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Maximum Likelihood Multiple Subspace Projections
for Hidden Markov Models

Mark J. F. Gales

Abstract—The first stage in many pattern recognition tasks
is to generate a good set of features from the observed data.
Usually, only a single feature space is used. However, in some
complex pattern recognition tasks the choice of a good feature
space may vary depending on the signal content. An example is in
speech recognition where phone dependent feature subspaces may
be useful. Handling multiple subspaces while still maintaining
meaningful likelihood comparisons between classes is a key
issue. This paper describes two new forms of multiple subspace
schemes. For both schemes, the problem of handling likelihood
consistency between the various subspaces is dealt with by viewing
the projection schemes within a maximum likelihood framework.
Efficient estimation formulae for the model parameters for both
schemes are derived. In addition, the computational cost for their
use during recognition are given. These new projection schemes
are evaluated on a large vocabulary speech recognition task in
terms of performance, speed of likelihood calculation and number
of model parameters.

I. INTRODUCTION

T HE first stage in many pattern recognition tasks is to
generate a good set of features from the observed data.

The set should be compact and capture all class discriminating
information. Features that contain little or no information
should be removed since they increase the computational
load and the number of model parameters to be estimated
without improving performance. Furthermore, the features
generated should be suited to the form of classifier being used.
For example, if diagonal covariance matrices are used the
data should be decorrelated. For some complex signals the
“best” feature set is class-dependent. In these cases multiple,
class-specific, feature sets may be more appropriate than a
single feature set. This paper considers multiple feature sets
using large vocabulary continuous speech recognition (LVCSR)
as the example task. LVCSR is particularly interesting in this
context because of the complexity of the signal and the large
number of Gaussian components used in the typical systems.
For speech, the particular acoustic realization may be best
modeled in different acoustic subspaces depending on whether,
for example, a vowel or consonant was generated.

The majority of previous work in projection schemes has
concentrated on generating a single “good” feature subspace
[1]–[3]. Some techniques may be applied directly using just the
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observed data, for example schemes based on principal compo-
nent analysis (PCA). Others require class labels, such as linear
discriminant analysis (LDA) [1], [2]. Recently the use of max-
imum likelihood (ML) estimation has been proposed for gen-
erating a linear subspace projection1 with class labeled data,
heteroscedastic LDA (HLDA) [3]. As ML estimation is being
used distributions must be specified to span all dimensions of
the original feature space to enable consistent parameter opti-
mization. The dimensions of the transformed feature space are
split into two distinct groups. For those dimensions that con-
tain class information,usefuldimensions, class-specific distri-
butions of an appropriate form are used. Those dimensions con-
taining little or no class information,nuisancedimensions, are
modeled using class independent distributions.

This paper examines schemes for generating multiple linear
subspaces. One important issue when using multiple subspaces
is how to compare likelihoods from models built in different
subspaces. This paper addresses the problem by building
multiple subspace projections within the ML framework.
By ensuring that all the feature transforms span the original
space there are no problems comparing likelihoods. Subspace
projections are obtained by appropriately tying model param-
eters. Since LVCSR is the target application, hidden Markov
models (HMMs) [4] are used as the underlying model with
Gaussian mixture models representing each state. Multiple
linear subspaces have previously been examined for HMMs
[5], [6]. Factor analysis (FA) [6] uses a different subspace for
each Gaussian component. It may be viewed as a restricted
form of covariance modeling. Though ML estimation for
factor analysis has simple re-estimation formulae [7], the
likelihood calculations are computationally expensive for
LVCSR compared to other restricted covariance modeling
schemes [8]. This is further discussed in Section V. In [5],
multiple components share the same subspace. The subspace
transforms are trained in a discriminative fashion, rather than
using ML estimation. The authors obtained improvements in
recognition results. However, no mention was made of ensuring
that the likelihoods obtained from different subspace could
be correctly compared. The normalization terms associated
with feature-space transformations were ignored, both in
the optimization schemes and likelihood calculation. For the
single transform case trained using discriminative training the
normalization terms naturally cancel, but this is not the case
for multiple transforms. It must be assumed therefore that the
discriminative optimization criterion is restricting the ability

1Here the term “projection” will be used to denote reducing the size of the
feature so that dimensions that contain little or no class discriminative informa-
tion are removed.
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of the transform normalization terms to become significantly
different. Unfortunately using discriminative training schemes
for LVCSR is very computationally expensive, so the vast
majority of LVCSR systems, and the system considered here,
are trained using ML estimation.

The proposed subspace projection schemes in this paper are
extensions to HLDA [3] enabling multiple subspaces to be in-
corporated. Rather than describing the proposed schemes di-
rectly in the HLDA framework, they are described in terms of
tying the parameters of asemi-tied covariance matrix(STC) [8]
system. This allows a variety of schemes, including LDA and
HLDA, to be described in a consistent fashion. Two new forms
of projection are investigated. The first,multiple HLDA, is a di-
rect extension to HLDA to allow class-dependent subspaces. In
this case there is no global nuisance subspace, as all dimensions
contain some class information. The second form,multiple LDA
(MLDA), generates a common nuisance subspace for all trans-
forms. For likelihood calculations during recognition, these nui-
sance dimensions may be ignored, reducing the computational
cost.

This paper is organized as follows. Section II describes LDA
and its extension to HLDA. Section III discusses STC systems
and how they may be efficiently trained. The two subspace pro-
jection schemes are then described in terms of tying the parame-
ters of the STC system. In Section II these models are compared
to the linear Gaussian models described in [7]. Finally, experi-
ments on a speaker independent task are presented.

II. L INEAR DISCRIMINANT ANALYSIS

This section describes a standard linear subspace projection
scheme, linear discriminant analysis (LDA). Two equivalent
forms of optimization are described, the standard one based
on the between to within class covariance ratio and an ML
estimation scheme. An extension to LDA, heteroscedastic LDA
is then described. This adds an additional level of flexibility to
the standard LDA scheme by removing the constraint that all
within class covariance matrices are approximately the same.
A third scheme, heteroscedastic discriminant analysis, is also
described. In contrast to the other schemes this is not based
on an ML criterion. For all projection schemes in this paper
diagonal covariance matrices will be used for the Gaussian
components in the final, projected, feature space. This is not
a requirement. For example in [3] HLDA is investigated with
full-covariance matrices in the projected space. However the
vast majority of speech recognition systems use multiple
diagonal covariance Gaussian components. Furthermore, all
schemes will use each Gaussian component as a separate class.

A. Standard Linear Discriminant Analysis

LDA is a standard linear projection scheme [9]. The aim of
the process is to obtain a projection matrix, where is the
original vector size and , that results in a feature space that
is “good” for discrimination. Here discrimination is measured
by the ratio of between class covariance to the average within

class covariance. The standard optimization for LDA is to find
the transform, , that maximizes [10]2

(1)

where and are the between and average within class co-
variance matrices in the original feature space. These are defined
as3

(2)

where

(3)

(4)

and

(5)

In both cases, is the posterior probability of Gaussian
component at time instance given the current model set, ,
and all the training data. Note that for LDA there is the implicit
assumption that the within class covariance matrices for each of
the Gaussian components is the same. It can be shown that the
optimal value and ordering of is found by taken the top
right eigenvectors of ordered according to decreasing
eigenvalues [10].

Rather than expressing the optimization in the form of (1) it
may be cast in the form of ML estimation [3], [11]. A-dimen-
sional subspace of the original-dimensional feature space is to
be retained. Since ML estimation is to be used to find the trans-
form a consistent feature space to compute the likelihoods is
required. Therefore, simple truncation of the transform cannot
be used. Instead during training the nuisance dimen-
sions are modeled by a nondiscriminating model, in this case
a single, global, Gaussian distribution. This global distribution
in the original feature space has mean, defined previously,
and covariance matrix , . A simple two-dimen-
sional (2-D) example is shown in Fig. 1. There are two classes,
each shown having the same within class covariance matrix. The
original 2-D space is projected to a single dimensional subspace

2This paper uses the following convention: capital bold letters refer to ma-
trices, e.g.,A, bold letters refer to vectors, e.g.,b, and scalars are not bold, e.g.,
c. When referring to elements of a matrix or vector subscripts are used, e.g.,
a is theith row of matrixA, a is the element of rowi columnj of matrix
A andb is elementi of vectorb. Diagonal matrices are indicated byA .
Where submatrices are used they are indicated, for example, byA , this is a
p� n matrix (n is the dimensionality of the feature vector). Where subsets of
the diagonal matrices are specified the matrices are square, e.g.,A is a
p � p square diagonal matrix.A is the transpose of the matrix anddet(A)
is the determinant of the matrix. Model parameters in the original feature space
will be marked as, for example,����

3These definitions have been slightly modified to reflect the use of HMM’s,
or Gaussian mixture models. This is similar to the LDA process described in
[2].
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Fig. 1. Linear discriminant analysis.

( , ), yielding the useful dimension,Dim 1. The
nuisance dimension is labeledDim 2. Each class has a separate
distribution inDim 1, and there is a single, common, distribution
in the nuisance dimension.

Optimizing the likelihood, given the values of , may
be shown to require maximizing (see (6) at the bottom of the
page) with respect to . In [3] it is shown that the right eigen-
vectors of associated with the largesteigenvalues are
an ML solution. There are an infinite number of possible ML
solutions, since there is no constraint when optimizing (6) that

. For example the variances can be scaled, which
results in each row of the transform being scaled and the same
likelihood value being obtained, though with a different trans-
form. All solutions will yield the same performance classifier
when using continuous density HMMs.

B. Heteroscedastic LDA

Heteroscedastic LDA (HLDA) [3] is an extension to LDA in
which the restriction that all within class covariance matrices are
the same is removed. This is shown in Fig. 2. Classes 1 and 2
have different within class covariance matrices. Again the 2-D
data is projected into a single discriminating dimension,Dim
1, in which the class conditional distributions now have dif-
ferent covariance matrices. The nuisance dimension,Dim 2, has
a single global Gaussian distribution associated with it. Modi-

Fig. 2. Heteroscedastic linear discriminant analysis.

fying (6) to reflect this added flexibility yields (see (7) at the
bottom of the page) where

(8)

Unfortunately, in contrast to LDA, HLDA has no simple op-
timization scheme. Standard nonlinear optimization schemes
may be used to obtain the parameters of[3], [12]. Alterna-
tively, a computationally efficient scheme for finding the values
is given in [8]. This simple iterative scheme is guaranteed to find
a locally optimal solution and to be stable. In [3] a comparison
of LDA and HLDA is performed on a simple digit task. It was
found HLDA outperformed LDA. This has also been observed
for LVCSR [12].

For both LDA and HLDA, the model parameters may be
simply estimated once the projection matrix, , has been de-

termined. The ML estimates of the subspace mean, , and

diagonal covariance matrix, , for component are

(9)

and

(10)

(6)

(7)
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The likelihood need only be calculated in the useful subspace
specified by the projection matrix. Thus, the cost4 is

, where is the number of Gaussian components in the
system. For LVCSR, depending on the ratio ofto , this can
dramatically reduce the cost compared to the likelihood calcu-
lation in the original space which costs . Furthermore,
the number of parameters is reduced. In the original space there
are parameters compared to for
the HLDA case.

C. Heteroscedastic Discriminant Analysis

Recently, an alternative interpretation of LDA, which is not
based on maximizing the likelihood, has been proposed [13].
Heteroscedastic discriminant analysis (HDA) uses the following
objective function to obtain the projection matrix

(11)

In contrast to HLDA, there is no modeling of the nui-
sance dimensions. Only a truncated projection matrix is
estimated. This expression is closely related to the optimiza-
tion criterion for LDA given (1). However, as with HLDA, the
within-class covariance matrices are not constrained to be the
same. This form has the elegant intuitive interpretation of ob-
taining a feature space that explicitly maximizes the between
class variance to within class variance without constraining the
within class covariance matrices to be the same. The optimiza-
tion of this expression requires the use of standard quasi-Newton
methods, rather than the simple iterative scheme for HLDA.

Though HDA has an elegant interpretation, it is not appro-
priate for use with multiple projection schemes. For all multiple
projection schemes it must be possible to compare likelihoods
across the difference subspaces. This requires that the complete
feature space must be modeled in some form (if not necessarily
evaluated). As HDA does not model the nuisance dimensions it
is not useful for multiple projection schemes. The same problem
applies to other nonlikelihood projection schemes such as min-
imum Bayes feature selection [14]. For this reason, the multiple
projection schemes in this paper are based on maximum likeli-
hood schemes.

III. SEMI-TIED COVARIANCE MATRICES

Using LDA and HLDA only a single subspace can be ob-
tained. In many tasks the optimal feature space may be depen-
dent on the specific class that generated the data. For example
in speech recognition the best subspace may depend on whether

4For all likelihood computation costs order of terms are given. For likelihood
calculation the number of multiply accumulates is used for the log-likelihood
calculation. No account is taken of the log-addition for multiple components
(though this is not necessary if a simple max is used). For the number of param-
eters the weights and transition matrices are not included.

the phone is a vowel or a consonant. In this case it is useful to
have multiple feature spaces. One scheme to enable this, though
without reducing the feature space size, is semi-tied covariance
matrices (STC) [8]. In this form of modeling, each of the classes
(in this case Gaussian components) is uniquely assigned5 to one
of disjoint sets, or transform classes, to . Each of
these transform classes has an independent transform associated
with it which defines the feature space. Rather than viewing the
transforms as acting on a feature-space partitioned according to
the component generating the observation, they may be viewed
as acting on the model parameters, hence the name. The covari-
ance matrix for a particular Gaussian componentin the orig-
inal feature space, , may be expressed as

(13)

where is the component-specific diagonal matrix in the
transformed space,6 is the transform class-specific full
matrix and indicates the transform class that component
belongs to (i.e., ). Thus, though the effective co-
variance matrix is full, the number of free parameters is sig-
nificantly fewer then for full-covariance modeling. For full
covariance matrix components, there are param-
eters associated with the covariance matrices. For STC matrices
with transform classes there are parameters. For
typical cases where there is a dramatic decrease in the
number of model parameters. In addition to reducing the number
of model parameters, this form of covariance modeling allows
efficient likelihood calculation. Using the inverse of the trans-
form matrix,

(14)

remembering that and are the component means in
the original and transformed spaces respectively. The cost of

5There are various options for this assignment ranging from expert knowledge
(such as the same phone) to ML versions similar toK-means clustering [8]. In
this work, a “hard” assignment of each Gaussian component to a single transfor-
mation class is used. An interesting alternative approach is to use a probabilistic
assignment. The likelihood of a particular observationo being generated by
statem is given by

L(ojm) = P (rjm)L o;��� ;� ;A : (12)

The optimization of such a model is a straightforward application of a mixture
model [15] to the optimization described in this paper. For computational rea-
sons, this form of model is not considered in this paper.

6This is not a strict requirement. Other forms such as block-diagonal could be
used in theory, but for current state-of-the-art LVCSR, due to efficiency reasons,
a diagonal form has always been used. The use of nondiagonal cases for HLDA
was examined on a small vocabulary task in [3].
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full-covariance matrix likelihood calculation is com-
pared to for the STC case. The complete set of
model parameters for STC modeling,, may be written as7

(15)

The transform parameters are described in terms of the inverse
of the transform matrix because it has been found to yield effi-
cient optimization schemes [8] and simplifies the tying require-
ments that will be used later in this paper.

There is a close relationship between STC modeling and
HLDA. STC with a single transform class is identical to HLDA
with . Moreover, when HLDA may be viewed as
a particular form of tying of the STC model. The number of
transform classes is restricted to be one and the final

dimensions of the component means and variances,
and , are tied to be the same. Now

(16)

It is simple to show that this form of tying yields the same objec-
tive function as HLDA. For standard LDA an additional level of
tying is required where . The rest of this section
details the optimization of the STC system. The modifications
required for the standard HLDA system may be viewed as a re-
stricted version of the multiple HLDA system where ,
discussed later in this paper.

ML estimation is used to find the STC model parameters.
In common with standard HMM training, an expectation-max-
imization (EM) [16] approach is used. However, a generalized
EM scheme is required since there are no simple closed-form
solutions to find . In generalized EM, the auxiliary func-
tion , where is the set of “old” model parameters
and is the set of “new” model parameters, is optimized with
respect to the new model parameters. The auxiliary function is
given by

(17)

where

(18)

7Here the set of Gaussian component priors, or weights,fw ; . . . ; w g,
and the state transition probabilities, have not been included. The estimation of
these parameters is identical to the standard HMM parameter estimation [4].

and is the posterior probability of Gaussian component
a time instance given the old model set and all the training

data. Although (17) could be directly optimized using nonlinear
optimization schemes a simple efficient iterative scheme is pos-
sible [8]. The following scheme is used.

1) Estimate the within class covariance matrix for each
Gaussian component in the system, .

2) Using the current estimate of the transform, , obtain
the ML estimate of the set of component-specific diagonal
covariance matrices incorporating the appropriate param-
eter tying as required. This set of parameters will be de-
noted as . This is a stan-
dard problem and will only be mentioned briefly.

3) Estimate the new transform using the current set
.

4) Goto (2) until convergence, or appropriate criterion satis-
fied.

At each stage, the likelihood is guaranteed to increase or remain
the same. This form of optimization is preferable to the direct
nonlinear optimization as it is computationally efficient. Typi-
cally the algorithm converges after four or five iterations, and
is guaranteed to be stable [8]. Step (3) is itself an iterative esti-
mation scheme. Rewriting (17) using the fixed set (all

terms independent of are ignored) yields8

(19)

where is the th row of , the row vector is
the th row vector of cofactors of and

(20)

where is the th leading diagonal element of . It is
possible to show that the ML solution for rowis9

(21)

The optimization scheme is iterative since the estimation of each
matrix row is influenced by the cofactors of the complete ma-
trix. The computational cost of this inner loop is low since there
are simple sufficient statistics. The major cost is calculating the
cofactors of the transform matrices which is small compared to
obtaining the accumulates for large values of .

An alternative scheme for generating the semi-tied transforms
is to use non-ML estimation, such as state-specific rotations

8This uses the equalityjdet(A )j = c a . For further details of the
derivation of this equation, see [8].

9There are two possible, equivalent, solutions one positive, the other negative.
It makes no difference which is selected as they will yield the same likelihood.
For this paper, the positive root is always selected
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[17]. In [8], a comparison of STC matrices with state-specific ro-
tations was performed. It was found that STC modeling out-per-
formed the state-specific rotation scheme.

IV. M ULTIPLE SUBSPACEPROJECTIONS

Sections I–III have described the use of LDA and related
schemes to perform projections to a single, “optimal,” feature
space. Then STC systems were described. STC schemes may
be viewed as using multiple linear transformations of the fea-
ture-space without performing any projections. This section de-
scribes how the two forms of modeling may be combined to
give multiple subspace projections that can be trained in an ML
fashion. The multiple subspace projection schemes will be de-
scribed in terms of tying the parameters of an STC system.

A. Multiple HLDA

HLDA [3] was described in Section II. Multiple HLDA may
be viewed as an extension to HLDA where the classes are par-
titioned into distinct transform classes. Then a separate HLDA
transform is estimated for each of these transform classes. Mul-
tiple HLDA is illustrated for a simple case in Fig. 3.

Two transform classes are shown, with classes 1 and 2 as-
signed to transform class 1, and classes 3 and 4 assigned to
transform class 2. In both cases the 2-D data is projected down
to a single useful dimension for each transform class, shown
on the diagram asDim 1—Transform 1andDim 1—Transform
2. There are two important things to notice. First, both trans-
forms span the same, original, feature space,10 thus, when suit-
ably normalized the likelihoods of the transform classes may be
directly compared. Second, though the nuisance dimensions for
each transform are modeled using a simple single Gaussian dis-
tribution, they still contain some transform class-specific infor-
mation. HLDA is a restricted version of multiple HLDA where

, the number of transformation classes, is restricted to be one.
For multiple HLDA the feature space is split into two sub-

spaces for each transform class; the useful-dimensional sub-
space, and an -dimensional nuisance subspace where a
simple single Gaussian component nuisance model is used for
that transform class.11 Thus

(22)

and

(23)

10This is guaranteed since during training whenj det(A )j = 0 the log-
likelihood is�1.

11Greater flexibility in complexity of the models may be obtained by using a
hierarchy of tying, though this will not be investigated in this paper and is briefly
described in [18]. Furthermore, it is not necessary forp to be the same for all
transform classes. However in this workp was constrained to be the same for all
classes. More complicated multiple component noise models may be simply in-
troduced. The nuisance dimensions components are treated as a separate stream
[19] to the useful parameters. In terms of the optimization, the change is that
K in (32) is now a sum over all the nuisance components instead of the
single noise Gaussian. This is described in more detail in [18].

Fig. 3. Multiple HLDA.

where again indicates the transform class that component
belongs to (i.e., )

(24)

(25)

(26)

and

(27)

The likelihood calculation for multiple HLDA is less expen-
sive than that of STC, since certain dimensions of the feature-
vector are modeled with simple transform class dependent dis-
tributions. The likelihood may be computed as

(28)

where

(29)

need only be calculated once for each transform class. Thus
the likelihood calculation cost is . Note
that multiple HLDA is not a true projection scheme, since all the
dimensions contain some class information. Therefore the like-
lihoods used during recognition must be computed, though ef-
ficiently, in the full -dimensional space. When , HLDA,
the computational cost is even lower. The final dimensions
need not be computed since they do not discriminate between
the classes (single HLDA is a true projection scheme). Thus,
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the “likelihood” may be computed as12

(30)

The likelihood calculation cost is therefore only .
Furthermore, the number of parameters is reduced compared to
the STC case. For multiple HLDA there are

parameters to be estimated compared to
for STC systems.

Optimizing the parameters of the multiple HLDA transform
case is a simple modification to the semi-tied transform case. It
is possible to rewrite (17) as (ignoring all expressions that are
independent of )

(31)

where

(32)

For rows , differentiating (31) with respect to and
equating to zero yields the standard STC re-estimation formula
given in (21). For rows following the same procedure gives

(33)

The estimates for the mean and variance have the standard form
described for LDA and HLDA.

B. Multiple LDA

In Section IV-A, all the dimensions obtained using multiple
HLDAcontainsomeclass information.Thissectiondescribesthe
additional tying of the STC system required to generate a global
nuisancesubspace,whileusingmultiple transformations.Togen-
erate the global nuisance subspace all parameters associated with
the the final , the nuisance dimensions, are tied. Thus

(34)

and

(35)

This form of transform will be called multiple LDA (MLDA).13

12This is, of course, not the likelihood in the original space, but in the pro-
jected space of the useful dimensions.

13The name is motivated by the fact that the scheme can be used for opti-
mizing multiple LDA transforms by simply assuming that all the within class
covariance matrices are the same. Though a closed-form solution to the opti-
mization is still not possible, the sufficient statistics to obtain the model param-
eters are greatly simplified.

Fig. 4. Multiple linear discriminant analysis.

A simple example of MLDA is shown in Fig. 4. Four classes
and two transform classes are shown, with classes 1 and 2 as-
signed to transform class 1, 3, and 4 to transform class 2.Dim 2
is the nuisance dimension, common to both transform classes,
and all the data inDim 2 is modeled by a single Gaussian dis-
tribution. There are two different projections for the useful di-
mension, labeledDim 1—Transform 1andDim 1—Transform 2.
In both cases, the nuisance and useful dimensions span the orig-
inal feature space.14 Thus, when appropriately normalized, like-
lihoods in both transformed spaces may be directly compared.
However now the nuisance parameters, the distribution inDim
2 no longer achieve any class discrimination. As the nuisance
dimensions do not discriminate between the classes it is unnec-
essary to use them during recognition. The nuisance dimensions
have been projected out. Hence, the “likelihood” may be calcu-
lated as

(36)

For example, in Fig. 4, the likelihoods for classes 1 and 2 need
only be computed inDim 1—Transform 1. The total likelihood
cost is therefore , cheaper than both STC and the
equivalent multiple HLDA systems. In terms of the number of
model parameters, there are
parameterstoestimate,againlessthanSTCorthemultipleHLDA
schemes.

Optimizing the parameters of the MLDA system is more com-
plicated than for STC or HLDA systems. Again a variation on
the simple iterative scheme used to optimize the STC param-
eters is used. The additional complication occurs in estimating

given the current estimates of the tied covariance matrices.
Depending on the row of the transform to be estimated, the aux-
iliary function has two different forms. For the useful dimen-
sions, rows 1 to , varies according to the transform class.

14This is guaranteed by the optimization sincejdet(A )j = 0 results in
a log-likelihood of�1.
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The auxiliary function in this case may be written as

(37)

where is defined in (20) and

(38)

Differentiating this with respect to and equating to zero
yields the standard STC estimation formula given in (21) for
rows . However, for the nuisance dimensions, rows ,
the auxiliary function may be simplified, sinceis tied so as not
to depend on the transform class. Equation (37) may be rewritten
as

(39)

Now, differentiating with respect to (note ) yields

(40)
There are two situations to consider. The first is when
(i.e., there are fewer transforms than dimensions). Here it is

possible to simplify the optimization. Assuming that is of
full rank then it is clear that at the ML solution (i.e., )

(41)

Now, the problem is to optimize the likelihood with respect to
, an -dimensional vector. An -dimensional optimization

problem, finding directly, has been transformed into an-di-
mensional problem of finding . Optimization for this partic-
ular version follows the same general scheme as that described
below. For the special case when equating (40) to zero
gives the standard HLDA re-estimation formulae.

The second, more general, situation occurs when .
Here, there are no gains in transforming the problem as shown
previously since the cofactor vectors will span all possible
space, thus yielding no useful constraints. Proceeding directly
with a Newton-based optimization scheme, the Hessian for row
, , is

(42)

The calculation of the Hessian is efficient. The cost is dominated
by the calculation of the cofactors which must be calculated for

the gradient, (40). As expected this expression is semi-negative
definite indicating a concave error surface.15 The update for-
mula becomes

(43)

where may be determined using a line search technique. Note
for the line search it is only necessary to evaluate those elements
dependent on the particular row of interest, in this case row.
However, this scheme was found to be stable with a fixed value
of , . The total number of outer iterations, model up-
dates, was about the same as required to train the STC systems.

There is a simpler approach to obtaining an MLDA-like
set of transformations. First a single HLDA transform may
be performed to find the useful dimensions. Then multiple,
transform class-specific, semi-tied transformations are obtained
in the reduced -dimensional space. The overall transform for
transform class may be written as

(44)

and

(45)

where is the transform class-specific semi-tied trans-
form and is the single HLDA transform. The dis-
advantage of this approach is that it has two distinct stages,
whereas MLDA does a simultaneous optimization. This two-
stage MLDA computational will be referred to as MLDA(2).
The likelihood of this scheme may be efficiently computed as

(46)

where

(47)

The likelihood cost with this modified form is
, typically slightly less than MLDA. MLDA and MLDA(2)

are very similar when the space spanned by the nuisance dimen-
sions is orthogonal to all the useful dimension spaces. In this
case the efficient likelihood calculation of (46) may be used for
MLDA and the effective number of free parameters reduced ac-
cordingly. However, the optimization given for MLDA does not
ensure this constraint. Due to this constraint there are usually
slightly fewer free parameters,
with MLDA(2), than MLDA.

V. LINEAR GAUSSIAN MODELS

The schemes described up to this point should be compared
to the use of subspace modeling of signals in other areas of ma-
chine learning. Based on linear Gaussian models, they have been
used for low-dimensional visualization [20] and determination
of independent hidden sources [21]. Since the speed of com-
puting the likelihood is not as important in these tasks as for
the density modeling described in this paper, different forms of

15There are two concave surfaces separated by a discontinuity when the de-
terminant ofA is zero.
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generative model have been used. These differences have con-
siderable impact in both training and computing the likelihoods
of such schemes.

Low dimensional modeling schemes based on ML linear sub-
spaces have previously been proposed. These include schemes
such as factor analysis (FA) [22] and probabilistic PCA (PPCA)
[20]. In [7], a general framework for linear Gaussian models is
given. For the case of static data modeling

(48)

(49)

where the state noise,, is -dimensional zero mean Gaussian
distributed, the sensor noise,, is -dimensional zero-mean
Gaussian distributed and is the observation matrix.
For this form of modeling the likelihood is computed in the orig-
inal feature space since the sensor noise is modeled in the orig-
inal space. There are therefore no issues in comparing likeli-
hoods from multiple subspaces.

LDA and the other schemes described in Sections I–IV do
not directly fit into this framework. They differ in two ways.
First the state noise is distributed according to a Gaussian mix-
ture model or from an HMM, though non-Gaussian state-noise
distributions have previously been considered such as indepen-
dent factor analysis (IFA) [21]. Second there are restrictions on
the form of the sensor noise. The generative model for LDA re-
quires a modification to (49), so that

(50)

where is now an -dimensional random variable, whose
distribution is determined by the form of the noise model. This
modification alters both the training and likelihood calculation
costs of the two schemes. All the form of models considered in
[7] and IFA [21]16 may be trained using EM. None of the sub-
space projection schemes discussed in this paper may be trained
in this fashion, they require nonlinear optimization schemes to
be used. There are also significant differences in the cost of com-
puting the likelihood. Consider the case of IFA withfactors.
The cost of calculating the likelihood for IFA is

[18]. In contrast, for the case of HLDA the cost is
simply . Hence, for speech recognition where the
number of Gaussian components,, can be tens of thousands
and the number of dimensions,, typically around 40 the dif-
ference for any reasonable number of factors is large.

VI. RESULTS

The results presented in this section are to illustrate the var-
ious multiple subspace projection schemes on a speech recogni-
tion task. They are not aimed at achieving the best performance
on this task. Though the models used are “good” models based
on state-of-the-art HMM training techniques.

An internal IBM dictation task was used to examine the
schemes. The training data is a large multiple speaker training

16This is not true when noiseless IFA is trained. In this case similar optimiza-
tion schemes to STC may be used.

set consisting of read speech data recorded in a quiet environ-
ment. The test data was set up to be a speaker-independent
task (i.e., there is no overlap between the training and test
speakers) with read speech recorded in a quiet environment
with the same microphone. The training data consists of around
300 000 sentences of both scripted and unscripted data. A state
clustered decision tree system was used throughout with 3430
states. There were approximately 12 Gaussian components
used to model each state giving a total of 41 268 Gaussian
components in the system. The front end consisted of 24
cepstrum coefficients. Nine frames were spliced together and
the dimensionality of the resultant feature vector reduced
from 216 to 40 dimensions using LDA.17 A single semi-tied
transform was then calculated to further improve the diagonal
Gaussian component approximation. On previous experiments
using similar systems with this task the performance using a
standard LDA derived frontend was around 10% worse than
the use of a single STC transform [8], [12]. Thus, the baseline
system considered was the single global STC system. For the
experiments where a projection scheme was used, the nuisance
dimension size was set to be ten. No attempt was made to
optimize this value, though various complexity schemes, such
as BIC [23] could be used to determine the optimal size. In ad-
dition the number of transform classes was fixed at the number
of states, 3430. The assignment of component to transform
class was determined by which state the component belonged
to. The test set consists of 15 speakers uttering a total of around
20 000 words. The results quoted are the average word error
rates over all test speakers. A trigram language model was used
in all tests with a 64 000 word vocabulary.

Table I shows the number of free parameters for each of the
schemes. For a global transform HLDA, MLDA, and MLDA(2)
are all identical. For the multiple state-level transformations
the MLDA and MLDA(2) schemes have the fewest parameters,
since the nuisance dimensions are global.

Table II shows the recognition performance of various
systems using either global or state level tying of the trans-
formation matrices. For HLDA the last ten elements of the
feature-vector, the nuisance dimensions, were modeled with a
single Gaussian component per transform class. For MLDA
the nuisance dimensions were modeled using a single Gaussian
component for all transform classes. For the global case the
STC system outperformed the HLDA. This indicates that the
projection from 40 dimensions to 30 dimensions (as previously
mentioned a single HLDA transform performs ML projection)
degrades performance. However, it reduces the number of
model parameters by approximately 25%. Increasing the
number of STC transforms, so there is a separate transform
for each state, reduced the word error rate by about 10%, but
increased the number of model parameters by a factor of about
2.5. Performing HLDA with the state-tied transform, multiple
HLDA, achieved the same performance as the STC system,
with a small decrease in the number of model parameters. It
is interesting that reducing the model complexity for ten of
the dimensions had no effect on the performance. Performing

17It would be preferable to perform this projection in an ML fashion. Unfor-
tunately for the size of system used for large vocabulary speech recognition this
is impractical at the present time.
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TABLE I
NUMBER OF FREE PARAMETERS (IGNORING COMPONENTPRIORS AND

TRANSITION PROBABILITIES) FOR STC, HLDA, MLDA, AND MLDA(2)
SYSTEMSUSING EITHER A GLOBAL OR STATE LEVEL TRANSFORMATIONTYING

TABLE II
PERFORMANCE OF ASTC, HLDA, MLDA, AND MLDA(2) SYSTEMS USING

EITHER A GLOBAL OR STATE LEVEL TRANSFORMATION TYING

MLDA with the state-level transforms increased the word error
rate by about 5% over the STC system but reduced the number
of parameters by about 25%. Using the MLDA system also
reduced the computational cost by about 25%. In addition,
Table II shows the performance of an MLDA(2) system. This
is the two-stage version of MLDA. The performance is slightly
worse than that of MLDA. This indicates that the simultaneous
optimization of both the projection and the transform class-spe-
cific transforms may lead to a reduction in word error rate.
However, the use of MLDA does slightly increase the number
of parameters.

Table II shows a general trend that performance improves
as the number of model parameters increases. Rather than
using multiple transforms, the number of parameters may
be increased by simply increasing the number of Gaussian
components. To obtain comparable performance to the multiple
HLDA state system the number of components had to be
increased by a factor of four. Again, a single global STC trans-
form was used. This gave a word error rate of 9.9%. The total
number of parameters in the system 13.3 million parameters,
50% larger than the HLDA state system that gave comparable
performance.

VII. CONCLUSIONS

This paper has examined the use of multiple, ML trained,
subspace projections. Two forms of subspace projection were
examined. Both forms were obtained by tying the parameters
in a semi-tied covariance matrix system. The first, a multiple
transform version of HLDA, was not a strict projection scheme,
in the sense that there were no global nuisance dimensions, but
rather a scheme for varying the model complexity over the di-
mensions. The second, MLDA, was a true projection scheme, in
the sense that the nuisance dimensions had no class information,
using multiple transforms. These forms of subspace projection

were compared to the general class of linear Gaussian models.
Though closely related, the two forms of model were found to
differ in the form of the noise model. This had significant effects
on both the estimation of the model parameters and the cost of
calculating the component likelihoods. Specifically, calculating
the likelihood of the linear Gaussian model was significantly
more computationally expensive than the HLDA or MLDA sys-
tems.

The performance of the multiple subspace projection
schemes were evaluated on a speaker independent speech
recognition task. Using the multiple HLDA transforms to
control the model complexity, it was found that there was little
difference in performance compared to the full system. This
indicates that there are possible gains, in terms of both speed
and model size, in having flexible model complexities over the
dimensions. It was also found that simultaneously optimizing
both the subspace projection and the semi-tied transforms
was better than a two-stage process. Though the results did
not show gains of the use of multiple semi-tied transforms,
or increasing the number of Gaussian components in each
state, they illustrate that using multiple subspace projections
is another possibly useful option when designing LVCSR
systems.

There are a number of points that this paper has not addressed.
Methods for determining the appropriate number of useful fea-
tures have not been examined. The complexity of the nuisance
dimension model was set to a single Gaussian component. The
use of more complex nuisance dimension models should be in-
vestigated. A simple hierarchical version of MLDA is also pos-
sible allowing even greater flexibility in the models choice. Fur-
thermore ML estimation has been used to obtain the model pa-
rameters, rather than the discriminatively trained subspaces de-
scribed in [5], [6]. It would be preferable to use a discriminative
training scheme, such as maximum mutual information estima-
tion (MMIE) [2]. However, for LVCSR tasks this is computa-
tionally very expensive, though recently MMIE has been suc-
cessfully applied to an LVCSR task [24]. All these aspects will
be addressed in future work.
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