and analysing
the time-domain generated LDC data containing
anisotropic backgrounds. The results of this mapping
algorithm may also be used to assess the detectability
of different types of anisotropic backgrounds in the
LISA band by studying the effective sky sensitivity
of the detector and comparing it to the expected lev-
els of anisotropy. This will be investigated further in [45].

V. ACKNOWLEDGEMENTS

We highlight individual contributions to this
manuscript. AIR: conceptualization, methodology,
software, calculations, visualization, writing, project
coordination. This was as a part of AIR’s PhD thesis.
MPi: conceptualization, methodology, validation. CRC:
conceptualization, methodology, supervision, funding.
All others: analysis, validation, writing. We thank Marc
Lilley and Antoine Petiteau for useful conversations on
the LISA response function and help setting up the
pipeline in alignment with the LISACode format. We
also thank Robert Caldwell for valuable comments. AIR
acknowledges support of an Imperial College Schrödinger
Fellowship. The work of CC and MPi was supported by
Science and Technology Facilities Council consolidated
grant ST/P000762/1. MPi was supported in part
by the National Science Foundation under Grant No.
NSF PHY-1748958. We would like to thank the IFT
UAM-CSIC and the University of Padova for hosting the
WG meetings where this project was born. MPi would
like to thank the Kavli Institute for Theoretical Physics
at UC Santa Barbara for the kind hospitality during
part of this work. The work of G.C. has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement No 693024) and from the
Swiss National Science Foundation. The work of GT is
partially funded by STFC grant ST/P00055X/1.



12

[1] P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E. Ba-
rausse, P. Bender, E. Berti, P. Binetruy, M. Born, D. Bor-
toluzzi, et al. (2017).

[2] N. Tamanini, C. Caprini, E. Barausse, A. Sesana,
A. Klein, and A. Petiteau, JCAP 1604, 002 (2016).

[3] T. Regimbau, Research in Astronomy and Astrophysics
11, 369 (2011), ISSN 16744527, arXiv:1101.2762v3, URL
http://stacks.iop.org/1674-4527/11/i=4/a=001.

[4] L. Grishchuk, Soviet Journal of Experimental and Theo-
retical Physics 40, 409 (1975).

[5] M. Maggiore, Phys. Rept. 331, 283 (2000), gr-
qc/9909001.

[6] C. J. Hogan, Monthly Notices of the Royal Astronomical
Society 218, 629 (1986), URL http://dx.doi.org/10.

1093/mnras/218.4.629.
[7] R. A. Battye, R. R. Caldwell, and E. P. S. Shellard

(1997), arXiv:9706013.
[8] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and

Other Topological Defects (Cambridge University Press,
2000).

[9] C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35,
163001 (2018).

[10] J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy,
T. Accadia, F. Acernese, C. Adams, and R. Adhikari,
Phys. Rev. Lett. 271102, 1 (2011).

[11] B. P. Abbott, R. Abbott, T. D. Abbott, et al. (LIGO
Scientific Collaboration and Virgo Collaboration), Phys.
Rev. Lett. 118, 121102 (2017).

[12] B. P. Abbott, R. Abbott, T. D. Abbott, et al.
(LIGO Scientific Collaboration and Virgo) (2019),
arXiv:1903.08844.

[13] A. I. Renzini and C. R. Contaldi, Phys. Rev. Lett. 122,
081102 (2019).

[14] A. Renzini and C. Contaldi, Phys. Rev. D100, 063527
(2019).

[15] N. J. Cornish, Class. Quant. Grav. (2001), 0105374v1.
[16] N. Cornish and T. Robson, J. Phys. Conf. Ser. 840,

012024 (2017), 1703.09858.
[17] N. Karnesis, A. Petiteau, and M. Lilley (2019),

1906.09027.
[18] C. Caprini, D. G. Figueroa, R. Flauger, G. Nardini,

M. Peloso, M. Pieroni, A. Ricciardone, and G. Tasinato,
JCAP 11, 017 (2019), 1906.09244.

[19] T. L. Smith and R. R. Caldwell, Phys. Rev. D 100,
104055 (2019), URL https://link.aps.org/doi/10.

1103/PhysRevD.100.104055.
[20] H. Kudoh and A. Taruya, Phys. Rev. D 71, 024025

(2005), gr-qc/0411017.
[21] J. D. Romano and N. J. Cornish, Living Reviews in Rel-

ativity 20, 1 (2017), ISSN 14338351, 1608.06889.
[22] M. R. Adams and N. J. Cornish, Phys. Rev. D 82,

022002 (2010), URL https://link.aps.org/doi/10.

1103/PhysRevD.82.022002.
[23] M. R. Adams and N. J. Cornish, Phys. Rev. D 89,

022001 (2014), URL https://link.aps.org/doi/10.

1103/PhysRevD.89.022001.
[24] A. Taruya and H. Kudoh, Phys. Rev. D 72, 104015

(2005), gr-qc/0507114.
[25] A. Taruya, Phys. Rev. D 74, 104022 (2006), gr-

qc/0607080.

[26] B. Allen and J. D. Romano, Phys. Rev. D 59,
102001 (1999), ISSN 0556-2821, 9710117, URL
http://arxiv.org/abs/gr-qc/9710117{%}5Cnhttp:

//link.aps.org/doi/10.1103/PhysRevD.59.102001.
[27] G. Cusin, C. Pitrou, and J.-P. Uzan, Phys. Rev. D 97,

123527 (2018), 1711.11345.
[28] C. Conneely, A. H. Jaffe, and C. M. Mingarelli, Mon.

Not. Roy. Astron. Soc. 487, 562 (2019), 1808.05920.
[29] N. Bartolo, V. De Luca, G. Franciolini, A. Lewis,

M. Peloso, and A. Riotto, Phys. Rev. Lett. 122, 211301
(2019), 1810.12218.

[30] N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A. Ric-
ciardone, A. Riotto, and G. Tasinato (2019), 1912.09433.

[31] N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A. Ric-
ciardone, A. Riotto, and G. Tasinato, Phys. Rev. D 100,
121501 (2019), 1908.00527.

[32] A. Margalit, C. R. Contaldi, and M. Pieroni (2020),
2004.01727.

[33] B. Allen and A. C. Ottewill, Phys. Rev. D 56, 545 (1996).
[34] N. Christensen, Rept. Prog. Phys. 82, 016903 (2019).
[35] A. I. Renzini and C. R. Contaldi, Mon. Not. Roy. Astron.

Soc. 481, 4650 (2018), 1806.11360.
[36] S. Kuroyanagi, T. Chiba, and T. Takahashi, JCAP 11,

038 (2018), 1807.00786.
[37] Y. B. Ginat, V. Desjacques, R. Reischke, and H. B. Perets

(2019), 1910.04587.
[38] A. Sesana, A. Vecchio, and C. N. Colacino, Monthly No-

tices of the Royal Astronomical Society 390, 192 (2008).
[39] C. R. Contaldi, Phys. Lett. B771, 9 (2017).
[40] LISA documents, https://www.cosmos.esa.int/web/

lisa/lisa-documents.
[41] M. Tinto and S. V. Dhurandhar, Living Rev. Rel. 8, 4

(2005), gr-qc/0409034.
[42] M. Muratore, D. Vetrugno, and S. Vitale (2020),

2001.11221.
[43] T. A. Prince, M. Tinto, S. L. Larson, and J. Armstrong,

Phys. Rev. D 66, 122002 (2002), gr-qc/0209039.
[44] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt,

F. K. Hansen, M. Reinecke, and M. Bartelman, Astro-
phys. J. 622, 759 (2005), astro-ph/0409513.

[45] Characterization and detectability of stochastic gravita-

tional wave background anisotropies with LISA, CosWG
project (2020), in preparation.

[46] J. Borrill, Madcap - the microwave anisotropy

dataset computational analysis package (1999), astro-
ph/9911389.

[47] J. R. Bond, A. H. Jaffe, and L. Knox, Phys. Rev. D57,
2117 (1998), astro-ph/9708203.

[48] B. P. Abbott, R. Abbott, T. D. Abbott, et al.
(LIGO Scientific Collaboration and Virgo), Phys. Rev.
Lett. 118, 121101 (2017), [Erratum: Phys. Rev.
Lett.119,no.2,029901(2017)].

[49] S. Drasco and E. E. Flanagan, Phys. Rev. D67, 082003
(2003), gr-qc/0210032.

[50] N. Seto, Phys. Rev. D80, 043003 (2009), 0908.0228.
[51] G. Cusin, I. Dvorkin, C. Pitrou, and J.-P. Uzan, Phys.

Rev. Lett. 120, 231101 (2018), 1803.03236.
[52] G. Nelemans, L. Yungelson, and S. F. Portegies Zwart,

Astron. Astrophys. 375, 890 (2001), astro-ph/0105221.
[53] V. Korol, E. M. Rossi, P. J. Groot, G. Nelemans, S. Too-

nen, and A. G. A. Brown, Mon. Not. Roy. Astron. Soc.

http://stacks.iop.org/1674-4527/11/i=4/a=001
http://dx.doi.org/10.1093/mnras/218.4.629
http://dx.doi.org/10.1093/mnras/218.4.629
https://link.aps.org/doi/10.1103/PhysRevD.100.104055
https://link.aps.org/doi/10.1103/PhysRevD.100.104055
https://link.aps.org/doi/10.1103/PhysRevD.82.022002
https://link.aps.org/doi/10.1103/PhysRevD.82.022002
https://link.aps.org/doi/10.1103/PhysRevD.89.022001
https://link.aps.org/doi/10.1103/PhysRevD.89.022001
https://www.cosmos.esa.int/web/lisa/lisa-documents
https://www.cosmos.esa.int/web/lisa/lisa-documents


13

470, 1894 (2017), 1703.02555.
[54] Z.-C. Chen, F. Huang, and Q.-G. Huang, Astrophys. J.

871, 97 (2019), 1809.10360.
[55] N. Bartolo et al., JCAP 12, 026 (2016), 1610.06481.
[56] A. Ricciardone and G. Tasinato, JCAP 1802, 011 (2018),

1711.02635.

[57] E. Dimastrogiovanni, M. Fasiello, and G. Tasinato, Phys.
Rev. Lett. 124, 061302 (2020), 1906.07204.

[58] P. Auclair et al., JCAP 04, 034 (2020), 1909.00819.
[59] C. Caprini et al., JCAP 03, 024 (2020), 1910.13125.
[60] M. Pieroni and E. Barausse (2020), 2004.01135.


	Maximum likelihood map-making with the Laser Interferometer Space Antenna
	Abstract
	I Introduction
	II The signal of Gravitational Wave Backgrounds
	A Strain signal
	B Detector Response

	III Maximum Likelihood Maps
	A Mapping method
	B Mapping tests
	1 Signal generation
	2 Noise generation
	3 Results


	IV Conclusions
	V Acknowledgements
	 References


