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Summary

Phylogenetics plays a crucial role in the interpretation of genomic data?.
Phylogenetic analyses of SARS-CoV-2 genomes have allowed the detailed
study of the virus’s origins?, of its international®* and local*? spread, and
of the emergence!” and reproductive success*t of new variants, among many
applications. These analyses have been enabled by the unparalleled volumes
of genome sequence data generated and employed to study and help contain
the pandemic¢'?. However, preferred model-based phylogenetic approaches
including maximum likelihood and Bayesian methods, mostly based on
Felsenstein’s ‘pruning’ algorithm*% cannot scale to the size of the datasets
from the current pandemic*1°, hampering our understanding of the virus’s
evolution and transmissiont®. We present new approaches, based on rework-
ing Felsenstein’s algorithm, for likelihood-based phylogenetic analysis of
epidemiological genomic datasets at unprecedented scales. We exploit near-
certainty regarding ancestral genomes, and the similarities between closely
related and densely sampled genomes, to greatly reduce computational
demands for memory and time. Combined with new methods for searching
amongst candidate evolutionary trees, this results in our MAPLE (‘MAxi-
mum Parsimonious Likelihood Estimation’) software giving better results
than popular approaches such as FastTree 217, IQ-TREE 218) RAxML-NG12
and UShER!®. Qur approach therefore allows complex and accurate proba-
bilistic phylogenetic analyses of millions of microbial genomes, extending
the reach of genomic epidemiology. Future epidemiological datasets are
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likely to be even larger than those currently associated with COVID-19,
and other disciplines such as metagenomics and biodiversity science are
also generating huge numbers of genome sequences?Y 22, Our methods will
permit continued use of preferred likelihood-based phylogenetic analyses.

Main

As viruses and bacteria spread within and between hosts, they accumulate
genetic mutations. By analysing the genetic data of sampled pathogens, we
can understand their evolutionary and transmission history. For this reason,
genomic data play a crucial role in epidemiology, as exemplified during the
COVID-19 pandemic, and are used to track and reconstruct the spread
of disease within communities and within and between countrieg#i%23r25
understand the dynamics of transmission™2#2627 estimate the efficacy of
containment measures>282% predict future epidemiological dynamicg?23,
and for the tracking of pathogen evolution as showcased by the identification
of new SARS-CoV-2 mutations and variants of concern®1OL1i31I52,

Investigations of genomic epidemiological data are predominantly based
on phylogenetic methods, but analyses of SARS-CoV-2 genome sequence
data with existing phylogenetic approaches are becoming more difficult
due to the excessive computational resources required by current global
datasets consisting of millions of genomes®. While a daily updated global
SARS-CoV-2 phylogenetic tree is particularly useful®?, estimating it with
established phylogenetic software like RAxML34 or IQ-TREE® would
require years for each tree update (if possible at all due to memory de-
mand). For this reason, tools for tracking viral genome evolution and spread
(e.g. NextStrain®?) and many other genomic analyses often downsample
global SARS-CoV-2 datasets to a few thousand genomes, leading to loss of
power and resolution2%37,

A new approach for pandemic-scale likelihood-based phy-
logenetics

To address these issues, we have devised a set of new algorithms, techniques
and formats tailored for large-scale genomic epidemiology. Our approach,
MAPLE (“MAximum Parsimonious Likelihood Estimation”), performs max-
imum likelihood (“ML”) phylogenetic inference!™®34 and uses explicit
probabilistic models of sequence evolution; we combine these best-in-class
features with some aspects of maximum parsimony methods!® that allow it
to greatly reduce computer memory and time demand.

Concise genome data representation

Genomic data typically need to be aligned before performing phylogenetic
inference; resulting alignments usually employ Fasta or similar formats3®
which list the whole DNA sequence of each considered sample. In the context
of genomic epidemiology this is very highly redundant since genomes within
an epidemic are usually extremely similar to each other. While it is possible
to reduce the size of datasets using standard compression techniques3?,
sequences still need to be uncompressed before analysis.

Instead, we represent each genome in our MAPLE alignment format
in terms of differences with respect to a reference genome (Fig. |IA and

Methods). This way, we reduce file size approximately 100-fold compared
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to Fasta files (Extended Data Fig. ; for example, we reduced the size of
the 31-03-2021 GISAID global SARS-COV-2 alignment of 915,508 genomes
from 27.84 GB to 224.6 MB (a 124x reduction).

Concise phylogenetic likelihood representation and calculation

Likelihood-based phylogenetic methods typically keep track of the prob-
ability of every possible nucleotide at each position of the genome and
each node of the phylogenetic treet4, With pandemic-scale genomic data,
this process requires excessive computational time and memory resourcesi®.
However, in genomic epidemiology, due to the similarity of the genomes
considered, these probabilities are typically highly concentrated at only
one of the four nucleotides for most genome positions and tree nodes. We
exploit this feature by approximating these probabilities and representing
them concisely (Fig. [LlB and Methods). As an example, when estimating
a phylogeny from a random 10,000-sample subset of the GISAID dataset
above, with a reference genome of 29,891 bp, on average we only record
the phylogenetic likelihoods of 2.7 genome positions per tree node (210,000
times less than usual). This allows us to considerably reduce the memory
demand of likelihood-based phylogenetic inference in genomic epidemiology.

Additionally, we develop a more efficient alternative to the Felsenstein
pruning algorithm™ used to calculate phylogenetic likelihoods; this algo-
rithm has been at the core of most of likelihood-based phylogenetics in the
past 40 years, and so is fundamental to some of the most cited and used
scientific software, but is not tailored for the features of pandemic-scale
genomic data. Our alternative (Fig. [IC and Methods) takes advantage of
the strong similarities between the considered genomes and of efficient like-
lihood and data representation to reduce the computational time demand
of likelihood-based phylogenetics in genomic epidemiology.

Efficient tree exploration

To efficiently but accurately find likely phylogenetic trees, we develop new
strategies for exploring tree space. Our first strategy is an adaptation of
stepwise addition?, in which samples are added to the phylogenetic tree
one at the time. We use this strategy to find an initial tree (which is then
refined with the second strategy), but it is similarly useful in extending
an existing tree, for example as new genomes become available with time.
Our adaptation involves an efficient search among the nodes of the tree for
the most likely tree position in which to add the new sample (Fig. E and
Methods).

Our second strategy consists of a modification of subtree pruning and
regrafting??, which is used to perturb (and thereby improve) an existing
tree. Our modification consists again in efficiently exploring a broad range
of possible tree changes.

Computational demand and accuracy of MAPLE

Maximum likelihood phylogenetic methods typically present trade-offs
between accuracy and computational demand, with more accurate tree
reconstruction requiring deeper, and therefore more time consuming, tree
space exploration. Thanks to the considerable time and memory savings
brought by our new approach to likelihood calculation, MAPLE can invest
more resources in tree estimation than other methods, resulting in more
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Figure 1: Graphical summary of sequence and likelihood represen-
tation and processing. A Left: Fasta representation of an individual
SARS-CoV-2 genome consists of sample name followed by the entire ~ 30 kbp
genome sequence. Right: MAPLE format records only the differences be-
tween the genome under consideration and a reference; columns represent
the variant character observed, the position along the genome, and (when
necessary) the number of consecutive positions for which the character is
observed. B Left: an example likelihood vector at an internal node of a
phylogenetic tree (shown by the narrow blue arrow; only a small portion
of the tree is shown); for simplicity we show only 10 genome positions.
At each position (rows 1-10), each column contains the likelihood for a
specific nucleotide. For rows 1-9 the likelihood is concentrated at only one
nucleotide (highlighted in green), while for position 10 we show an exam-
ple with more uncertainty. Right: MAPLE representation of these node
likelihoods. Assuming that the reference sequence at the first 9 positions
matches the most likely nucleotides in the vector (ATTAAAGGT) then
for positions 1-9 the likelihood of non-reference nucleotides is negligible
and we represent the likelihoods with a single symbol (R). At position 10,
due to non-negligible uncertainty, we explicitly calculate and store the four
relative likelihoods. C: Examples of likelihood calculation steps in MAPLE.
Red arrows represent the flow of information from the tips to the root of
the tree. Left: if two child nodes are in reference state R for a region of the
genome (here, positions 1-9), then MAPLE assumes that their parent is
also in state R. Right: if at a genome position (here, position 10) two child
nodes have likelihoods concentrated at different nucleotides, then for their
parent we explicitly calculate the relative likelihoods of all four nucleotides.
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s 100
Figure 2: Graphical summary of phylogenetic placement in

MAPLE. A To search for the best placement of a new sample s (here
represented by a green dot and branch) on the current tree, we first assess
placement at the root, which in this case results in a relative log-likelihood
score of -70. B We iteratively visit descendant nodes by preorder traversal
and assess placement for each visited node (in practice we also attempt
placement onto branches). C When the log-likelihood score decreases two
times consecutively and falls below a certain threshold relative to the best
placement found so far, we do not visit further nodes downstream (red
crosses). D The placement with the highest score at the end of this process
(in this case with cost 0) is taken as optimal for the addition of s to the
tree.

accurate tree inference, while requiring less time and memory than other
maximum likelihood inference approaches (Fig. E, Extended Data Figs.
S5).

As an example, MAPLE shows consistently higher accuracy than RAxML-
NG (the most accurate of the methods we compared MAPLE against)
on simulated and real SARS-CoV-2 datasets (Fig. [3C-F, Extended Data
Figs. and , while being more than 100-fold faster (Fig. EA) and
requiring less memory (Fig. [BB). MAPLE can also estimate trees about 25
times larger than IQ-TREE 218 or FastTree 227 (500,000 vs 20,000 samples)
because of their 50-fold larger memory demand (Fig. 3B). Fig. [4] shows an
example 500,000-sample SARS-CoV-2 whole-genome phylogeny inferred by
MAPLE.

matOptimize*!' (a recent feature improving the accuracy of UShER?)
is a phylogenetic inference method that, similarly to MAPLE, has been
tailored to the features of genomic epidemiological analyses, but that uses
maximum parsimony rather than maximum likelihood principles. MAPLE
shows similar computational demand to matOptimize, and less steep slopes
in time and memory demand, being therefore able to estimate larger trees
(Fig. —B). matOptimize appears less accurate than maximum likelihood
methods on simulated data (Fig. [BC-E), but more accurate on real data
(Fig. ), being second only to MAPLE.

We can further improve the computational performance of MAPLE
by reducing the depth of its tree space search; for example, using option
“ -fast” in MAPLE, runtime becomes typically 2-3 times faster (Extended
Data Fig. [S2) without decreasing accuracy on simulated datasets (Extended
Data Fig. and while remaining the most accurate approach on real data
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(Extended Data Fig. [S5).

Discussion

By rewriting the classic Felsenstein pruning algorithm, by including features
of parsimony-based phylogenetic inference in a likelihood-based context, by
using efficient approximations, and by using more concise data representa-
tion, we have achieved substantial reductions in memory and time demand
and increases in accuracy compared to popular ML approaches when infer-
ring SARS-CoV-2 phylogenies. This enables state-of-the-art phylogenetic
inference to be performed on larger datasets than previously possible.

Beyond SARS-CoV-2, our approach will be equally useful in any analysis
with many sequences and with short evolutionary distances, such as most
scenarios in genomic epidemiology. This includes genomic datasets with
many samples from an individual pathogen, including for example large
collections of M. tuberculosis genomes®¥ or influenza genomes?¥, and collec-
tions of genomic data from possible future pandemics. Our approach could
also be combined with divide-and-conquer phylogenetic algorithms?>%l to
further improve its performance and applicability.

The applicability of our methods goes beyond ML phylogenetics. The
same algorithms and data structures in MAPLE could also be used in
a Bayesian setting, since Bayesian phylogenetic methods (for example
BEASTA78) use the same genetic data (multiple sequence alignments) and
the same likelihood calculation algorithms as ML phylogenetic methods,
and so would benefit from the same reduction in computational demands.

For these reasons, we expect that in the future MAPLE and its algo-
rithms will expand the computational toolkit of genomic epidemiology and
could improve our preparedness for combating future epidemics.
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Figure 3: MAPLE consistently delivers higher accuracy phyloge-

netic inference from SARS-CoV-2 genomes at lower computa-
tional demand. A Time required to run each method considered on real
SARS-CoV-2 datasets. Each phylogenetic inference method considered is
represented by a different color and line style (see legend). Values on the X
axes show the number of samples included in each replicate. We ran each
method up to the maximum dataset size that could be analysed due to time
(one week) and memory (40GB) limitations. Each violin plot summarizes
values for 10 replicates, and dots represent mean values. B Maximum
RAM demand required to run each method considered on real SARS-CoV-2
datasets. C—E Proportional Robinson-Foulds distances between estimated
trees and true trees in simulations. Higher values correspond to more errors
in phylogenetic estimation. C “Basic” simulation scenario; D “rate variation’
simulation scenario; E “sequence ambiguity” simulation scenario. F Log-
likelihoods of phylogenies inferred by different methods on real SARS-CoV-2
data, relative to the highest log-likelihood score obtained by any method
for the same replicate. Higher values on the Y axis represent more likely
estimates. We consider only dataset§ of up to 20,000 samples due to the
computational demand of likelihood evaluation.
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Figure 4: 500,000-sample phylogeny inferred by MAPLE. Example
phylogeny, with two consecutive zoom-ins each of about 100x magnification.
Different SARS-CoV-2 lineages are shown in different colors, with some
clades labelled to give context. Left: 500,000-sample phylogeny estimated
by MAPLE from real SARS-CoV-2 sequence data. Center: Zoom-in on a
subtree containing 3,600 B.1.177 samples. Right: Further zoom-in on a
subtree containing 49 samples. Phylogenies plotted using Taxonium®2.
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Methods

Concise representation of genomic epidemiological sequence data

We use a concise and human-readable format for representing an alignment
of closely related genome sequences, which we call MAPLE format. We
express each genome sequence in terms of its differences (substitutions and
deletions) with respect to the reference. We also record ambiguous positions
(TUPAC ambiguity characters), and deleted or non-sequenced portions of
the genomes (gap “-” and “N” characters, respectively).

As an illustrative example, we consider a reference genome “Reference’
comprising 20 “A” characters:

)

>Reference
AAAAAAAAAAAAAAAAAAAA

(here represented in Fasta format). If a sampled genome “Sample” consists
of the sequence:

>Sample
NNNNNAAAAA-——-AAAAATA

when aligned to the reference, as it would be represented in Fasta format,
we instead represent it as:

>Sample
N 125

- 11 3
T 19

where in each entry (row) the first column represents the type of difference
with respect to the reference, the second column in each row represents
the position (along the reference genome) of the difference, and the third
column (which we only require for “N” and “” entries) represents how many
consecutive positions have this same character.
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Concise representation of ancestral sequences and sequence un-
certainty

In addition to representing sequence data efficiently, we also efficiently
calculate and represent partial likelihoods at internal nodes of the tree.
Given a node n of the phylogenetic tree ¢, a column 4 of alignment A
containing site pattern (nucleotides) A;, and an evolutionary model M,
the partial likelihood at n and 7 of nucleotide X is typically defined in
phylogenetics as

pr(X) = p(AV|X, M, §) (1)

where A7 is the subset of observations in A; corresponding to the descendant
leaf nodes of n. These partial likelihoods are typically calculated with
the Felsenstein pruning algorithm; in total, there are 4 x L x |¢| such
likelihoods that need to be computed, stored and repeatedly updated during
phylogenetic inference, where L is genome length and |¢| is the number of
nodes in ¢. For SARS-CoV-2, L >29,000 bp and |#| can be in the order of
millions, making this approach unfeasible.

Instead, we replace partial likelihood vectors with more concise struc-
tures that we call “genome lists”. Each entry of a genome list represents
phylogenetic partial likelihoods for either one position of the genome or for
a set of consecutive positions that share similar features. An important
difference from the traditional Felsenstein pruning method is that, for each
genome position and tree node, we only keep track of relative partial likeli-
hoods among the four nucleotides, and not exactly of each p?(X); in other
words, we aim at tracking values p}'(X) = p(X)/>_ppP(D). An entry of
our genome list is a tuple of four elements (7,4,1,v), comprising:

e an entry “type” 7; the permitted types are “R”, to indicate collections
of contiguous sites that are identical to the reference (that is, sites
where the partial likelihoods are all concentrated at the reference
nucleotide); type “IN” to indicate contiguous sites that contain no
descendant sequence information (that is, sites where all four nu-
cleotides have the same partial likelihoods); types “A”, “C”, “G” and
“T” to indicate individual sites where the corresponding non-reference
nucleotide is the ancestral one at the node with negligible uncer-
tainty (that is, the partial likelihood mass is all concentrated in one
non-reference nucleotide); and type “O” (“other”) to indicate posi-
tions where multiple nucleotides have non-negligible relative partial
likelihoods

e a “position” ¢ representing the position of the reference to which the
entry refers. If the entry corresponds to a stretch of sites, this element
is the position of the first one (from 5 to 3’) of these. The last position
of the entry need not be specified explicitly

e the “branch length” [ represents the evolutionary distance (using the
same unit used to represent branch lengths) between node n and
the location in the tree where the partial likelihoods contained or
represented by the genome list entry refer to (see e.g. Extended Data
Fig). [ efficiently carries information regarding the uncertainty
of sites’ states by recording the evolutionary distance from the last
visited position in the tree with no state uncertainty.

e relative partial likelihoods (“partials”) v, representing the vector pi*(X)
for the position considered — only needed for entries of type “O”.
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Where we have made use of the concept of negligibility to distinguish
entries of type “O” from the others, in practice we define negligibility
through an arbitrary threshold e with default value ¢ = 1078, that is, a
site is of type “O” only if at least two nucleotides have a relative partial
likelihood pI'(X) > e.

As an example, we can consider the sample in the previous section

>Sample
N 15

- 11 3
T 19

and the same reference genome comprising 20 “A” nucleotides. Under
these assumptions, at the terminal node of the phylogeny corresponding to
“Sample”, we have the genome list

{IN, 1], [R,6,0.0], [N, 11], [R, 14, 0.0], [T, 19, 0.0], [R, 20, 0.0] }.

We omit branch length elements (third elements in each entry) of entries of
type “N” since they are redundant.

If instead of a “T” character at position 19 we observed a IUPAC
ambiguity code? “Y” (meaning “C” or “T7), then the fifth entry of the
genome list would have been

[0,19,0.0, (0.0,0.5,0.0,0.5)].

Calculation of genome lists

As is standard in phylogenetics, we assume that sequence evolution is a
continuous-time and finite-space homogeneous Markov process, where all
sites evolve independently?. We assume a nucleotide substitution process
determined by a substitution rate matrix @ whose entries ¢xy, for any X #
Y, represent instantaneous rates of substitution of nucleotide X to nucleotide
Y,andgxx = — >y 2x AXY - Transition probabilities over a branch length [
are typically calculated using matrix exponentiation, for which, considering
the short branch lengths involved in genomic epidemiology, we use a first
order approximation:

PY|X,1) =9~ 1+1Q (2)

where T is the identity matrix. This means that the probability P(Y|X,1)
of nucleotide X evolving into nucleotide Y # X is approximated as lgxy,
and that P(X|X,l) = 1+ lgxx.

For simplicity, we assume that the tree ¢ is binary and rooted, that is,
each internal node has exactly two children. We represent multifurcations
using bifurcations separated by branches of length 0.

Similarly to the Felsenstein pruning algorithm, we calculate the genome
list of an internal node n only after calculating it for its children. We
have shown above how we initialize genome lists for terminal nodes of the
tree. Now, we assume that n has child nodes b; and b, with genome lists
respectively Ly and Ls. We also assume that by and by are separated from
n by branches of length {; and l5. We want to calculate the genome list L,
of node n, which we obtain by “merging” information from L; and L.

Given the two genome lists L1 and Lo, we split the genome into segments,
where each segment corresponds to genome positions that all belong to the
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same genome list entry in L, and also all belong to the same entry in Lo
(see Supplementary Methods Section for more details). For example,
if we assume our usual reference of 20 “A” nucleotides, and consider child
genome lists

L, = {[N’ 1]7 [R7 6, Cl]v [T7 20, Cl]}
and
Ly = {[N’ 1]7 [R74702]}

(where ¢; and ¢y are arbitrary branch length elements for these genome list
entries) then we need to consider four intersection fragments:

e first, from positions 1 to 3 where both child nodes are of type N,
e second, from position 4 to 5 where b; is of type N and b is R,

e third, from position 6 to 19 where both lists are of type R,

e fourth, at position 20 where b; is T and bs is R.

Calculations for each intersection fragment are performed separately, sim-
ilarly to how calculations for each site in the Felsenstein pruning algorithm
are performed independently. (Note that for datasets with low divergence,
the number of intersection fragments will typically be much smaller than
the total number of sites.) We describe this process here considering a
general non-empty intersection between an entry e; of Ly and an entry e
of Lo — the whole genome list L,, is generated by repeating this process in
order of genome position for each non-empty intersection and concatenating
the results in L,. For simplicity, we assume that e; = [r1,41,¢1,v1] and
ea = [T2, 2, C2, V2], that i = max(i1,i2), and that the intersection fragment
between e; and e consists of A nucleotides. (If ;1 = O and in other
similar cases then we have necessarily A = 1.) Our aim is to calculate the
corresponding entry e = [r,1,[,v], which refers to the partial likelihoods
for the intersection fragment of A nucleotides starting at position 4 for the
internal node n; this entry will then be added to genome list L,,. Graphical
examples of the cases below are given in Extended Data Fig. [S6l

e When at least one of 71 and 75 is N (Extended Data Fig. [S6B, C),
since one child node contributes no information, we need only use
the genome list entry information of the other child. If for example
71 = N we have e = [12,7,¢2 + l2,v2]. Note however that if also
79 = N then we don’t need to keep track of the branch length element
of e (Extended Data Fig. [S6B), and if 75 # O the partial likelihood
vector element of e is also unnecessary (Extended Data Fig. ).

e If e; and ey are of the same type 71 = 72 € {R,A,C,G, T} (Extended
Data Fig. [S6D) then any mutational history involving a different
nucleotide at the parent node would have considerably lower likelihood,
so we define e as of type 7 = 7, = 75. The branch length entry of e is
I = 0 since type 7 is considered observed at node n, and no partial
likelihood vector v is required, resulting in e = [7, 4,0, ].

e If 7 # 75 and both 71, » € {R,A,C,G,T} (Extended Data Fig. @E),
the two likelihoods corresponding to these two nucleotides at node n
will have similar orders of magnitude, and so we set 7 = O. We can

14


https://doi.org/10.1101/2022.03.22.485312
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.22.485312; this version posted July 18, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

assume for simplicity that 71 and 75 represent individual nucleotides
(if, for example, 71 = R then we can equivalently consider 71 as the
reference nucleotide at the considered position). We approximate
the relative partial likelihoods at n (the entries of v) as pP(X) =~
(Oxr, +axrm (l1+¢1))(0xr + gxr,(l2 +¢2)); here dx, is the Kronecker
delta. We then normalize v, to obtain entry e = [0, ,0, v].

e The last case is when 71 = O or o, = O. In the most complex
case 11 = 75 = O we approximate the partial likelihoods as v(X) =
PP (X) & (X x, Oxx, +axx, (b +e1))vi(X1)) (X x, Oxx, Haxx, (2 +
¢2))v2(X2)) where v(X) is the entry of v corresponding to nucleotide
X. We then normalize v; if only one nucleotide has a value above € in
v, then we set 7 to this nucleotide (if this nucleotide is the reference
nucleotide at site i, we set 7 = R). Therefore e = [r,14,0, v], where v
might be absent in case 7 #0. The case in which only one of 71 and
79 is O is dealt with similarly.

These calculations are iterated over all intersection fragments, which
together represent a partition of all genome positions. Entries of genome
list L., are included in order based on position element 7. If two consecutive
entries of L,, are of type R and have the same branch length, we merge
them into a single entry of type R.

The computational demand of this approach is linear in the total number
of entries of all the genome lists in the tree, since the maximum computa-
tional demand for creating a genome list entry is a constant, no matter the
number of sites represented by the entry.

Other partial likelihoods

So far we have discussed partial likelihoods as in Equation[I] Normally these
likelihoods are sufficient for phylogenetic inference. However, when using
a non-stationary model, additional types of likelihoods are useful®. Here
we also use these additional likelihoods and represent them with additional
genome lists. Furthermore, for most nodes of the tree, we also calculate
genome lists representing relative likelihoods considering all the data in
the alignment, which correspond to ancestral state reconstructions®. We
present the details of these genome lists in Supplementary Methods Section

512

Phylogenetic placement

Phylogenetic placement is the task of adding a new sequence onto an existing
phylogenetic treeS. We perform phylogenetic placement within the context
of stepwise addition™ to construct an initial phylogenetic tree. We start
from a tree containing only one sample and iteratively expand it by placing
new samples on it one at the time.

First, given a tree ¢ and a new sample s we look for the region of ¢
where to best place s. We traverse ¢ starting from the root, and we typically
do not traverse the whole tree, but instead traverse only a small portion
of the internal, terminal, and mid-branch nodes of ¢, stopping traversing
into subtrees if the placement at their root looks unpromising (Fig. . For
each node n that we traverse, we use its ancestral state reconstructions and
combine them with the genome list representing the partial likelihoods of s
to obtain the placement score of s at n (described in detail in Supplementary
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Methods Section . As we traverse the tree, we keep track of By, the
best placement score found so far for s. If, while traversing the tree, the
placement score at an internal node n worsens by a certain margin (by
default 200 log-likelihood units worse than By) or at least a certain number
of times (by default five times) moving from the direct ancestors of n to n,
then we do not traverse the tree further downward in the subtree of the
descendants of n. We do not attempt placement at nodes with a branch
length of 0 above them, which are part of polytomies.

Once we have identified the node with the best placement likelihood
score, we search in detail the exact point of the phylogeny near this node
where the new sample is best placed on the tree (Supplementary Methods
Section .

Every time we add a new sample to the tree, we consequently update
the genome lists in the tree. Because we consider relative likelihoods, we
typically only need to update the genome lists for a small portion of the
tree after each new sample placement (Supplementary Methods Section
S1.5).

If the genome of a new sample to be placed on the tree is found to be
identical or less informative than the genome of a sample already in the
tree, we record it as such and only add it to the estimated phylogeny at a
later stage (Supplementary Methods Section .

During estimation of the initial phylogeny by stepwise addition, we also
estimate the substitution model (Supplementary Methods Section ,
which we then consider fixed in the next stage of MAPLE.

Tree topology improvement

After estimating an initial tree via stepwise addition, we attempt at improv-
ing the topology of the tree using custom subtree pruning and regrafting”
(“SPR”) proposals. These work in a very similar way as sample placement,
and are described in detail in Supplementary Methods Section [S1.8!

Software implementation

We implemented our methods in a Python3 script available from https://
github.com/NicolaDM/MAPLE. For efficiency, we recommend its execution
with the pypy3 implementation of Python https://www.pypy.org/#! .

Other Phylogenetic methods considered

We compare the performance of MAPLE to efficient and popular maxi-
mum likelihood phylogenetic methods that are often used to analyse large
sequence datasets: IQ-TREE v2.1.3%, FastTree v2.1.11% (double precision,
no SSE3) , and RAXxML-NG v1.0.2*% For all these methods we adopt a
GTR substitution modelt. We also consider the parsimony-based method
matOptimize!2, a recent approach to improving the accuracy of UShERY?
trees), which has been tailored for SARS-CoV-2 datasets. We selected
program options to permit fair comparison of methods, with each being
tuned to the largest problems it could analyze on available hardware. In
detail:

We ran IQ-TREE 2 with options “-quiet” to reduce screen output, “nt 1”
to use only one core per replicate on our cluster and “-fast”, with which
only nearest neighbour interchange (NNI) moves are used. For simulations
with rate variation we used a GTR+G model.
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FastTree 2 was executed with options “-quiet” to limit screen output,
‘“-nosupport” to skip support value computations, and “-nocat” to ignore
rate variation (except for simulations with rate variation, for which we use
“-cat 4”). We also used option “-fastest” to reduce the time demand of NNI
steps.

RAxML-NG was run with options “--threads 1”7 to use only one core
per replicate on our cluster, “--blmin 0.000005” to increase the minimum
branch length considered and “--tree pars{1}” to start the tree search from
a parsimony tree. For simulations with rate variation we used a GTR+G
model.

UShER and matOptimize were run with option “-T 1” to utilize a single
thread per replicate, and were run using the vcf input file format (option
“v”). matOptimize was run starting from the initial tree estimate of UShER
and using option “-n” to avoid the creation of intermediate files.

We ran MAPLE with default parameters and using PyPy (v7.3.5 with
GCC 7.3.1 20180303 for Python 3.7.10; see https://www.pypy.org/#!).

Additional options considered for these and additional methods are
described in Supplementary Methods Section with corresponding
results reported in Extended Data Figs.

Real SARS-CoV-2 sequence data

We randomly subsampled without replacement a given number of se-
quences from the 540,520 whole genomes that were represented both in the
31 March 2021 global unmasked SARS-CoV-2 alignment from GISAID!4
and in the corresponding phylogenetic tree (https://www.gisaid.org/ ).
We did not mask sites or filter out sequences. We use the consensus of
all the sequences in the global GISAID alignment as reference genome for
MAPLE. When measuring running times, we did not consider the cost of
creating the input alignment for a given method.

Simulated SARS-CoV-2 sequence data

For real datasets, we have the drawback of not knowing the true under-
lying phylogenetic tree, which makes it harder to assess the accuarcy of
different phylogenetic inference methods. For this reason, we also simulated
SARS-CoV-2 alignments of known phylogeny and substitution dynamics.
We used as background “true” tree the publicly available 26 October 2021
global SARS-CoV-2 phylogenetic tree from http://hgdownload.soe.ucsc.
edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/42 representing the evolu-
tionary relationship of 2,250,054 SARS-CoV-2 genomes as obtained using
UShER"3., We used phastSim v0.0.3% to simulate sequence evolution along
this tree according to SARS-CoV-2 non-stationary neutral mutation rates’
and using the SARS-CoV-2 Wuhan-Hu-1 genome!® as root sequence. We
simulated three different scenarios:

e the “basic” simulation scenario (no rate variation and full genomes
available)

e the “rate variation” scenario, where we allow different genome positions
to evolve at different speeds in our simulations to mimic the effect on
genome evolution of variable mutation rates and selective pressures
along the genome. We simulated four genome site categories, all with
the same frequency and with relative substitution rates of 0.1, 0.5, 1
and 2
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e the “sequence ambiguity” scenario, where we modified the simulated
sequence data of the basic simulation scenario to include ambiguity
characters. To realistically mimic amplicon drop-out effects!?, for
each simulated sequence we sample one random sequence from the
real dataset and copy-paste from it the stretches of “N” and gap
“.” characters into the simulated sequence. Additionally, because
contamination and mixed infections can result in individual ambiguity
characters specifically at phylogenetically informative sites of the
genome?Y, we count the number of isolated ambiguous characters
in the real sequence, and we mask an equal number of randomly
selected SNPs (differences with respect to the reference genome) in
the simulated sequence. If more isolated ambiguous characters are
observed in the real sequence than SNPs in the simulated sequence,
then we simply mask all SNPs in the simulated sequence.

Comparison of methods’ performance

We measured the computational demand of different approaches in esti-
mating phylogenies by tracking the running time and maximum memory
demand of all methods. All methods were run in parallel, assigning one
thread per replicate per method. Since matOptimize requires an initial
run of UShER, the running time of matOptimize is defined as the sum of
the time it took to execute UShER followed by matOptimize; the maxi-
mum memory demand for matOptimize was defined as the highest of the
maximum memory demands of the two methods.

We used two methods to compare the topological inference accuracy of
different approaches. The first compares the likelihoods of the estimated
tree topologies. Trees with higher topology likelihoods are interpreted
as better estimates. Since the phylogenetic likelihood of the same tree
measured by different software can differ due to different approximations
employed, we use the same software, IQ-TREE 2, to calculate the likelihood
of the topologies inferred by all methods. To make the comparison of
topological accuracy of different methods even more fair, in particular
considering that maximum parsimony methods UShER and matOptimize
do not represent branch lengths in the same way as maximum likelihood
methods and do not estimate substitution models, when measuring topology
tree likelihoods we run IQ-TREE 2 using the tree to be assessed as starting
tree, and performing model and branch length optimization but without
attempting topological improvements. In simulations with rate variation we
run IQ-TREE 2 with a GTR+G model with four categories; otherwise we
use a plain GTR model. Note that the use of IQ-TREE 2 for tree topology
likelihood estimation limits the size of the trees that can be assessed due to
the memory demand of the software.

The second measurement of phylogenetic accuracy (only available for
simulated data for which the correct tree is known) is to calculate the
Robinson-Foulds distance?! between an inferred tree and the corresponding
true simulated tree. This distance gives a measure of how topologically
close an inferred tree is to the true tree, and therefore quantifies inference
error. We consider trees as unrooted, collapse all branches on which no
simulated mutation events occurred, and collapse all branches shorter than a
minimum branch length (defined by the minimum branch length considered
by each estimation method) so as to represent trees as multifurcating when
a method finds little or no support for the local branching order. Robinson-
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Foulds distance calculations were performed with a custom implementation
of Day’s algorithm?42.

Data availability

All real data used in this manuscript is available from the GISAID!4
(https://www.gisaid.org/ ) 31 March 2021 which requires acceptance of
the GISAID data sharing conditions.

Code availability

The code is available from https://github.com/NicolaDM/MAPLE!
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