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Maximum Likelihood Multiple Subspace Projections
for Hidden Markov Models

Mark J. F. Gales

Abstract—The first stage in many pattern recognition tasks observed data, for example schemes based on principal compo-
is to generate a good set of features from the observed data.nent analysis (PCA). Others require class labels, such as linear
Usually, only a single feature space is used. However, in SOMeyiscriminant analysis (LDA) [1], [2]. Recently the use of max-

complex pattern recognition tasks the choice of a good feature . . . .
space may vary depending on the signal content. An example is in MUM likelihood (ML) estimation has been proposed for gen-

speech recognition where phone dependent feature subspaces magrating a linear subspace projectiowith class labeled data,
be useful. Handling multiple subspaces while still maintaining heteroscedastic LDA (HLDA) [3]. As ML estimation is being
meaningful likelihood comparisons between classes is a keyysed distributions must be specified to span all dimensions of
issue. This paper describes two new forms of multiple subspace g qriginal feature space to enable consistent parameter opti-

schemes. For both schemes, the problem of handling likelihood . fi The di . fthe t f d feat
consistency between the various subspaces is dealt with by viewingmlza 10N The CIMENSIONS OFME tansiormedieatlre Space are

the projection schemes within a maximum likelihood framework. ~SPlit into two distinct groups. For those dimensions that con-
Efficient estimation formulae for the model parameters for both tain class informationysefuldimensions, class-specific distri-
schemes are derived. In addition, the computational cost for their putions of an appropriate form are used. Those dimensions con-

use during recognition are given. These new projection schemes4ining jittle or no class informatiomuisancedimensions, are
are evaluated on a large vocabulary speech recognition task in . . Lo ’

terms of performance, speed of likelihood calculation and number mode_led using clas_s independent d'St”bUt'on_S' ) )

of model parameters. This paper examines schemes for generating multiple linear

subspaces. One important issue when using multiple subspaces
I. INTRODUCTION is how to compare likelihoods from models built in different

] ) N _ subspaces. This paper addresses the problem by building
T HE first stage in many pattern recognition tasks is tRyitiple subspace projections within the ML framework.
generate a good set of features from the observed daig. ensuring that all the feature transforms span the original
The set should be compact and capture all class discriminatigighce there are no problems comparing likelihoods. Subspace
information. Features that contain little or no 'nformat'orbrojections are obtained by appropriately tying model param-
should be removed since they increase the computatioggdrs. Since LVCSR is the target application, hidden Markov
load and the number of model parameters to be estimaiggdels (HMMs) [4] are used as the underlying model with
without improving performance. Furthermore, the featurSayssian mixture models representing each state. Multiple
generated should be suited to the form of classifier being usgdear subspaces have previously been examined for HMMs
For example, if diagonal covariance matrices are used tm [6]. Factor analysis (FA) [6] uses a different subspace for
data should be decorrelated. For some complex signals Hi&h Gaussian component. It may be viewed as a restricted
“best” feature set is class-dependent. In these cases multigdgm of covariance modeling. Though ML estimation for
class-specific, feature sets may be more appropriate thafagior analysis has simple re-estimation formulae [7], the
single feature set. This paper considers multiple feature siglinood calculations are computationally expensive for
using large vocabulary continuous speech recognition (LVCSR)csr compared to other restricted covariance modeling
as the example task. LVCSR is particularly interesting in thigshemes [8]. This is further discussed in Section V. In [5],
context because of the complexity of the signal and the 'arﬁﬁjltiple components share the same subspace. The subspace
number of Gaussian components used in the typical systefgnsforms are trained in a discriminative fashion, rather than
For speech, the particular acoustic realization may be bgging ML estimation. The authors obtained improvements in
modeled in different acoustic subspaces depending on whethggognition results. However, no mention was made of ensuring
for example, a vowel or consonant was generated. that the likelihoods obtained from different subspace could
The majority of previous work in projection schemes hase correctly compared. The normalization terms associated
concentrated on generating a single “good” feature subspggén feature-space transformations were ignored, both in
[1]-{3]. Some techniques may be applied directly using just thge optimization schemes and likelihood calculation. For the
single transform case trained using discriminative training the
. . , normalization terms naturally cancel, but this is not the case
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of the transform normalization terms to become significantiglass covariance. The standard optimization for LDA is to find

different. Unfortunately using discriminative training schemethiep x » transform,A[,,), that maximizes [106]

for LVCSR is very computationally expensive, so the vast

majority of LVCSR systems, and the system considered here, ‘det (A[p]BA[T;])‘

are trained using ML estimation. T (A M) =
The proposed subspace projection schemes in this paper are

extensions to HLDA [3] enabling multiple subspaces to be in-

corporated. Rather than describing the proposed schemes/¥iéreB andW are the between and average within class co-
rectly in the HLDA framework, they are described in terms of&fiance matrices in the original feature space. These are defined

tying the parameters ofsemi-tied covariance matriSTC) [8] as

= - (1)
‘det (A[p]WA[i;J) ‘ !

system. This allows a variety of schemes, including LDA and “(m) _ 2N (n(m) _ T

HLDA, to be described in a consistent fashion. Two new forms B= Lo ) (B — ) () — ) )
of projection are investigated. The firgtultiple HLDA is a di- 2z Ym(T)

rect extension to HLDA to allow class-dependent subspaces, Jjare

this case there is no global nuisance subspace, as all dimensions

contain some class information. The second farmaltiple LDA i = 27 Ym(7)o(7) ©)
(MLDA), generates a common nuisance subspace for all trans- 2 Ym(T)

forms. For likelihood calculations during recognition, these nui- D Ym(T)O(T)

sance dimensions may be ignored, reducing the computational n= > Ym(T) (4)
cost. d

This paper is organized as follows. Section Il describes LDand
and its extension to HLDA. Section IlI discusses STC systems - (m) mn T
and how they may be efficiently trained. The two subspace pro- vy — 2,z ¥m(7) (0(7) — ™) (o(r) — &™) 6
jection schemes are then described in terms of tying the parame- 2omr Ym(T)
ters of the STC system. In Section Il these models are compared

to the linear Gaussian models described in [7]. Finally, expel! POth casesz,, (1) is the posterior probability of Gaussian
ments on a speaker independent task are presented. componentn at time instance given the current model set,
and all the training data. Note that for LDA there is the implicit

assumption that the within class covariance matrices for each of

the Gaussian components is the same. It can be shown that the
1. LINEAR DISCRIMINANT ANALYSIS optimal value and or@ering i, is found by taken the top

right eigenvectors oW ~'B ordered according to decreasing

This section describes a standard linear subspace projecfienvalues [10]. _ o .
scheme, linear discriminant analysis (LDA). Two equivalent Rather than expressing the optimization in the form of (1) it
forms of optimization are described, the standard one badBgy be castin the form of ML estimation [3], [11].Adimen-
on the between to within class covariance ratio and an Milonal subspace of the originaldimensional feature space is to
estimation scheme. An extension to LDA, heteroscedastic L€ retained. Since ML estimation is to be used to find the trans-
is then described. This adds an additional level of flexibility tfrm & consistent feature space to compute the likelihoods is
the standard LDA scheme by removing the constraint that &duired. Therefore, §|mple'tr.uncat|on of the'transforr.n cannot
within class covariance matrices are approximately the sarhi§. used. Instead during training the — p) nuisance dimen-

A third scheme, heteroscedastic discriminant analysis, is aRigns are modeled by a nondiscriminating model, in this case
described. In contrast to the other schemes this is not bage¥indle, global, Gaussian distribution. This global distribution
on an ML criterion. For all projection schemes in this papél the 0”9'”""' featurgv space has rpqmndgflned preV|.oust,
diagonal covariance matrices will be used for the Gaussi@Rd covariance matrix, 33 = B + W. A simple two-dimen-
components in the final, projected, feature space. This is rR}¢nal (2-D) example is shown in Fig. 1. There are two classes,
a requirement. For example in [3] HLDA is investigated witfgach shown having the same within class covariance matrix. The
full-covariance matrices in the projected space. However tREGinal 2-D space is projected to a single dimensional subspace

vast majority of SpeeCh recognition systems use mUItIpIeZThis paper uses the following convention: capital bold letters refer to ma-

diagonal covariance Gaussian components. Furthermore, t@s, e.g.A, bold letters refer to vectors, e.d, and scalars are not bold, e.g.,

schemes will use each Gaussian component as a separate da\é@en referring to elements of a matrix or vector subscripts are used, e.g.,
a; is theith row of matrix A, a; is the element of row column; of matrix

A andb; is element of vectorb. Diagonal matrices are indicated Byu;a .

Where submatrices are used they are indicated, for exampl&, hythis is a

p X n matrix (n is the dimensionality of the feature vector). Where subsets of

. . L . the diagonal matrices are specified the matrices are squareAgg,,; is a

LDA is a standard linear projection scheme [9]. The aim gf x ; square diagonal matrixA 7 is the transpose of the matrix addt(A)

the process is to obtaingax n projection matrix, where is the is the determinant of the matrix. Model parameters in the original feature space
P - . \iyill be marked as, for examplg,

original vector size and < n, that results in a feature space tha - _ o

- d” for di - - H di . . . 3These definitions have been slightly modified to reflect the use of HMM's,

IS "goo .Or Iscrimination. Here |.scr|m|nat|on 15 measur.eqr Gaussian mixture models. This is similar to the LDA process described in

by the ratio of between class covariance to the average witlgn

A. Standard Linear Discriminant Analysis
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Class 2
Class 2

Fig. 1. Linear discriminant analysis.

Fig. 2. Heteroscedastic linear discriminant analysis.

(n = 2, p = 1), yielding the useful dimensioim 1. The . o
nuisance dimension is label&im 2. Each class has a separatf/ind (6) to reflect this added flexibility yields (see (7) at the
distribution inDim 1, and there is a single, common, distributiof?0ttom of the page) where

in the nuisance dimension. T
D EFACH —
Optimizing the likelihood, given the values of,(r), may  vy(m) — 2o ¥m(7) (o(r) = ™) (or) = ™) 8
W (8)
be shown to require maximizing (see (6) at the bottom of the > m(7)

page) WithfeSlP?Ct tA. In [3] it is shown that the right eigen- ynfortunately, in contrast to LDA, HLDA has no simple op-
vectors of W™ B associated with the largegeigenvalues are timjzation scheme. Standard nonlinear optimization schemes
an ML solution. There are an infinite humber of possible M'may be used to obtain the parametersiof3], [12]. Alterna-
solutions, since there is no constraint when optimizing (6) th@fely, a computationally efficient scheme for finding the values
|det(A)| = 1. For example the variances can be scaled, whighigiven in [8]. This simple iterative scheme is guaranteed to find
results in each row of the transform being scaled and the saggcally optimal solution and to be stable. In [3] a comparison
likelihood value being obtained, though with a different trangsf | pA and HLDA is performed on a simple digit task. It was
form. All SOIUtionS will y|e|d the same performance Classiﬁefound HLDA outperformed LDA. Th|s has aISO been Observed

when using continuous density HMMs. for LVCSR [12].
] For both LDA and HLDA, the model parameters may be
B. Heteroscedastic LDA simply estimated once the projection mattq,;, has been de-

Heteroscedastic LDA (HLDA) [3] is an extension to LDA intermined. The ML estimates of the subspace m@éﬁ) and

which the restriction that all within class covariance matrices a

. L e fagonal covariance matrig (™" , for componenin are
the same is removed. This is shown in Fig. 2. Classes 1 ang%g . dinelp] P

have different within class covariance matrices. Again the 2-D (m) _ A p(m) (9)
data is projected into a single discriminating dimensibim Hip) il

1, in which the class conditional distributions now have difand

ferent covariance matrices. The nuisance dimenglmn,2, has

a single global Gaussian distribution associated with it. Modi- 251?;3;[17] = diag (AL,,]VVV(’")A[%) : (10)
1 | det(A)2
QLoa(A; M) =2 > v (7)log < ; > , S
2 ; |det (diag (Agy WAR;))| [det (diag (App ) BAp )]
n
- 52 Ym(7)(l0g(2) +1) (6)
| det(A)?

1 .
Qurpa(A; M) =35 ; Tm(7)10g ‘det (diag (A[p]w(m)Az[;}))‘ ‘det (diag (A[n—P]EA%;L—Pl))‘

= 5 2 m(r) (log(2m) + 1) (7)

m,T
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The likelihood need only be calculated in the useful subspattee phone is a vowel or a consonant. In this case it is useful to
specified by the projection matrix. Thus, the dostO(Mp + have multiple feature spaces. One scheme to enable this, though
np), where M is the number of Gaussian components in theithout reducing the feature space size, is semi-tied covariance
system. For LVCSR, depending on the ratigpdb n, this can matrices (STC) [8]. In this form of modeling, each of the classes
dramatically reduce the cost compared to the likelihood calcfin this case Gaussian components) is uniquely assigoaihe

lation in the original space which cost%Mn). Furthermore, of R disjoint sets, or transform classéd,!) to M (®). Each of

the number of parameters is reduced. In the original space thérese transform classes has an independent transform associated
are(2Mn) parameters compared @M p + 2(n — p) +n?) for  with it which defines the feature space. Rather than viewing the

the HLDA case. transforms as acting on a feature-space partitioned according to
the component generating the observation, they may be viewed
C. Heteroscedastic Discriminant Analysis as acting on the model parameters, hence the name. The covari-

Recently, an alternative interpretation of LDA, which is nof'¢€ matrix for a particular Gaussian componerin the orig-

L oo (m)
based on maximizing the likelihood, has been proposed [1§]f"‘| feature space:'™', may be expressed as
Heteroscedastic discriminant analysis (HDA) uses the following

- : X o $:(m) _ ) 53(m) plr)T
objective function to obtain the projection mate,, T = FU X g B (3)

1 where=™ is the component-specific diagonal matrix in the
A (A M) == m diag i ifi
QHDA( [pl> ) 2 ;’y (7) transformed space F(") is the transform class-specific full
’ - matrix andr,, indicates the transform class that component
‘det (ALp]BA[p})‘ belongs to (i.e.n € M), Thus, though the effective co-

x log (11)

variance matrix is full, the number of free parameters is sig-
nificantly fewer then for full-covariance modeling. Féf full

) . . covariance matrix components, there &fén + 1)n/2 param-

In contrast to HLDA, there is no modeling of tiie — p) nUi-  gtarg associated with the covariance matrices. For STC matrices
sance dimensions. Only a truncated projection makjy iS \yith R transform classes there al.? + Mn parameters. For
estimated. This expression is closely related to the optimizgica| cases wher® < M there is a dramatic decrease in the
tion criterion for LDA given (1). However, as with HLDA, the n,mper of model parameters. In addition to reducing the number
within-class covariance matrices are not constrained to be odel parameters, this form of covariance modeling allows

same. This form has the elegant intuitive interpretation of oRgicient likelihnood calculation. Using the inverse of the trans-
taining a feature space that explicitly maximizes the betwegsy i, matrix. A (=) — F@w)—1

class variance to within class variance without constraining the
within class covariance matrices to be the same. The optimiz o ™) 2(@) —N (O,p,(rn) E(rn))
tion of this expression requires the use of standard quasi-Newton ’ ’ ’ ’

[det (Ag W AT )|

methods, rather than the simple iterative scheme for HLDA. = ‘det (A@‘m))‘
Though HDA has an elegant interpretation, it is not appro- )
priate for use with multiple projection schemes. For all multiple Nx (A(”’”)O; AT, 2d?;g)

projection schemes it must be possible to compare likelihoods
across the difference subspaces. This requires that the complete
feature space must be modeled in some form (if not necessarily —r (0_ ) (m) A<’*m)) (14)
evaluated). As HDA does not model the nuisance dimensions it ’ ' diag?

is not useful for multiple projection schemes. The same problem } ]
applies to other nonlikelihood projection schemes such as migmembering thaa!™ andpu(™ are the component means in
imum Bayes feature selection [14]. For this reason, the multigf® original and transformed spaces respectively. The cost of
projection schemes in this paper are based on maximum likeli-

hood schemes.

= ‘det (A(”m)) ‘ N (A(”m)o;u(m), 25:%)

SThere are various options for this assignment ranging from expert knowledge
(such as the same phone) to ML versions similakteneans clustering [8]. In
Il. SEMI-TIED COVARIANCE MATRICES this work, a “hard” assignment of each Gaussian component to a single transfor-
mation class is used. An interesting alternative approach is to use a probabilistic
Using LDA and HLDA only a single subspace can be olmssignment. The likelihood of a particular observatiobeing generated by

tained. In many tasks the optimal feature space may be dep&fe"" is given by
dent on the specific class that generated the data. For example

: " L(ojm) =S P(r ,z( ; (m>,E(T">_,A(T>>. 12
in speech recognition the best subspace may depend on whether (ofm) Z: (rfm)£ {03 T, i (12)
The optimization of such a model is a straightforward application of a mixture
model [15] to the optimization described in this paper. For computational rea-
4For all likelihood computation costs order of terms are given. For likelihoo®ns, this form of model is not considered in this paper.
calculation the number of multiply accumulates is used for the log-likelihood 6This is not a strict requirement. Other forms such as block-diagonal could be
calculation. No account is taken of the log-addition for multiple componentsed in theory, but for current state-of-the-art LVCSR, due to efficiency reasons,
(though this is not necessary if a simple max is used). For the number of parantiagonal form has always been used. The use of nondiagonal cases for HLDA
eters the weights and transition matrices are not included. was examined on a small vocabulary task in [3].
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full-covariance matrix likelihood calculation i8(An?) com- and-~,,(7) is the posterior probability of Gaussian component

pared toO(Rn? + Mn) for the STC case. The complete set ofn a time instance given the old model set and all the training

model parameters for STC modelingyf, may be written &  data. Although (17) could be directly optimized using nonlinear
optimization schemes a simple efficient iterative scheme is pos-

M= {{A(U, o A(R)} ’ {Eflliz,g’ o gflfl‘zg)} ’ sible [8]. The following scheme is used.
W () 1) Estimate the within class covarignce matrix for each
{” RN }} - (19) Gaussian component in the systewi (™.

2) Using the current estimate of the transford!”, obtain
The transform parameters are described in terms of the inverse  the ML estimate of the set of component-specific diagonal

of the transform matrix because it has been found to yield effi-  covariance matrices incorporating the appropriate param-
cient optimization schemes [8] and simplifies the tying require-  eter tying as required. This set of parameters will be de-
ments that will be used later in this paper. noted a 25111\2; _ Eflli;g’ o 251]12 This is a stan-

There is a close relationship between STC modeling and 4 problem and will only be mentioned briefly
H!_DA. STC with a single transform class is |dent|cr_:1l to HLDA 3) Estimate the new transford ™ using the current set
with p = n. Moreover, wherp < n HLDA may be viewed as iS(M)

diag
4)

a particular form of tying of the STC model. The number of 2} ) ) o )
oto (2) until convergence, or appropriate criterion satis-

transform classes is restricted to be ¢fe= 1) and the final

n — p dimensions of the component means and varianeés, fied.
and 25’1';2; are tied to be the same. Now Ateach stage, the Iikelihooq i§ gu'arar_‘lteed to increase or rgmain
the same. This form of optimization is preferable to the direct
(m) nonlinear optimization as it is computationally efficient. Typi-
ptm = Hip) cally the algorithm converges after four or five iterations, and
Apnpyit] arantos y ’

(m) is guaranteed to be stable [8]. Step (3) is itself an iterative esti-
(m) _ [Ediag[zﬂ 0 )] . (16) mation scheme. Rewriting (17) using the fixed %(M)} (all

diag — . >~ diag
¢ 0 diag (A[n—pl SAL ) terms independent cL (") are ignored) yields

Itis simple to show that this form of tying yields the same objec- NS (M) )1 (T2
tive function as HLDA. For standard LDA an additional level of< (M’ M; {Ediag}) = Z p log (Ci a; )
tying is required wher<‘725fi'a’3g = Xdiag. The rest of this section "

details the optimization of the STC system. The modifications _ Z (ag,">G<7‘J>a§”>T)} (19)
required for the standard HLDA system may be viewed as a re- J

stricted version of the multiple HLDA system whefe = 1,

discussed later in this paper. wherea(" is theith row of A, the1 x n row vectorc” is

ML estimation is used to find the STC model parameterfheith row vector of cofactors oA (™ and
In common with standard HMM training, an expectation-max-
imization (EM) [16] approach is used. However, a generalized G — Z 1 W Z'ym(T) (20)
EM scheme is required since there are no simple closed-form () UST;Z -
solutions toAfindA(”). In generalized EM, the auxiliary func-
tion Q(M, M), whereM is the set of “old” model parameters,, na o, ™2 is the ith leading diagonal element &™) . It is
i & " H H. H diagyj J
and M is the set of “new” model parameters, is optimized wit

diag"
- ' l|5,ossible to show that the ML solution for rains® ¢
respect to the new model parameters. The auxiliary function'is
. . 4 (r)
al” =Gt <—/3 ) (21)

given by
cz(v*)G(ri)—ch(r)T

oM =3 S ()

romeM () -
det (A2 The optimization scheme is iterative since the estimation of each
x log : | et ( i} )| matrix row is influenced by the cofactors of the complete ma-
|dlet (diag (AWM AMT)) | trix. The computational cost of this inner loop is low since there

are simple sufficient statistics. The major cost is calculating the
cofactors of the transform matrices which is small compared to
obtaining theG("%) accumulates for large values bf.

where An alternative scheme for generating the semi-tied transforms
is to use non-ML estimation, such as state-specific rotations

- %ﬁ(log(%r) +1) a7

p=3 "= > ) (18)
r rmeM ) - 8This uses the equalitylet(A ()| = c!al™7 . For further details of the
derivation of this equation, see [8].
"Here the set of Gaussian component priors, or weights?, . . . w0}, 9There are two possible, equivalent, solutions one positive, the other negative.

and the state transition probabilities, have not been included. The estimatiomt@hakes no difference which is selected as they will yield the same likelihood.
these parameters is identical to the standard HMM parameter estimation [4]For this paper, the positive root is always selected
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[17]. In[8], acomparison of STC matrices with state-specific ro-
tations was performed. It was found that STC modeling out-per-
formed the state-specific rotation scheme.

*Dim 2 - Transform 1

IV. MULTIPLE SUBSPACEPROJECTIONS

Sections |-l have described the use of LDA and related

schemes to perform projections to a single, “optimal,” feature Class 1 Class Dim2-fra"sf°m2
space. Then STC systems were described. STC schemes may Class B

be viewed as using multiple linear transformations of the fea- Dim 1 - Transform 2 ’
ture-space without performing any projections. This section de- /
scribes how the two forms of modeling may be combined to
give multiple subspace projections that can be trained in an ML
fashion. The multiple subspace projection schemes will be de-

scribed in terms of tying the parameters of an STC system.

. Fig. 3. Multiple HLDA.
A. Multiple HLDA

HI.‘DA [3] was descrlb.ed in Section Il. Multiple HLDA may where again,, indicates the transform class that component
be viewed as an extension to HLDA where the classes are %?éiongs 10 (l.em € M)
L .e.

titioned into distinct transform classes. Then a separate HL

transform is estimated for each of these transform classes. Mul- -y AM

tiple HLDA is illustrated for a simple case in Fig. 3. [n—p] = “"n-—p
Two transform classes are shown, with classes 1 and 2 as- 3

signed to transform class 1, and classes 3 and 4 assigned tﬁfl’{ig[n_p] = diag (AEZ)—ME(T)AE;)—TM) (25)

transform class 2. In both cases the 2-D data is projected down

to a single useful dimension for each transform class, shown > () (0(r) — ﬂ(”)) (o(r) — p(”))T

on the diagram aBim 1—Transform BndDim 1—Transform %) = ZmeM®,7 m

2. There are two important things to notice. First, both trans- ZmeMm,T Ym(T)

forms span the same, original, feature spadéus, when suit- (26)

ably normalized the likelihoods of the transform classes may be

directly compared. Second, though the nuisance dimensions3d#

each transform are modeled using a simple single Gaussian dis- > m(T)0(7)

tribution, they still contain some transform class-specific infor- = meM),r Tm . (27)

mation. HLDA is a restricted version of multiple HLDA where ZmeMW,r Tm(7)

R,;he num_ber of transformation classes,_ls re;tr_lcted to be ONeL. - iikelihood calculation for multiple HLDA is less expen-

or multiple HLDA the feature space is split into two sub-. . oo ;

spaces for each transform class; the usgfdimensional sub- sive than that of STC,_ since certain dimensions of the featur_e—

space, and afn — p)-dimensional nuisance subspace Whereva(lactqr are modgleq with simple transform class dependent dis-

simple single Gaussian component nuisance model is usedtfbbruuons' The likelihood may be computed as

that transform class. Thus

i (24)

£ (o5, B0 AP ) <107 |det (A0

o _ | AL
Al = P 22 (rm) ., (m) s(m)
lA[(;)—ﬂ] (22) N'x (Am 03 iy ,Sdiagm)
g (28)
an
(m) (m) o where
m) _ | Pyl 50m) _ l diag|p] ]
B = ) | diag — o ) _ () L., )
[(n—;ﬂ ¢ 0 EElia,g)[n—])} (23) ! - N (A[n*]ﬂo7 Il’[nf]ﬂ7 2diag[nfp1) ' (29)

(r)
10This is guaranteed since during training wHelet(A )| = 0 the log- l r_1ee_d only be calcglated once for eacthransform class. Thus
likelihood is —cc. the likelihood calculation costi®(M p+Rn“+R(n—p)). Note
LiGreater flexibility in complexity of the models may be obtained by using that multiple HLDA is not a true projection scheme, since all the
hierarchy of tying, though this will not be investigated in this paper and is briefifimensions contain some class information. Therefore the like-

described in [18]. Furthermore, it is not necessary;foo be the same for all lihood d duri it tb ted. th h ef
transform classes. However in this workvas constrained to be the same for allllNO0US USE€d Auring recognition must be computed, though et-

classes. More complicated multiple component noise models may be simplyficiently, in the full n-dimensional space. Wheg = 1, HLDA,

troduced. The nuisance dimensions components are treated as a separate Sff?é“@omputational costis even lower. The final p dimensions

[19] to the useful parameters. In terms of the optimization, the change is that d b d si hev d discrimi b
K in (32) is now a sum over all the nuisance components instead of tH€€0 NOt D& computed since they do not discriminate between

single noise Gaussian. This is described in more detail in [18]. the classes (single HLDA is a true projection scheme). Thus,
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the “likelihood” may be computed &s

L (o; p,(m) , EEH;;, A)

o [det(A)N (Amo; i, = ) . (30)

diag[p]
The likelihood calculation cost is therefore ofi{ M p + np). ”
Furthermore, the number of parameters is reduced compared to
the STC case. For multiple HLDA there af@2Mp + R(n? + Class 1 Class 4
2(n — p))) parameters to be estimated compared2t/n + Class )
Rn?) for STC systems. Dim 1 - Transform2 = :

Optimizing the parameters of the multiple HLDA transform
case is a simple modification to the semi-tied transform case. It
is possible to rewrite (17) as (ignoring all expressions that are
independent oA (")

Q (M, M; {EEIJI\Z;}) = Z{ﬁ(r) log <(c§”)a§”)T)2>

r Fig. 4. Multiple linear discriminant analysis.
Y (e ) Ak e S
J<p Ji>p A simple example of MLDA is shown in Fig. 4. Four classes
where and two transform classes are shown, with classes 1 and 2 as-
1 signed to transform class 1, 3, and 4 to transform claBsra.2
KD — oF () Z A (7). (32) s the nuisance dimension, common to both transform classes,
T Jingj meM) - and all the data iDim 2 is modeled by a single Gaussian dis-

tribution. There are two different projections for the useful di-
For rowsi < p, differentiating (31) with respect tag”) and mension, labeleBim 1—Transform &AndDim 1—Transform 2
equating to zero yields the standard STC re-estimation formuileboth cases, the nuisance and useful dimensions span the orig-
givenin (21). Forrows > p following the same procedure givesinal feature spac&. Thus, when appropriately normalized, like-
lihoods in both transformed spaces may be directly compared.
(1) _ (-1 < B ) However now the nuisance parameters, the distributiddirin
a;’’ =c; _—— . (33) : L .
¢ ¢ IRy —160T 2 no longer achieve any class discrimination. As the nuisance
’ ’ dimensions do not discriminate between the classes it is unnec-
The estimates for the mean and variance have the standard feg¥ary to use them during recognition. The nuisance dimensions
described for LDA and HLDA. have been projected out. Hence, the “likelihood” may be calcu-
lated as

B. Multiple LDA

In Section IV-A, all the dimensions obtained using multiple (o;p,(m), Efl’i';?g,A(”m))

HLDA contain some classinformation. This sectiondescribesthe

additional tying of the STC system required to generate a global - - m m

nuisance subspace, while using multiple transformations. Togen- o ‘det (A( M)) ‘ N (AEM )O;”Eﬂ )’ 251ia2g[p1) - (36)

erate the global nuisance subspace all parameters associated with o o

the the final. — p, the nuisance dimensions, are tied. Thus For example, in Fig. 4, the likelihoods for classes 1 and 2 need
only be computed iDim 1—Transform 1The total likelihood

AlM — [ A[(;]) } (34) cost is therefor®(Mp + Rpn ), cheaper than both STC and the
[n—p] equivalent multiple HLDA systems. In terms of the number of
and model parameters, there 48V p+ Rnp+2(n—p)+n(n—p))
(m) parametersto estimate, againlessthan STC orthe multiple HLDA
plm™ = [ Pip) } , schemes.
At

) Optimizing the parameters of the MLDA system is more com-
(m) 2digg[p1 0 plicated than for STC or HLDA systems. Again a variation on
diag — 0 diag (A SAT ) (39)  the simple iterative scheme used to optimize the STC param-
=] L eters is used. The additional complication occurs in estimating
This form of transform will be called multiple LDA (MLDA)? A (") given the current estimates of the tied covariance matrices.
12This is, of course, not the likelihood in the original space, but in the pro[-),ependmg on the row Of,the transform to be estimated, t.he aux-
jected space of the useful dimensions. iliary function has two different forms. For the useful dimen-

13The name is motivated by the fact that the scheme can be used for opiions, rows 1 tg, a§’> varies according to the transform class.
mizing multiple LDA transforms by simply assuming that all the within class
covariance matrices are the same. Though a closed-form solution to the opti-
mization is still not possible, the sufficient statistics to obtain the model param-14This is guaranteed by the optimization sidet(A (")) = 0 results in
eters are greatly simplified. a log-likelihood of —cc.
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The auxiliary function in this case may be written as the gradient, (40). As expected this expression is semi-negative
definite indicating a concave error surfadéeThe update for-

Q (M, M; {5251112}) = Z{/J(”) log <(c§7’)a§r>T)2> mula becomes

r

a; = & — AfOHO! (43)
= (a](»T)G(Tj) aj(ﬁT)} - Y aKPa? (37)
<p i>p whereA may be determined using a line search technique. Note
' for the line search itis only necessary to evaluate those elements
whereG7) is defined in (20) and dependent on the particular row of interest, in this caseirow
. 1 . However, this scheme was found to be stable with a fixed value
KW = =y ’22%1(7)- (38) of A, A = 1. The total number of outer iterations, model up-
diagy .7 dates, was about the same as required to train the STC systems.

There is a simpler approach to obtaining an MLDA-like

. .. . . (r) .
D_|fferent|at|ng this with respgct t.az and equgtmg_to ZET0 oot of transformations. First a single HLDA transform may
yields the standard STC estimation formula given in (21) for ' : . .
i . ; . ) e performed to find the useful dimensions. Then multiple,
rows: < p. However, for the nuisance dimensions, rows p, e . . .
the auxiliary function mav be simplified. sineeis tied so as not transform class-specific, semi-tied transformations are obtained
y Y P ' e n the reduceg-dimensional space. The overall transform for

to depend on the transform class. Equation (37) may be rewmﬁ?gnsform class may be written as

as
N ~ ” ” 2 A[(? == Ag;lAhlda[p] (44)
Q(M,M;{ES?Q}) :Z;{/}( )10g<(c§ )aZT> ) g P
— Z (ag”)G(”j)a](.”)T)} _ ZajK(j)a?- (39) Ap_p = Antdafn—p] (45)

isp i>p

] o ) ] whereAg’t’l is the transform class-specificx p semi-tied trans-
Now, differentiating with respect ta; (note: > p) yields form andApiaa is then x n single HLDA transform. The dis-
o (M advantage of this approach is that it has two distinct stages,
9Q (M’M5 {Efliaé}) _5 B 0. k()  Whereas MLDA does a simultaneous optimization. This two-
Oa; o Z Mol a " stage MLDA computational will be referred to as MLDA(2).
(40) The likelihood of this scheme may be efficiently computed as
There are two situations to consider. The first is whgnrc

n (i.e., there are fewer transforms than dimensions). Here it[fs

£FO —

r 7 7

(o3, B A)

possible to simplify the optimization. Assuming tist” is of x ‘det Alrm) ‘/\/ Al g . m) s(m) 46
full rank then it is clear that at the ML solution (i.€{) = 0) ( ) ( ste Ol Py dlag[ﬂ) (46)
N where
ai=> ADePKOL (41)
- O] = Anlda[p]O- (47)

Now, the problem is to optimize the likelihood with respect 8 he likelihood cost with this modified form i©(Mp+ Rp? +
A% an R-dimensional vector. Am-dimensional optimization np), typically slightly less than MLDA. MLDA and MLDA(2)
problem, finding; directly, has been transformed into Brdi-  ra very similar when the space spanned by the nuisance dimen-
mensional problem of finding"”. Optimization for this partic- sions is orthogonal to all the useful dimension spaces. In this
ular version follows the same general scheme as that describgde the efficient likelihood calculation of (46) may be used for
below. For the special case whéh= 1 equating (40) t0 zero \y pA and the effective number of free parameters reduced ac-
gives the standard HLDA re-estimation formulae. cordingly. However, the optimization given for MLDA does not
The second, more general, situation occurs Where 7. gngyre this constraint. Due to this constraint there are usually

Here, there are no gains in transforming the problem as Shogﬂbhtly fewer free parameter&Mp + Rp? + n? + 2(n — p))
previously since the cofactor vectors will span all possiblgii, MLDA(2), than MLDA.

space, thus yielding no useful constraints. Proceeding directly

with a Newton-based optimization scheme, the Hessian for row V. LINEAR GAUSSIAN MODELS

T
L H s The schemes described up to this point should be compared
- 8?Q (/\/t, M; {Effﬁé}) to the use of subspace modeling of signals in other areas of ma-
H® = oal chine learning. Based on linear Gaussian models, they have been

& ] ) used for low-dimensional visualization [20] and determination
_ A el _ ok ® (a2) Of independent hidden sources [21]. Since the speed of com-

- (c(”)aT)Q ' puting the likelihood is not as important in these tasks as for

v the density modeling described in this paper, different forms of

The Calculatior_1 of the Hessianis effici_ent. The costis dC'min"s‘ted—5There are two concave surfaces separated by a discontinuity when the de-
by the calculation of the cofactors which must be calculated f@fminant ofA is zero.



GALES: MAXIMUM LIKELIHOOD MULTIPLE SUBSPACE PROJECTIONS 45

generative model have been used. These differences have eah-consisting of read speech data recorded in a quiet environ-
siderable impact in both training and computing the likelihoodaent. The test data was set up to be a speaker-independent
of such schemes. task (i.e., there is no overlap between the training and test
Low dimensional modeling schemes based on ML linear sugpeakers) with read speech recorded in a quiet environment
spaces have previously been proposed. These include schewittsthe same microphone. The training data consists of around
such as factor analysis (FA) [22] and probabilistic PCA (PPCA00 000 sentences of both scripted and unscripted data. A state
[20]. In [7], a general framework for linear Gaussian models ™ustered decision tree system was used throughout with 3430

given. For the case of static data modeling states. There were approximately 12 Gaussian components
used to model each state giving a total of 41268 Gaussian

z(T) =w (48) components in the system. The front end consisted of 24

o(7) :E[%z(r) +v (49) cepstrum coefficients. Nine frames were spliced together and

the dimensionality of the resultant feature vector reduced

where the state noisey, is p-dimensional zero mean GaussiaffOm 216 to 40 dimensions using LDA. A single semi-tied
distributed, the sensor noise, is n-dimensional zero-mean transform was then calculated to further improve the diagonal
Gaussian distributed ari,; is thep x n observation matrix. Gaussian component approximation. On previous experiments
For this form of modeling the likelihood is computed in the origSing similar systems with this task the performance using a
inal feature space since the sensor noise is modeled in the ofigndard LDA derived frontend was around 10% worse than
inal space. There are therefore no issues in comparing likd[i® use of a single STC transform [8], [12]. Thus, the baseline
hoods from multiple subspaces. system considered was the single global STC system. For the
LDA and the other schemes described in Sections |-V & Periments where a projection scheme was used, the nuisance
not directly fit into this framework. They differ in two ways. dimension size was set to be ten. No attempt was made to
First the state noise is distributed according to a Gaussian nf3etimize this value, though various complexity schemes, such
ture model or from an HMM, though non-Gaussian state-noiéé BIC [23] could be used to determine the optimal size. In ad-
distributions have previously been considered such as indep@#ion the number of transform classes was fixed at the number
dent factor analysis (IFA) [21]. Second there are restrictions 8h States, 3430. The assignment of component to transform
the form of the sensor noise. The generative model for LDA rglass was determined by which state the component belonged

quires a modification to (49), so that to. The test set consists of 15 speakers uttering a total of around
20000 words. The results quoted are the average word error
z(7) rates over all test speakers. A trigram language model was used

o(r) = E [ v } (50) in all tests with a 64 000 word vocabulary.

Table | shows the number of free parameters for each of the
wherev is now an(n — p)-dimensional random variable, whoseschemes. For a global transform HLDA, MLDA, and MLDA(2)
distribution is determined by the form of the noise model. Thigre all identical. For the multiple state-level transformations
modification alters both the training and likelihood calculatiothe MLDA and MLDA(2) schemes have the fewest parameters,
costs of the two schemes. All the form of models consideredsince the nuisance dimensions are global.

[7] and IFA [21]¢ may be trained using EM. None of the sub- Table Il shows the recognition performance of various
space projection schemes discussed in this paper may be tragysiems using either global or state level tying of the trans-
in this fashion, they require nonlinear optimization schemes formation matrices. For HLDA the last ten elements of the
be used. There are also significant differences in the cost of col@ature-vector, the nuisance dimensions, were modeled with a
puting the likelihood. Consider the case of IFA wiiHactors. single Gaussian component per transform class. For MLDA
The cost of calculating the likelihood for IFA8(M (n+p?)+  the nuisance dimensions were modeled using a single Gaussian
np + n?) [18]. In contrast, for the case of HLDA the cost iscomponent for all transform classes. For the global case the
simply O(Mp + pn). Hence, for speech recognition where th&TC system outperformed the HLDA. This indicates that the
number of Gaussian componenid, can be tens of thousandsprojection from 40 dimensions to 30 dimensions (as previously
and the number of dimensions, typically around 40 the dif- mentioned a single HLDA transform performs ML projection)

ference for any reasonable number of factors is large. degrades performance. However, it reduces the number of
model parameters by approximately 25%. Increasing the
VI. RESULTS number of STC transforms, so there is a separate transform

L . . for each state, reduced the word error rate by about 10%, but

The results presented in this section are to illustrate the Valzreased the number of model parameters by a factor of about
ious multiple subspace projection schemes on a speech recogii: peforming HLDA with the state-tied transform, multiple

tion tgsk. They are not aimed at achieving the best performarﬁEDA’ achieved the same performance as the STC system,

on this task. Though the models used are "good” models basgh 3 small decrease in the number of model parameters. It
on state-of-the-art HMM training techniques. is interesting that reducing the model complexity for ten of

An internal IBM _d|ctat|on_ task was use_d to examine f[h_?ne dimensions had no effect on the performance. Performing
schemes. The training data is a large multiple speaker training
17t would be preferable to perform this projection in an ML fashion. Unfor-
16This is not true when noiseless IFA is trained. In this case similar optimizainately for the size of system used for large vocabulary speech recognition this
tion schemes to STC may be used. is impractical at the present time.
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TABLE |
NUMBER OF FREE PARAMETERS (IGNORING COMPONENT PRIORS AND
TRANSITION PROBABILITIES) FOR STC, HLDA, MLDA, AND MLDA(2)
SYSTEMS USING EITHER A GLOBAL OR STATE LEVEL TRANSFORMATION TYING

were compared to the general class of linear Gaussian models.
Though closely related, the two forms of model were found to
differ in the form of the noise model. This had significant effects
on both the estimation of the model parameters and the cost of

System | Useful | Parameters (x10°) calculating the component likelihoods. Specifically, calculating
Dim. | global | state the likelihood of the linear Gaussian model was significantly
STC 40 330 8.79 more computationally expensive than the HLDA or MLDA sys-
HLDA | 30 | 248 8.03 tems. ) o
The performance of the multiple subspace projection
MLDA | 30 — 6.59 X
N schemes were evaluated on a speaker independent speech
MLDA®) | %0 — 556 recognition task. Using the multiple HLDA transforms to
control the model complexity, it was found that there was little
TABLE I difference in performance compared to the full system. This

PERFORMANCE OF ASTC, HLDA, MLDA, AND MLDA(2) SYSTEMS USING

indicates that there are possible gains, in terms of both speed
EITHER A GLOBAL OR STATE LEVEL TRANSFORMATION TYING

and model size, in having flexible model complexities over the

System | Useful || Exror rate (%) dimensions. It was also _four]d that simultanequ;ly optimizing
Dim | global | state both the subspace projection and the semi-tied transforms
was better than a two-stage process. Though the results did

STC | 40 | 12 | 102 not show gains of the use of multiple semi-tied transforms,
HLDA 3 || 121 ] 101 or increasing the number of Gaussian components in each
MLDA 30 — | 107 state, they illustrate that using multiple subspace projections

MLDA(2) | 30 — | 14 is another possibly useful option when designing LVCSR

systems.

There are a number of points that this paper has not addressed.

MLDA with the state-level transforms increased the word ernmhaihods for determining the appropriate number of useful fea-
rate by about 5% over the STC system but reduced the numRgeq have not been examined. The complexity of the nuisance
of parameters by about 25%. Using the MLDA system al§finension model was set to a single Gaussian component. The
reduced the computational cost by about 25%. In additiofse of more complex nuisance dimension models should be in-
Table Il shows the pgrformance of an MLDA(2) system. Th'§estigated. A simple hierarchical version of MLDA is also pos-
is the two-stage version of MLDA. The performance is slightlyip|e aj1owing even greater flexibility in the models choice. Fur-
worse tha_tn that of MLDA. T_hls.mdlcates that the simultaneoyfermore ML estimation has been used to obtain the model pa-
optimization of both the projection and the transform class-Spgmeters; rather than the discriminatively trained subspaces de-
cific transforms may lead to a reduction in word error ratgineq in [5], [6]. It would be preferable to use a discriminative
However, the use of MLDA does slightly increase the numbgf,ining scheme, such as maximum mutual information estima-
of parameters. . tion (MMIE) [2]. However, for LVCSR tasks this is computa-
Table 1l shows a general trend that performance mprovgana"y very expensive, though recently MMIE has been suc-

as the number of model parameters increases. Rather tf@Bsslly applied to an LVCSR task [24]. All these aspects will
using multiple transforms, the number of parameters M@y oqdressed in future work.

be increased by simply increasing the number of Gaussian
components. To obtain comparable performance to the multiple

HLDA state system the number of components had to be REFERENCES

increased by a factor of four. Again, a single global STC trans-[1]
form was used. This gave a word error rate of 9.9%. The total
number of parameters in the system 13.3 million parametersyy
50% larger than the HLDA state system that gave comparable
performance. .
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