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ABSTRACT
We investigate the distribution of mass M and orbital period P of extrasolar planets,
taking account of selection effects caused by the limited velocity precision and dura-
tion of existing surveys. We fit the data on 72 planets to a power-law distribution of
the form dn = C M−α P−β(dM/M)(dP/P), and find α = 0.11 ± 0.10, β = −0.27 ± 0.06 for
M � 10 MJ, where MJ is the mass of Jupiter. The correlation coefficient between these two
exponents is −0.31, indicating that uncertainties in the two distributions are coupled. We es-
timate that 4 per cent of solar-type stars have companions in the range 1 MJ < M < 10 MJ,
2 d < P < 10 yr.

Key words: planetary systems – planetary systems: formation – planetary systems:
protoplanetary discs.

1 I N T RO D U C T I O N

As of 2001 December, radial velocity surveys have discovered over
70 planets orbiting nearby stars. This sample should be large enough
to provide reliable estimates of the distribution of planetary mass
and orbital elements, at least in the range to which the radial velocity
surveys are sensitive.

At least two important selection effects must be included in any
statistical analysis of this kind: (i) each survey has a detection limit
KD, such that the orbits of companions that induce reflex motions in
their host star of amplitude <KD cannot be reliably characterized;
(ii) orbits of companions with periods much longer than the duration
of the survey cannot be reliably characterized. In any survey limited
by its velocity precision, uncertainties in the distribution of planetary
masses M are coupled to uncertainties in the distribution of orbital
periods P, because the velocity amplitude induced by a companion
is ∝M P−1/3 (equation 2). Thus it is necessary to determine both
distributions simultaneously.

The aim of this paper is to describe a maximum-likelihood method
of estimating these distributions using data from a variety of surveys,
while accounting for survey-dependent selection effects. We have
chosen to fit the data to simple power-law models of the distribution
of masses and periods; such distributions are simple to interpret
and common in nature, and it is straightforward to generalize our
approach to non-parametric models as the data improve.

We shall work with data from eight radial velocity surveys of
nearby stars, which have detected between two and 27 extrasolar
planets each (see Table 1). Together these surveys have detected
99 planets as of 2001 December 1, although several planets appear
in more than one survey so we have only 72 distinct planets.

�E-mail: serge@astro.princeton.edu

We compare our method and results with other determinations of
the mass distribution of extrasolar planets in Section 3.

2 M A X I M U M - L I K E L I H O O D M E T H O D

We focus initially on the simple case of a single survey that examines
N ∗ stars for radial velocity variations owing to orbiting companions.
The velocity amplitude K owing to a companion of mass M with
orbital period P is

K = M sin i

M∗ + M
(1 − e2)−1/2

[
2πG(M∗ + M)

P

]1/3

, (1)

where e is the orbital eccentricity, M∗ is the stellar mass and i is the
inclination between the orbital plane and the sky plane. For simplic-
ity we assume that e � 1 so that the factor (1 − e2)−1/2 is unity. We
do not attempt to account more accurately for the eccentricity de-
pendence because the detectability limit for eccentric orbits depends
on both the amplitude and the shape of the radial velocity curve. At
the upper quartile of the eccentricities in our sample, e = 0.46, the
error in K caused by setting e = 0 in equation (1) is only 11 per
cent. We also assume that M � M∗, so that equation (1) simplifies
to

K = m

M∗

(
2πG M∗

P

)1/3

, (2)

where m ≡ M sin i is the minimum companion mass, corresponding
to an orbit viewed edge-on.

Throughout this paper we shall assume that all of the stars in the
survey have a mass equal to that of the Sun, M∗ = M
. This is not a
bad approximation since most radial velocity surveys for low-mass
companions have focused on solar-type stars. In fact, our method is
easily generalized to the case where the survey stars have different
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152 S. Tabachnik and S. Tremaine

Table 1. Characteristics of eight radial velocity surveys of extrasolar planets: stated velocity precision
of the survey (KS), duration of the programme, number of stars observed to date, number of planetary
companions discovered (M sin i < 10 MJ), and references for each survey.

Survey KS Duration Number of Number of planets References
(m s−1) (yr) stars observed discovered

Keck 2–5 5.5 530 27 Vogt, Marcy & Butler (2000)
Coralie 4 3 1000 23 Udry, Mayor & Queloz (2001)
Lick 3–10 13.5 300 18 Cumming, Marcy & Butler (1999)
Elodie 10 7.5 320 13 Udry et al. (2001)
AFOE 10 6.5 100 7 Nisenson et al. (1999)
AAT 3 4 200 7 Tinney et al. (2001)
ESO 8–15 9 40 2 Endl, Kürster & Els (2000)
McDonald 15–20 10.5 73 2 Cochran, Hatzes & Paulson (2000)

masses, but to do so we need to know the masses of all the stars
in the survey (not just those that have detected companions) – and
this extra complication did not seem worthwhile in this preliminary
analysis.1

We restrict our attention to companions with minimum mass
m � mmax ≡ 10 MJ, where MJ is the mass of Jupiter; this cut-off
hopefully minimizes the contamination of our sample by brown
dwarfs and is below the deuterium-burning threshold, which is
sometimes taken to define the boundary between planets and stars.
We also restrict our attention to orbital periods P > Pmin = 2 d, cor-
responding to a semimajor axis of 6.7 R
 = 0.031 au; this limit is
small enough to include all the known planets.

We assume that the probability that a single star has a com-
panion with mass and orbital period in the range [M, M + dM],
[P, P + dP] is given by a power law,

dp = C

(
M

M0

)−α (
P

P0

)−β
dM

M

dP

P
, (3)

where C, α and β are constants to be determined, and M0 and P0 are
a fiducial mass and period, which we choose to be M0 = 1.5 MJ and
P0 = 90 d (the reasons for this choice are outlined in the following
subsection). If the distribution of companion orbits is isotropic, the
distribution of minimum mass m = M sin i and period is given by

dp = c

(
m

M0

)−α (
P

P0

)−β
dm

m

dP

P
, (4)

where

c = 2α


(

1 + 1
2 α
)2


(2 + α)
C, (5)

with 
(·) being the gamma function, and α >−2.
Initially we assume that the survey detects a companion if and

only if (i) the velocity amplitude K exceeds a survey-dependent de-
tectability limit KD and (ii) its orbital period is shorter than a survey-
dependent upper limit Pmax. We expect that Pmax will be proportional
to the duration of the survey, since typically at least two orbits are
required for a reliable detection. More realistic smooth cutoffs to
the detection efficiency are discussed in Section 2.2. Although the
detection limits KD and Pmax can be estimated from descriptions of
the survey, we adopt the more objective approach of determining
them directly from the maximum-likelihood analysis.

Let xi = ln(mi/M0) and yi = ln(Pi/P0), i = 1, . . . , N , where mi

and Pi are the minimum mass and period of the companions detected

1 One of the largest relative errors caused by setting e = 0 and M∗ = M

is for ε Eri (M∗ = 0.8 M
, e = 0.61), where equation (2) with M∗ = M

yields a value for K that is 46 per cent too small.

in the survey. Then the velocity amplitude Ki equation (2) exceeds
the detection limit KD if

xi − 1

3
yi > v ≡ ln

(
KD

28.4 m s−1

)
− ln

(
M0

MJ

)
+ 1

3
ln

(
P0

1 yr

)
.

(6)

Similarly, the orbital period is less than the maximum detectable
period if

yi < u ≡ ln

(
Pmax

P0

)
. (7)

The other constraints are

xi < xmax ≡ ln (mmax/M0) = ln 10 + ln (MJ/M0),

yi > ymin ≡ ln (Pmin/P0) = −5.207 + ln(1yr/P0).
(8)

The constants xmax and ymin are fixed, while the variables u and v

are to be determined by the maximum-likelihood analysis.
From equation (4) the expected number of companions in the

interval dx dy in a survey of N ∗ stars is

n(x, y) dx dy = N ∗ p(x, y) dx dy where p(x, y) = ce−αx−βy .
(9)

The likelihood function L is the product of (i) the probability of
detecting N companions with minimum masses xi and periods
yi and (ii) the probability of observing none elsewhere in the domain
D of (x, y) space in which companions are detectable. Thus

L =
N∏

i=1

n(xi , yi ) exp

[
−
∫

D

dx dy n(x, y)

]
,

if all (xi , yi ) ∈ D, (10)

and zero otherwise. The domain D is v + 1
3 y < x < xmax, ymin <

y < ũ, with

ũ(u, v) ≡ min [u, 3(xmax − v)] . (11)

We now substitute equation (9) into equation (10) and take the log
of the result,

ln L = N ln (cN ∗) − α

N∑
i=1

xi − β

N∑
i=1

yi − cN ∗ f (α, β, u, v).

(12)

Here

f (α, β, u, v) =
∫ ũ

−∞
dy

∫ ∞

v+y/3

dx g(α, β, x, y), (13)

where

g(α, β, x, y) =
{

e−αx−βy if x < xmax and y > ymin,

0 otherwise.
(14)
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Mass and period distributions of extrasolar planets 153

Table 2. For each survey, best estimates for the exponents α and β and the
normalizing constant C in equation (3), the maximum detectable period Pmax

and the velocity precision KD in m s−1. The fiducial mass and period are
M0 = 1.5 MJ, P0 = 90 d. The errors on Pmax and KD are one-sided, since
the maximum likelihood is achieved when these parameters equal the largest
period and smallest velocity amplitude found in the survey.

Survey α β C × 104 Pmax KD

(yr) (m s−1)

Keck 0.05 ± 0.17 −0.18 ± 0.11 21.4+4.4
−3.9 4.2 + 0.4 10.3 − 0.7

Coralie 0.16 ± 0.19 −0.23 ± 0.13 11.8+2.7
−2.3 2.1 + 0.2 11.1 − 0.7

Lick −0.02 ± 0.22 −0.13 ± 0.12 23.0+5.9
−5.0 7.1 + 1.4 11.2 − 1.3

Elodie 0.51+0.43
−0.41 −0.44+0.17

−0.18 34.2+12.1
−9.9 6.3 + 1.1 36.6 − 1.9

AFOE 0.49+0.49
−0.46 −0.16+0.23

−0.24 57.0+28.1
−21.3 3.6 + 3.3 32.7 − 3.8

AAT 0.73+0.58
−0.53 −0.783+0.29

−0.33 35.6+16.0
−12.5 2.0 + 0.3 29.2 − 2.5

ESO 0.98+1.18
−0.95 −1.31+0.65

−0.92 4.9+16.9
−4.4 6.9 + 2.0 12.9 − 3.5

McDonald 2.09+1.92
−1.34 −2.46+1.11

−1.64 0.14+2.8
−0.0 6.9 + 1.0 12.9 − 1.6

The integral yields

f (α, β, u, v) = 3e−αv

α(α + 3β)

[
e− 1

3 (α+3β)ymin − e− 1
3 (α+3β)ũ(u,v)

]
+ e−αxmax

αβ

[
e−βũ(u,v) − e−βymin

]
, (15)

if v < xmax − 1
3 ymin and u > ymin, and zero otherwise.

The best estimates for the fitted variables c, α, β, u and v corre-
spond to the global maximum of ln L . First, the constant c can be
evaluated from

∂ ln L

∂c
= N

c
− N ∗f = 0 ⇒ c = N

N ∗f
. (16)

Substituting this result into equation (12) yields

ln L = N

[
ln

(
N

f

)
− 1

]
− α

N∑
i=1

xi − β

N∑
i=1

yi . (17)

To determine the best estimates for u and v we note that ln L de-
pends on these parameters only through f (α, β, u, v), and that

Figure 1. The left-hand panel shows the correlation between the duration of each survey (from Table 1) and the longest period in the sample. Note that Lick,
ESO and McDonald programs have all detected the same long-period planet: ε Eridani, which has an inferred orbital period of P = 2502.1 d. All of the points
lie below the dashed line (x = y), indicating that a reliable detection requires following the star for more than one orbital period. The right-hand panel shows
the correlation between the stated velocity precision of each survey (from Table 1) and the smallest velocity amplitude of any of their detected planets. Almost
all of the points lie well above the dashed line, indicating that determining a reliable orbit requires a velocity amplitude that is significantly larger than the
stated velocity precision. The exception is the derived limit for McDonald; in this case KD is set by their detection of a planet in the ε Eri system, for which
our approximations of a circular orbit and solar-mass star yield an estimate for the velocity amplitude that is 46 per cent too low (see footnote 1).

ln L is maximized when f is minimized. According to equation (13),
f depends on u and v only through the limits of integration, that is,
only through the shape of the domain D. Since the integrand is non-
negative, we minimize f by making D to be as small as possible, so
long as it still contains all the data points (xi , yi ). This can be done
by setting v equal to the smallest value of xi − 1

3 yi in the sample,
and u equal to the largest value of yi in the sample.

The best estimates for the remaining parameters are given by

0 = ∂ ln L

∂α
= − N

f

∂ f

∂α
−

N∑
i=1

xi , (18)

0 = ∂ ln L

∂β
= − N

f

∂ f

∂β
−

N∑
i=1

yi , (19)

which can easily be solved numerically. Table 2 lists the best es-
timates of the parameters for each survey. The value of the nor-
malization parameters C is based on the fiducial mass and period
M0 = 1.5 MJ and P0 = 90 d, which are chosen for reasons outlined
in the following subsection.

Fig. 1 shows the correlation between the duration of each survey
and the fitted value of Pmax for that survey, as well as the stated
velocity precision KS for each survey and the fitted detection limit
KD for that survey (values taken from Tables 1 and 2). The detection
limit is generally a factor of 3 or so higher than the stated precision,
presumably because determining a reliable orbit is more difficult
than simply detecting the presence of a companion. For most of the
surveys there is a good correlation between the duration and Pmax,
with the slope of the correlation indicating that approximately two
orbital periods of data are needed for a reliable detection.

2.1 Generalization to multiple surveys

It is straightforward to expand the analysis of the previous section
to multiple surveys, which we label by j = 1, . . . , J . The three pa-
rameters describing the companion distribution, α, β and c, are now
derived from the entire sample of known companions from all sur-
veys, while the parameters u j and v j that describe the period and
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radial velocity thresholds are different for each survey. Thus the
expected number of companions to be discovered in the interval
dx dy in survey j is

n j (x, y) dx dy = N ∗
j p(x, y) dx dy, (20)

where p(x, y) is defined in equation (9) and N ∗
j is the number of

stars in survey j. Equation (10) becomes

L j =
N j∏

i=1

n j (xi, j , yi, j ) exp

(
−
∫

D j

n j (x, y) dx dy

)
, (21)

and the likelihood is given by

ln L =
J∑

j=1

ln L j . (22)

Again, the integration constant can be eliminated from equation (22)

∂ ln L

∂c
=

J∑
j=1

(
N j

c
− N ∗

j f j

)
= 0 ⇒ c =

∑J
j=1 N j∑J

j=1 N ∗
j f j

, (23)

and the likelihood becomes

ln L =
J∑

j=1

N j

[
ln N ∗

j + ln
J∑

j=1

N j − ln
J∑

j=1

N ∗
j f j − 1

]

− α

J∑
j=1

N j∑
i=1

xi, j − β

J∑
j=1

N j∑
i=1

yi, j . (24)

As before, v j is set equal to the smallest value of xi, j − 1
3 yi, j in

survey j, and u j is set equal to the largest value of yi, j in survey j.
The surveys listed in Table 1 have discovered 99 companions,

although several appear in more than one survey so there are only
72 distinct companions. Companions discovered in multiple sur-
veys are counted in each survey where they appear; this approach

Figure 2. Contours of constant likelihood for the combination of all eight surveys. The maximum of L is located at the filled circle, α = 0.11 ± 0.95,
β =−0.27 ± 0.06. The contour levels represent ‘n–σ ’ confidence regions, in which the likelihood function is smaller than its maximum value by exp(−n2/2).

leads us to underestimate the statistical uncertainties in our parame-
ters somewhat [probably by about a factor of (99/72)1/2 = 1.2], but
avoids the systematic bias that would be created by counting the
companions only once and discarding them from the other surveys.
A conservative alternative approach is to use only the Coralie survey
for parameter estimation (top lines of Tables 1 and 2).

The values of the normalization parameters c and C quoted in
this paper are based on the fiducial mass and period M0 = 1.5 MJ

and P0 = 90 d. These values are chosen to minimize the uncertainty
in ln c. If the uncertainties are small, this requirement is equivalent
to choosing M0 and P0 so that the covariances between c and the
exponents α and β vanish.

The likelihood analysis yields

α = 0.11 ± 0.095, (25)

β = −0.27 ± 0.06, (26)

c = 1.88+0.20
−0.18 × 10−3 (27)

C = 1.94+0.20
−0.18 × 10−3, (28)

where the confidence limits correspond to ln L = (ln L)max−0.5.
With these estimators at hand, it is straightforward to plot the like-
lihood as a function of the exponents α and β (Figs 2 and 3).
Fig. 2 indicates that there is a significant covariance between the ex-
ponents α and β that characterize the mass and period distributions
(correlation coefficient r = −0.31). This correlation arises because
of the selection effects on velocity amplitude, and demonstrates that
both distributions should be fitted simultaneously.

Table 3 shows the difference between the number of predicted
companions and the number of actual detections; these are gener-
ally in good agreement except for the McDonald survey, which is
discussed further in Section 3.2.

This table also lists the number of predicted brown dwarfs
(10 < M < 80 MJ) in each sample, assuming that the planetary mass
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Mass and period distributions of extrasolar planets 155

Figure 3. The estimators of the exponents of the mass and period distribution, α and β, for the combined eight surveys (filled circles) compared with their
values for each individual survey. The estimates are approximately consistent given the uncertainties.

Table 3. Comparison of predicted and observed numbers of
companions.

Survey Number of Number of Number of Number of
predicted discovered predicted discovered
planets planets brown brown

dwarfs dwarfs

Keck 21+3
−2 22 8+4

−3 1

Coralie 35+6
−4 23 13+7

−4 1

Lick 13 ± 2 17 6+4
−2 1

Elodie 9+2
−1 13 6+4

−2 –

AFOE 3 ± 0 7 2 ± 1 –
AAT 4 ± 1 4 3 ± 1 –
ESO 2 ± 0 2 1 ± 0 –

McDonald 3+1
−0 2 1 ± 1 –

function extends to 80 MJ, and the number of brown dwarfs actually
discovered. As many authors have pointed out, the small number of
brown dwarf discoveries strongly suggests that the mass function
we have derived cannot be extrapolated to brown dwarf masses.

2.2 Generalization to a smooth cut-off

A sharp cut-off in the detectability of planets at radial velocity KD

and period Pmax is not very realistic. A better approximation is to
replace the sharp cut-offs in equations (12) and (13) with smooth
functions. We can do this by replacing f (α, β, u, v) with

fs(α, β, u, v) =
∫ ∞

ymin

dy hu(u − y)

×
∫ xmax

−∞
dx hv

(
x − 1

3
y − v

)
e−αx−βy,

=
∫ ∞

−∞
dy hu(u − y)

×
∫ ∞

−∞
dx hv

(
x − 1

3
y − v

)
g(x, y),

(29)

where g(x, y) is defined by equation (14).

The functions hu(·) and hv(·) are measures of the detection ef-
ficiency of the survey as a function of the orbital period and the
velocity amplitude. The function hu(s) approaches 0 as s → −∞
and 1 as s → ∞; we shall assume that hu(s) − 1

2 is an odd function
of s so that hu(0) = 1

2 , with similar assumptions for hv . In the limit
where hu and hv are step functions we recover equation (13). Thus
v and u are still defined by equations (6) and (7), except that KD and
Pmax are interpreted as the velocity amplitude and orbital period at
which the detection efficiency falls to 50 per cent.

Let

hu(s) =
∫ s

−∞
bu(s ′) ds ′, hv(t) =

∫ t

−∞
bv(t ′) dt ′; (30)

then equation (29) can be rewritten as

fs(α, β, u, v) =
∫ ∞

−∞
ds ′ bu(s ′)

∫ ∞

−∞
dt ′ bv(t ′)

×
∫ u−s′

−∞
dy

∫ ∞

t ′+y/3+v

dx g(x, y)

=
∫ ∞

−∞
ds bu(s)

∫ ∞

−∞
dt bv(t)

× f (α, β, u − s, v + t), (31)

where the second line follows from equation (13), and we have
dropped the primes on the dummy variables. These integrals are
easy to evaluate numerically.

We shall choose

bu(s) = 1√
2πδu

exp

(
− s2

2δ2
u

)
,

hu(s) = 1

2
+ 1

2
erf

(
s√
2δu

)
,

(32)

with a similar choice for hv(t). We call δu and δv the threshold
widths. Fig. 4 shows the effect of non-zero threshold widths on the
slope estimators α and β. In the arbitrary but plausible case where
the detection efficiencies h drop from 3

4 to 1
4 over a factor of 2 in

period or velocity amplitude, we have δu , δv = 0.51. In this case the
best-fitting value of α is shifted downward by 0.04 and the best fit for
β is shifted upwards by about 0.020. These changes are significant
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Figure 4. The difference of the modified best parameters αm and βm (which depend on the threshold widths δu and δv) and the nominal values of α and β as
quoted in equations (25) and (29).

but relatively modest; since the appropriate values of the threshold
widths are difficult to estimate, we shall not attempt to correct for
this effect.

3 D I S C U S S I O N

3.1 Comparison with other estimates of the mass distribution

We have found that the distribution of companion masses below
10 MJ is approximately flat in log M , or slightly rising towards small
masses, i.e. the exponent α is small and positive (α = 0.11 ± 0.1,
equation 25). The distribution of companion masses has already
been examined by a number of authors, most of whom have reached
similar conclusions (Mazeh, Goldberg & Latham 1998; Marcy &
Butler 1998; Mazeh 1999; Stepinski & Black 2000, 2001; Jorissen,
Mayor & Udry 2001; Zucker & Mazeh 2001). Our approach of-
fers several advantages over the variety of methods used in these
papers: (i) we correct for selection effects in period and veloc-
ity amplitude; (ii) we account for the coupling between the or-
bital period distribution and the mass distribution; (iii) we estimate
the sensitivity in radial velocity or maximum period (our param-
eters KD and Pmax) self-consistently from the data; and (iv) we
determine the normalization of the mass distribution, not just its
shape.

3.2 Extrapolations

It is interesting to investigate the implications of extrapolating the
mass and period distributions that we have derived. If we assume
that our maximum-likelihood distribution (equations 25–28) applies
in the mass range 10 < m < 80 MJ that is usually associated with
brown dwarfs, we predict that the Keck and Coralie surveys should
have discovered, respectively, 8 and 13 companions in this range
(Table 3); in fact these two surveys found only one companion each.
This result confirms the finding of several authors (Basri & Marcy
1997; Mayor, Queloz & Udry 1998; Mazeh et al. 1998; Mazeh
1999; Jorissen et al. 2001) that there is a cut-off in the power-law
distribution of companion masses at m � 10 MJ, and a ‘brown-dwarf
desert’ between ∼10 and ∼100 MJ in which a few companions exist
at semimajor axes less than a few au.

The average number of planets per star with masses between M1

and M2 and periods between P1 and P2 is given by equation (3):

N = C

αβ

[(
M0

M1

)α

−
(

M0

M2

)α
][(

P0

P1

)β

−
(

P0

P2

)β
]
. (33)

Thus, for example, in our best-fitting model (equations 25–28), the
expected number of planets per star with periods between 2 d and
10 yr and masses between M and 10 MJ is

N = 0.152
[
(M0/M)0.11 − 0.809

]
. (34)

For M = MJ, N = 0.036; thus about 4 per cent of solar-type stars
have a planet of Jupiter mass or larger in this period range. If we
make the large extrapolation to Earth-mass planets (M = 0.003 MJ)
we find N = 0.180; in this case, more than 15 per cent of stars would
have an Earth mass or larger companion.

If we extrapolate to larger orbital periods, we find that the number
of companions in a given mass range with periods between 2 d and
5 yr would be about 0.26 times the number with periods between
5 and 1000 yr; in this case a significant fraction of Jupiter-mass
planets would have orbital periods short enough to be detected in
existing radial velocity surveys.

3.3 Comparison with the solar nebula

The mass and period distribution (3) can be used to determine the
total surface density in planets less massive than Mmax, assuming
that the central star has mass 1 M
:

�(a) = 3C

4π (1 − α)

M0

(1 au)2

(
Mmax

M0

)1−α(
P0

1 yr

)β(
1 au

a

)2+3β/2

.

(35)

For our best-fitting model,

�(a) = 52 g cm−2

(
Mmax

10 MJ

)0.9(
1 au

a

)1.6

, (36)
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Figure 5. The minimum mass (left-hand panels) and period (right-hand panels) distributions, on linear (top) and logarithmic (bottom) scales. The grey
histograms represent all objects, including those with M sin i > 10 MJ, found in the radial velocity surveys in Table 1 (67 objects). The unshaded histograms
include duplicate discoveries of the same object in different surveys, as discussed in Section 2.1 (94 objects). The curves show the predictions of our best-fitting
model, given by equations (25)–(28) and (33). As discussed in the paper, the histograms are subject to selection effects at small mass and large period, and
there is evidence for a cut-off to the mass distribution above ∼10 MJ.

this can be compared with the gas and dust densities required in the
minimum solar nebula (e.g. Hayashi 1981)

�gas(a) = 1.7 × 103 g cm−2

(
1 au

a

)3/2

,

�dust(a) = 7.1 g cm−2

(
1 au

a

)3/2

. (37)

The agreement of the exponents in equations (36) and (37) is striking
and perhaps surprising, given that many theorists believe that the
extrasolar giant planets must have formed at much larger radii and
migrated to their present locations, while the planets in our Solar
system have suffered little or no migration.

3.4 Summary

Fig. 5 shows the minimum-mass and period distributions of all of
the substellar companions found in the surveys in Table 1, along
with the simple power-law models that we have used to fit these
distributions. The effects of the selection effects at small mass and
large period, and the evidence for a cut-off above ∼10 MJ, are
evident in the bottom panels.

We have described a simple maximum-likelihood method that de-
termines the mass and period distributions of extrasolar planets dis-
covered in multiple surveys. Our method determines and accounts
for selection effects on velocity amplitude and period from the data
themselves, without relying on the nominal survey parameters. Our
best-fitting model is defined by equation (3) and equations (25)–
(28).
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