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Maximum-Likelihood Parameter Estimation of
Bilinear Systems

Stuart Gibson, Adrian Wills, and Brett Ninness

Abstract—This paper addresses the problem of estimating the
parameters in a multivariable bilinear model on the basis of ob-
served input-output data. The main contribution is to develop, an-
alyze, and empirically study new techniques for computing a max-
imum-likelihood based solution. In particular, the emphasis here is
on developing practical methods that are illustrated to be numer-
ically reliable, robust to choice of initialization point, and numer-
ically efficient in terms of how computation and memory require-
ments scale relative to problem size. This results in new methods
that can be reliably deployed on systems of nontrivial state, input
and output dimension. Underlying these developments is a new ap-
proach (in this context) of employing the expectation-maximization
method as a means for robust and gradient free computation of the
maximum-likelihood solution.

Index Terms—Bilinear systems, maximum likelihood (ML), pa-
rameter estimation, system identification.

I. INTRODUCTION

B ILINEAR systems are nonlinear descriptions which are
distinguished by the fact that exogenous inputs may enter

in a manner which is multiplicative with the system state. The
importance and utility of these sort of models is now well ac-
cepted with a history, at least within the control community,
spanning more than three decades [6].

This is due in part to their relative simplicity within the
broad class of nonlinear systems. However, it also arises via
their ability to characterize a very wide range of chemical,
biological, robotic and manufacturing processes for which any
linear approximation is very far from satisfactory [11], [47].

For example, as explained in [11], for chemical processes it is
common that exogenous inputs are flow rates. Natural choices of
system state, such as temperature or concentration then evolve
and affect the process output in a manner which is multiplica-
tive with the input, according to mass and heat balance consid-
erations.

Additionally, bilinear system models are also useful as ap-
proximators, or alternate representations for a range of other
nonlinear system descriptions [25]. For instance, any discrete-
time finite Volterra series expansion with time-invariant sepa-
rable kernels can be realized compactly as a discrete-time bi-
linear system [37].
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Motivated by their importance and utility, this paper studies
the problem of estimating the parameters of bilinear descrip-
tions on the basis of observed input-output data. Given the sig-
nificance of this issue, it has an extensive history of previous
study, which can be briefly surveyed by division into themes.

In [1], [21], and [43] and related work cited in those papers,
the input is assumed to be a stationary time series with known
properties (sometimes known densities), and second or higher
order moments of certain signals are computed and then em-
ployed to find estimates via a correlation analysis, or via a sto-
chastic approximation approach. This involves a Volterra kernel
description of the bilinear system, which can imply very high di-
mension quantities, with attendant computation difficulties for
systems of appreciable state or input–output dimension.

In [12], [13], [45], and [46] the use of a state–space formula-
tion of the bilinear models, together with gradient based search
for a maximum-likelihood (ML) solution is studied. In partic-
ular [12], [13] consider single-input–single-output (SISO) sys-
tems together with a canonical parametrization of the system
matrices, while [45], [46] address the multiple-input–multiple-
output (MIMO) case via a combination of full parametrization
of system matrices coupled with a gradient search strategy that
ignores associated directions of rank deficiency.

The work [8], [11], [45], [48] also employs fully parametrized
state space descriptions, but explores the use of subspace-based
methods for the purposes of computing estimates. The advan-
tage of this approach is the avoidance of iterative search and
associated concerns with local minima. The disadvantage is the
exponential growth in the size of certain Hankel matrices with
respect to state and input-output dimension, although the recent
contribution [49] has proposed a strategy for ameliorating this.

One outcome of this previous study is that, as is usual for
ML methods, they are established to provide statistically op-
timal and hence accurate estimates. Furthermore, the employ-
ment of a fully parametrized state space description has proven
useful not only in terms of numerical robustness, but also in
terms of catering for multivariable systems. However, despite
this progress, solutions that can reliably deal with systems of ap-
preciable state and input–output dimension are not completely
developed.

For example, as these dimensions grow, it is well recognized
that the associated exponential growth in associated Hankel ma-
trix dimension renders subspace methods too costly in terms of
memory and processing speed requirements [45], [49]. Further-
more, as will be established here, while gradient based search
methods can be highly effective on smaller size problems, they
do not scale well in terms of how the same processing require-
ments grow with problem size. The system dimensions empir-
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ically profiled in all the previously cited work are limited to a
state order of three, and an input-output dimension of two.

Related to this, the work here develops methods for bilinear
system estimation that do scale well with problem dimension,
and hence function reliably for systems of significant size. For
example, the methods developed here will be illustrated as being
effective on a twentieth order, four input four output problem.

In light of the benefits established in the previous work [29],
[45], [49] of using a ML criterion coupled with a fully parame-
trized state space description, this strategy will also be pursued
here. However, this paper will examine the new idea of replacing
the gradient based search proposed elsewhere with a nongra-
dient based one. In particular, the use of the expectation-maxi-
mization (EM) algorithm [9] for computing ML estimates will
be developed, analyzed, and profiled here.

The EM algorithm enjoys wide popularity and acceptance in
a broad variety of fields of applied statistics. For example, areas
as disparate as signal processing and dairy science routinely
use the method [34], [4]. Despite this acceptance and success
in other fields, it could be argued that in systems and control
settings, the EM algorithm is not as well understood, accepted
and utilized as it may deserve. The same phenomenon has been
observed in econometrics [38].

Perhaps this is due to the fact that, while the EM algorithm
does provide a general structure for the solution of estimation
problems, if employed naïvely, it will generally fail on all but
trivially sized problems due to effects of finite precision com-
putation. This paper therefore develops a robust implementa-
tion whereby it is made explicit how customised methods should
be employed in both the expectation and maximization steps in
order to deliver a highly reliable algorithm.

Although this paper has a prime focus on EM based methods,
it also examines the gradient based search methods proposed in
[45], [46], since they are a highly effective technique. In relation
to this, the work here establishes and illustrates the apparently
new result that the local-coordinate approach developed in
[45], [46] is precisely equivalent to ignoring the effects of over-
parametrization, and then performing standard Gauss–Newton
optimization that employs a pseudo-inverse [based on singular
value decomposition (SVD)] of an associated rank deficient
Hessian approximation.

Recognizing this permits further performance tuning of the
attractive methods developed in [45], [46]. Indeed, as illustrated
here, the gradient based search involved with these techniques
can often converge significantly faster than the EM methods de-
veloped here. However, again as will be illustrated, this best
case performance involves important tradeoffs. For example, as
the model state and input–output dimension grow, the computa-
tional load associated with gradient based search methods grows
very much faster than for EM based methods. As a result, on sys-
tems of significant size (twenty state, four inputs and four out-
puts) where gradient based methods become impractical, EM
techniques provide an effective alternative.

Another tradeoff is that EM based methods are more reliable,
in that while their best case convergence rate is slower than the
best case for gradient based methods, the variability in their per-
formance is quite small. In particular, as will be shown here, they

are quite robust against termination in local minima. Consid-
ering the difficulties of finding initial models for bilinear system
estimates, this turns out to be a very important advantage.

Finally, this paper builds on earlier work in [14] that estab-
lished the utility of EM-based methods for the estimation of
linear and time invariant systems. Wherever possible, the deriva-
tion of the extended results here have been shortened by refer-
ence to that previous work. However, the work [14] contains
a much fuller and more tutorial presentation of the principles
and properties underlying the EM methods used here, and hence
readers seeking more details on those topics are referred there.

II. BILINEAR SYSTEM MODELLING

One of the most general models for the input-output behavior
of a nonlinear system is the Volterra description

(1)

which has a very long history [37]. Here, the terms
are referred to as the Volterra kernels.

In the special case of , the representation (1)
becomes the impulse response description of a time invariant
linear system as a special case.

A key difficulty with employing this model is that of de-
termining the possibly large number of Volterra kernels. An
obvious way to address this problem is to reduce complexity
by constraining the kernels to be time-invariant and separable.
In this case the Volterra series is realisable by a finite-order
bilinear system [37], which in the single-input–single-output
(SISO) case can be expressed as

(2)

Here, and are system output and input (re-
spectively) and is a zero mean stochastic process that ac-
counts for measurement corruption. For the purposes of system
identification, this model structure was used in [32], and in a
slightly varied form in [12] and [13].

However, when developing models for multivariable data, the
following state–space bilinear description, as employed in [11],
[12], [45]–[47] is more tractable:

(3)

Here, the vector sequences , and
represent the evolution of the system’s state, input

and output, and the quantities
are constant

matrices which, in the sequel, this paper will seek to estimate.
Measurement and modeling corruptions are accounted for by
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the zero mean i.i.d. processes and . The symbol is
the Kronecker tensor product of matrices [5].

As noted in [45], input–output bilinear representations of the
form shown in (2) neither subsume, nor are subsumed by, those
with a state–space description (3).

III. MAXIMUM LIKELIHOOD ESTIMATION

For the purpose of estimating the parameters describing the
bilinear model (3) on the basis of observations of input
and output the latter will be denoted as

and (4)

As a solution strategy, the work here will employ an ML ap-
proach wherein a stochastic model for the modeling and mea-
surement corruptions and is required. Here, it will be
taken as the i.i.d. Gaussian one

(5)

where, in the above, is partitioned conformally with respect
to and . To allow for estimation from data records that
have not attained steady-state operation, the initial state will be
estimated via the parameters of a further Gaussian model

(6)

The model (3), (5), (6) is therefore completely described by the
elements of the parameter vector defined as

(7)

(8)

where the operator creates a vector from a matrix by
stacking its columns on top of one another and

(9)

In order to estimate the vector parametrizing an underlying bi-
linear model (3), this paper examines the ML approach of using
a value defined as

(10)

Here, is the probability density function of the observed
data conditioned on the system parameters being , which
are assumed to lie within a compact set of candidate
parameter vectors.

The use and analysis of the ML method for the general es-
timation problem is classical [20], [27], [42], [7]. A main at-
traction is the general (but not universal [26]) feature that ML
estimators achieve optimal accuracy, in that they are asymptoti-
cally (in data length ) consistent, and achieve the Cramér–Rao
lower bound on estimate variability [26], [27].

Despite these advantages, an important obstacle to employing
the method is the difficulty of computing a value that satis-
fies the criterion (10), since is typically non convex with
respect to , and is also nonlinearly parametrized by . For ex-
ample, in the bilinear system estimation case considered here
[19]

(11)

(12)

(13)

where is the one step ahead mean square optimal pre-
dictor, and the associated state estimate covariance
which are both computed via an appropriate Kalman predictor
that depends upon .

Note that in forming (12), constant terms that do not affect
the maximizer of have been neglected, and the so-called
“log likelihood” as opposed to is considered since
it has the same maximizer as , but is more convenient to
work with.

IV. BILINEAR ESTIMATION VIA THE EM ALGORITHM

The EM algorithm is an iterative technique for obtaining ML
estimates. It has its origins, in specific cases such as discrete
state and measurement hidden Markov model estimation,
stretching at least as far back as [2]. It first appeared in the
general form which will be employed here in [9]. While it
enjoys a history of success in areas of mathematical statistics,
signal processing, and even dairy science [51], [4], [34], [31],
[33], [41], it has only been employed in the control literature in
certain specialised applications, such as that of estimation with
censored data [16], [22].

To the authors’ knowledge, it has not been previously em-
ployed for the purposes of bilinear system estimation. However,
the current authors have recently made a detailed study of the
method in the case of multivariable LTI system estimation [14],
and this paper will draw on, and then extend certain results and
techniques developed in that work.

A. The EM Algorithm

The key principle underlying the EM algorithm is the postu-
late of a so-called complete data set , which con-
sists not only of the actual observations , but also another set
of data , termed “missing data,” that was not observed, and is
a key design variable chosen by the user. The essential point of
the EM algorithm is to choose such that if it were available,
the computation of an ML estimate with respect to would be
straightforward.
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These ideas are developed by first applying Bayes’ rule to the
joint density to obtain

and, therefore

(14)

In this case, with denoting expectation with respect to
a probability density function determined by , and conditional
upon data , then operating on both sides of (14) leads to

(15)

where

(16)

and

(17)

The EM algorithm then proceeds by maximizing with
respect to in the hope of delivering a new estimate which is
an improvement relative to . An intuition behind this strategy
is that although, by appropriate choice of , maximization
of is straightforward, since is not available,
an alternate strategy of maximizing an approximation of

given as

(18)

is used. To understand the utility of this approach, note that via
the decomposition (15), the difference between the likelihoods
associated with any two elements of , say and , can be
written

(19)

The second term on the right-hand side, by dint of the definition
of may be identified as the Kullback–Leibler divergence
between and which has the property [24]

with equality if and only if
almost everywhere. Therefore, according to (19), any value of
for which implies that .

This suggests a strategy of maximizing , which must
increase via (19), and then setting equal to this maxi-
mizer and repeating the process. That is, the EM algorithm pro-
ceeds via repeated application of the following two steps which
start from an estimate of and update to a better one
via the following.

1) E Step

(20)

2) M Step

(21)

Since a single iteration of the EM algorithm is generally not
sufficient to provide a satisfactory estimate of , an EM al-
gorithm normally consists of more than one iteration, gener-
ating the sequence of increasingly good parameter estimates

.

B. Application to Bilinear Systems

The most crucial choice in the deployment of the EM algo-
rithm is the selection of the missing data. The few previous
applications of the EM algorithm in control relevant estimation
problems have interpreted the choice literally, in the sense that
they have employed EM based methods to handle the case
of censored measurements [22], [16] with respect to SISO
ARMAX model structures.

This paper takes a different approach, whereby it is noticed
that if, in addition to the measurements and , the state se-
quence

(22)

were available, then it would be possible to extract an estimate
of directly from (3) using simple linear regression tech-
niques. Since knowledge of would so radically simplify the
estimation problem, it is designated here as the EM algorithm’s
missing data. This approach has also been used for the purposes
of multiple linear time series modeling in [39] appearing in the
statistics literature.

With this definition of the missing data, the first part of the
EM algorithm requires that the function be computed.
This may be achieved via the following lemma.

Lemma 4.1: With regard to the model structure (3), (5), if the
missing data is defined by (22), then the function
defined in (16) is given by

(23)

where

(24)

(25)

(26)

Proof: See Appendix I.
In order to calculate the matrix-valued quantities , and
required for the computation of we note that manip-

ulations using the basic properties of the Kronecker product
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allow , and to be expressed as shown in (27)–(29) at the
bottom of the page, where

(30)

The computation of , and therefore requires the
availability of together with and

for . Crucially, at least the
first two of these quantities may be computed using a Kalman
smoother by exploiting the fact that the bilinear system (2) is
also expressible in the following time-varying form:

where

(31)

This provides and via and its
associated covariance .

However, the quantities
are not obtainable by standard smoothing algorithms. Further-
more, the authors have found that any naïve implementation
of the smoothing step (and subsequent maximization steps to
come) will lead to failure on all but trivially sized problems due
to errors associated with finite precision computation. On the
other hand, (as will be illustrated empirically) with appropriate
study and modifications embodied in the following lemma, the
EM based methods derived here can be rendered highly reliable
if appropriate steps are taken to use numerically robust proce-
dures.

Lemma 4.2: The components

(32)

(33)

(34)

required for the computation of (27)–(28) may be robustly com-
puted as follows. The smoothed state estimate is calcu-
lated via the reverse-time recursion

(35)

(36)

where all covariance matrices are computed from their square
roots as, for example, . These are found by
performing the following -decompositions:

(37)

(38)

(39)

and then setting

(40)

Here, the matrices , and are defined as

(41)

(42)

The matrices and are calculated via the ini-
tialization

(43)

followed by the the backward recursion given by

(44)

(27)

(28)

(29)
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Finally, the reverse time recursion (35) is initialized by running
to the (robust) Kalman filter recursions

(45)

(46)

(47)

for .
Proof: See Appendix II.

Equations (27) and (28) in concert with Lemmas 4.1 and 4.2
demonstrate that the computation of is somewhat com-
plex, but straightforward. We now turn to the final part of the
EM algorithm—the M-step, which requires the calculation of
the value of that maximizes . This is also straightfor-
ward, but must still be done with care in order to preserve nu-
merical robustness. Its precise formulation depends on the fol-
lowing parameter space specification.

Standing Assumptions 4.1: Recalling the decomposition
defined in (7), the set of candidate parameter vectors

is taken as

(48)

where is a closed hypercube in
, and is a compact subset of

for which all imply symmetric positive definite
.

Lemma 4.3: Let defined in (26) satisfy and be used
to define according to [ is also defined in (26)]

(49)

If defined by the the parameter space Assumptions 4.1 is such
that lies within , then for any fixed , the point (49)
is the unique maximizer

(50)

Furthermore, given by

(51)

(52)

forms a stationary point of with respect to . Here,
is defined by (37), (40), and is defined by the

Cholesky factorization (see [15, Alg. 4.2.4])

(53)

Note that the right-hand side of the expression for in (51)
is

(54)

realized in a numerically robust fashion that ensures essential
properties of symmetry and non negative–definiteness of the re-
sult.

Proof: See Appendix III.

C. A Summary of the Algorithm

The preceding derivations are now summarized in the inter-
ests of clearly defining the new algorithm proposed here.

EM Algorithm 4.1 (EM Algorithm for Bilinear Systems):

1) Initialize the algorithm by choosing a parameter vector
.

2) (E-Step) Employ the square-root implementation of
the modified Kalman smoother presented in Lemma
4.2 in conjunction with the parameter estimate to
calculate the matrices , and as shown in (27)
and (28).

3) (M-Step) In order to choose an updated parameter es-
timate , select , and according to (49),
(51), and (52).

4) If the algorithm has converged, terminate, otherwise
return to step 2).

Regarding step 4), obvious strategies for gauging convergence
involve copying those developed for gradient based search [10],
[36]. In particular, this paper suggests a strategy of termination
when relative likelihood increase on an iteration drops below a
predetermined threshold.

D. Properties

This section describes some properties of the new methods
proposed here. In relation to this, an essential point is that Al-
gorithm 4.1 employs a nonminimal state–space parametrization
and thus, for any candidate model, there exists a potentially infi-
nite number of equivalent models mutually related via similarity
transformations.

This raises obvious questions relating uniqueness and ter-
mination of iterates . Addressing these issues is a particular
focus of the analysis to follow, for which the essential points are
that under a persistence of excitation condition, the iterates are
well defined, imply an evolution of likelihood that is attracted to
a local maximizer, and which do not “wander” amongst systems
that are input–output equivalent.

Lemma 4.4: Suppose that for a system param-
etrized by and that for the given data length , the input
sequence satisfies

(55)

Then , defined by (26), is positive definite and is uniquely
defined.

Proof: See Appendix IV.
The property that perhaps most strongly recommends em-

ploying an EM algorithm is that further iterations cannot result
in a lower likelihood, as was explained in Section IV-A. Algo-
rithm 4.1 inherits this. Moreover, in the specific EM algorithm
case considered here, the following lemma also establishes that
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despite the overparametrization, the sequence of estimates
involved with the EM approach is uniquely defined.

Theorem 4.2: Let parametrize a system (3), (5) with
. Suppose that the input sequence

satisfies (55). Then

(56)

with equality if and only if .
Proof: This follows from [14, Cor. 5.1] with the inclusion

of input condition (55).
Since the sequence of likelihoods associated with the EM

algorithm is monotonically increasing it is clear that this se-
quence will converge under the very mild condition that is
bounded above for . In the following theorem, we demon-
strate that the associated limiting parameter values have an in-
terpretation in terms of the likelihood function.

Theorem 4.2: Let be a sequence of estimates gen-
erated by EM Algorithm 4.1. Then a limit point of , is
a stationary point of and the sequence converges
monotonically to .

Proof: This follows from the results provided in [14] ex-
tended in an obvious manner to the bilinear case considered
here.

Note that the conditions in this theorem that the functions
and are continuous on and that is differentiable in its
interior are very mild and will be satisfied if, for example,
and for all . Again, see [14] for further discussion
on this point.

V. BILINEAR ESTIMATION VIA GRADIENT BASED SEARCH

The previous work most closely related to this paper is that
of [46], [47], [45], and [49] wherein a different approach to the
multivariable bilinear system estimation problem is taken, and
which employs the model structure

(57)

This is an instance of the more general case (3) via the restriction
for some zero mean i.i.d. process . An attractive

feature of this model structure is the relative simplicity of the as-
sociated mean square optimal one-step-ahead predictor, which
can be written

(58)

where

(59)

(60)

Therefore, with the assumption that is distributed as

(61)

where (the more general case of spatial correlation
can easily be handled [46], [29], but at the expense of extra no-
tation which will detract from the essential arguments to follow)
and with the redefinition of the parameter vector as

(62)

then neglecting constant terms which are immaterial to the es-
timation process, the associated log likelihood function for the
data is given as

(63)

Here, the dependence of the predictor in (58) on the parameter
vector is denoted by

(64)

and the norm used in (63) is the Euclidean one. Notice that,
according to (63) there is an essential decoupling between the
estimation of and the elements of the parameter vector
defined in (62). Namely, under the model structure (57), the ML
estimate is given as an element satisfying

(65)

In recognition of this, the previous work [45]–[47], [49] has
focussed on the problem of minimizing , and has ex-
plored a gradient-based search approach.

Indeed, a gradient search strategy is employed in a wide
variety of system identification applications [27], where it is
common to note that, via the quadratic nature of , a
first-order approximation can have good local accuracy. There-
fore, with denoting the th iterate in a search for , the

st is found by

(66)

where the prime notation denotes differentiation with respect
to and hence, according to what is known as a “damped”
Gauss–Newton update strategy

(67)

where is a damping parameter, and is a search
direction which, according to (66) satisfies

(68)
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so that

(69)

Here, the indicated pseudoinverse is defined as

(70)

(71)

with the indicated rank based decomposition on the right of (71)
being a singular value one [15]. When is full-column
rank, then the above pseudoinverse will become a regular matrix
inversion. However, with the choice (62) in which none of the
elements in the system matrices of (57) are constrained, then the
ensuing over-parametrization will ensure that is always
rank deficient.

As recognized in [45] and [46], this rank deficiency
can be characterized by identifying the set of systems

that are input–output equivalent to
according to

(72)

(73)

where is an arbitrary invertible matrix. While this is
a nonlinear mapping with respect to , a locally linear approx-
imating valid for small perturbations about may,
as established in [45], [46], be expressed in the parameter space
(62) as

(74)

where

...

(75)

... (76)

and with
. This implies that any search update in a

direction for any will only yield
a system with equivalent input output properties and, hence, the
columns of (locally) span the space of equivalent systems.

In recognition of this, the works [45], [46] (and in the linear
case of the papers [3], [28], [29]) suggest the use
of local coordinates that parametrize only the space of non
input–output equivalent systems as

(77)

where the columns of are chosen (for example, by a QR
factorization) to be orthogonal to the columns of . That is,
the previous work [3], [28], [29], [45], [46] suggests that gra-
dient based search should be performed in the reduced dimen-
sion space parametrized by , whereby according to a damped
Gauss–Newton search strategy

(78)

where now denotes differentiation with respect to . A key
motivation for this “local coordinate” approach is that has
dimension smaller than that of .

However, in assessing the utility of this strategy, a clear ques-
tion arises as to how this search direction formed via a local
coordinate strategy relates to that obtained using a full strategy,
i.e., . In fact, under mild assumptions, they are identical.

Theorem 5.1: Consider the Gauss–Newton search directions
and defined in (69) and (78), respectively. Suppose that the

data is sufficiently informative that has full-column
rank. Then .

Proof: We provide only a sketch of the proof, since much
of it is identical to that provided in [50] where the LTI case is
considered. The essential argument is that according to (77)

(79)

and furthermore, according to the assumptions of the theorem,
as derived in [50]

(80)

where is some unitary matrix and is defined in (71). Substi-
tuting (80) into (79) and then into (78) establishes the result.

That is, local coordinate based Gauss–Newton search is iden-
tical to fully parametrized Gauss–Newton search, provided that
the data is sufficiently informative that the row dimension of
used via (71) in the fully parametrized case is chosen identical
to the row dimension of in (77) for local coordinate search.

This illustrates that local coordinate based search can be
viewed as a special case of the fully parametrized search (67).
The utility of this, is that it indicates that the choice of the row
dimension of can be seen as a tuning parameter for which,
at one value, local-coordinate search is obtained, but for others,
a perhaps enhanced convergence rate is achievable.

Indeed, the experience of the authors is that, in many cases, it
can be very valuable to truncate the row dimension of com-
mensurate with the singular value spread in the corresponding

being no greater than . The intuition here being to concen-
trate attention on directions of sufficiently changing cost, and ig-
nore overly flat “valley” directions. We refer the reader to [50]
for further details, which are implemented in the freely available
toolbox [35].

VI. COMPUTATIONAL COMPLEXITY

Having now developed a new EM based algorithm, and sum-
marized existing gradient search based methods, the remainder
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of the paper studies the relative benefits, computational costs,
and performance of the two approaches. The first consideration
in this area is that of computational load. In what follows, the
order notation implies that

A. EM Algorithm 4.1

A single iteration of EM Algorithm 4.1 is comprised of an
E-step and an M-step. The E-step largely consists of a Kalman
smoothing operation, for which, if the number of states is (as
is typical) larger than the number of inputs or outputs , the
dominating computational cost is incurred by multiplying two
dense matrices at each sampling instant. That is, the cost
of the E-step is .

Unlike the operations found in the E-step, which are per-
formed as many times as there are data points, those of the
M-step are performed only once per iteration. A robust imple-
mentation involving pivoting operations to form Cholesky fac-
tors and solve linear systems will, after considering the dimen-
sions of the quantities involved, incur a cost of com-
putations [15]. This load is likely to be smaller than that associ-
ated with the E-step since, for a typical system, .

Therefore, under the assumptions that and
, the computational cost per iteration of the EM based Al-

gorithm 4.1 will be .

B. Gauss–Newton Gradient Based Search

Interalia, the Gauss–Newton algorithm requires computation
of the Jacobian matrix , the Hessian approximation

, and a QR factorization of (75) in order to obtain
the search direction. Overwhelmingly, these computations
dominate the FLOP count for each iteration of the algorithm.
There are other operations necessary such as the computation of
prediction errors , but these will not be further considered
due to their significantly lower relative cost.

To examine the cost of the dominating operations, denote by
, and the quantities

(81)

(82)

which are, respectively, the dimensions of defined by (62), the
dimension of defined in (77) (see [30]) and the number of
multiplications required to compute for a single
time update and with respect to the th component of . The
latter is found by considering the associated state–space system
that must be simulated, and simply counting the operations in-
volved. Since this is lengthy, but straightforward, the details are
omitted.

Since has rows, then its computation involves
FLOPS. Furthermore, since defined in (75) is of

dimension , then a factorization of it in order to find
in (77) will require FLOPS [15]. Finally, the formation
of necessary for the computation of the search
direction in (78) will require FLOPS.

Therefore, under the assumption that so that the
factorization of is not the dominating term, there is a require-
ment of FLOPS per iteration for a Gauss–Newton
type search.

Compared to the EM algorithm developed here, this is
more operations per iteration, which can be signifi-

cant. For example, in a tenth order three input/output situation
profiled in the next section, the above analysis indicates that the
EM based approach of this paper involves a FLOP requirement
per iteration that is less that th of that required by the
Gauss–Newton approach.

Of course, there are many other factors to consider such
as computational load, memory requirements, suitability for
caching, and of course the number of required iterations. Since
a theoretical analysis of these issues is not tractable, they will
be dealt with empirically in the following section.

VII. EMPIRICAL STUDY

This section is devoted to profiling the performance of the
EM-based algorithm derived here relative to pre-existing gra-
dient search methods based on Gauss–Newton iterations. For
this purpose, we begin with a simple example whereby the true
underlying system has order inputs and
outputs, and is given by the structure (57) with the choices made
in [11] of

(83)

(84)

This system was simulated with input and measurement
corruption both being white random processes distributed
as together with
ensuing data samples being used for identification.

In the first instance, the EM and GN methods were both
initialized by using a subspace algorithm (N4SID derived in
[44]) and a linear model structure to find preliminary values
of with being used. For the EM method,

were chosen, and for
the GN method, was initialized as the steady-state Kalman
gain implied by according to the solution of the
associated Riccati equation.

With this initialization point fixed, one hundred further data
sets were generated with different input and noise realizations,
and both the EM and GN methods were used to find bilinear
system estimates. The results, in terms of the convergence of
the methods to the ML estimate, are shown in Fig. 1. There the
evolution of the sample mean square prediction error ( axis)
of the model obtained at the th iteration ( axis) is shown for
the EM method (solid line), and the GN method (dashed line).
The thicker lines are the average behavior over the one hundred
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Fig. 1. Average, best, and worst case prediction error cost at each iteration
of the EM (solid lines) and GN (dashed lines) algorithms; the thick lines
indicate average performance while the thin lines indicate best and worst case
performance for each algorithm. The GN algorithm performs well in this case
with the worst case GN run being superior to the best case EM run.

estimation experiments, and the thinner lines surrounding them
are the best and worst cases chosen from the same ensemble.

Clearly, both methods are effective in that they compute ML
estimates. This is evidenced by the achieved mean square errors
being decreased to the global minimum value of in all
cases. Furthermore, both methods appear reliable in that there
is little variability in the convergence behavior on different data
sets. Finally, in terms of computational load, the GN method
is superior since on such a small sized problem its per-iteration
FLOP count is comparable to EM but, as illustrated, it converges
more rapidly and hence required fewer iterations.

It is important to note, that since a linear model is fitted to
the nonlinear system (83), (84) as a starting point, it is quite a
poor initialization, as illustrated by the high initial cost in Fig. 1.
Consider now the case of the same one hundred data sets, but
with a different initialization point, that was chosen randomly
as

The average, best and worst case convergence behavior for EM
(solid line) and GN (dashed line) over the different data realiza-
tions for this case is shown in Fig. 2. First, note that in terms
of initial cost, this initialization is an order of magnitude better
than the one found previously by linear subspace identification.

More importantly though, note that the behavior of the EM
method is essentially unchanged relative to the previous ini-
tialization, while the GN method performance is seriously de-
graded. Its average performance is now clearly inferior to the
EM method, and the variability in performance over the data
sets is now quite large.

Fig. 2. Average, best, and worst case prediction error cost at each iteration
of the EM (solid lines) and GN (dashed lines) algorithms; the thick lines
indicate average performance while the thin lines indicate best and worst
case performance for each algorithm. Note that the best and worst case lines
for GN differ greatly from the average line, which suggests highly variable
convergence rates in this case.

This illustrates a fundamental aspect. In assessing the choice
between EM and GN based methods for bilinear system esti-
mation, there is a tradeoff between reliability and best case per-
formance. The experience of the authors is that, as just illus-
trated, EM based methods are very reliable, but at the expense
of slower convergence rate. This feature of EM-based methods
is well recognized in the statistics literature [33], and will be
further illustrated in this section.

This paper therefore suggests that a hybrid approach com-
bining the two methods is a worthwhile strategy. This involves
the initial iterations being performed by EM, where its ability
to robustly “steer” the iterations toward a minimizer is ex-
ploited, with the final iterations performed via GN, where its
strengths in providing fast local convergence are realized. Since
both methods work with freely parametrized models, such a
handover between schemes is straightforward. For the same
data sets and initialization as generated in Fig. 2, this hybrid
approach is illustrated in Fig. 3 as the dashed line. Handover to
the GN methods was made after four EM iterations. Note how,
in comparison to Fig. 2, the hybrid approach is able to capture
both the robustness properties of the EM methods and the fast
convergence rate properties of GN. Similar results have been
reported for the simple case of estimating Gaussian regression
models in the econometrics literature [38].

This profiles the relative performance of EM and GN based
methods on a rather small sized, and specific problem. To pro-
vide further performance insight, this section now turns to the
consideration of more realistic sized model structures, and more
varied systems.

The first of this next class of simulation examples involves
simulated data of length from one hundred randomly
chosen systems of state dimension and with input and
output dimensions . The “innovations” form model
structure (57) was used to simulate the data, and the input
and corruption were generated as in the previous examples.
On each of these estimation experiments, an initial point for the
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Fig. 3. Average, best, and worst case prediction error cost at each iteration
of the EM (solid lines) and Hybrid (dashed lines) algorithms; the thick lines
indicate average performance while the thin lines indicate best and worst case
performance for each algorithm. Four iterations of the EM algorithm were used
to initialize the GN algorithm. Note the average performance lines overlap for
the first four iterations, while fast convergence is observed thereafter under the
GN algorithm.

Fig. 4. Comparison of final prediction error cost values for the EM (vertical
axis) and GN (horizontal axis) algorithms for randomly chosen systems where
N = 500; n = 5;m = 2, and p = 2. There was one case where the EM
algorithm failed to converge to an acceptable objective value and seven cases
where the GN algorithms failed to do the same.

EM and GN methods was found by fitting a linear system using
N4SID, and setting and ,
and as explained before.

Therefore, each of the one hundred simulation runs involves a
different system, a different data realization and a different (data
dependent) initialization point. On each of these runs, the EM
algorithm was allowed to run for 100 iterations, while the GN
algorithm were terminated after either the relative decrease of
objective values fell below or 100 iterations was reached.

The results are profiled in Fig. 4 where each star represents
one simulation run, and the location of each star is determined
by the final mean square error cost of the EM and GN based
estimation methods. Specifically, the -axis coordinate of the
star is the terminal EM cost for a particular data/system real-
ization, and the -axis coordinate is its associated terminal GN
cost. Since the stars are overwhelmingly clustered on the
line representing equal performance, the two methods appear to

Fig. 5. Comparison of final prediction error cost values for the EM (vertical
axis) and GN (horizontal axis) algorithms for randomly chosen systems where
N = 500;n = 10;m = 3, and p = 3. There was one case where the EM
algorithm failed to converge to an acceptable objective value and 31 cases where
the GN algorithms failed to do the same.

Fig. 6. Comparison of final prediction error cost values for the EM (vertical
axis) and GN (horizontal axis) algorithms for randomly chosen systems where
N = 2000;n = 10;m = 3, and p = 3. The EM algorithm converged to an
acceptable objective value every time while on four occasions the GN algorithms
failed.

be equally effective. However, what is not illustrated is seven
cases where the GN method terminated in a local minima and
one case where the EM method did likewise.

Progressing to a scenario of th order systems with
input and output dimensions , the results of the same
randomly chosen system scenario, but with the maximal itera-
tion count raised to 200, are shown in Fig. 5. Clearly, there is a
significant rise in the relative number of cases where EM out-
performs GN. If we deem a terminal mean square cost to be
“acceptable” if it is less than , then by this measure
only 69% of the GN terminations were acceptable, compared to
99% of the EM terminations.

In relation to this, it is interesting to note that if the data length
is increased to samples, then the results shown in
Fig. 6 illustrate that the relative performance difference between
EM and GN on this large sized system disappears, although in
terms of reliability EM was still slightly ahead with 99% accept-
able terminations versus 96% for GN.
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TABLE I
ILLUSTRATION OF HOW MEASURED RELATIVE FLOP COUNTS PER ITERATION

SCALE WITH INCREASING PROBLEM SIZE FOR GN AND ME METHODS. IN ALL

CASES THE SYSTEM IS OF OUTPUT DIMENSION p = 2. IN THE LEFT TABLE,
STATE DIMENSION n = 2 AND INPUT DIMENSION m = 2. IN THE

MIDDLE TABLE, m = 2 AGAIN AND DATA LENGTH N = 500. IN

THE RIGHT TABLE, n = 2 AND N = 500

However, it is important to understand that for these larger
sized systems, although final estimate quality may be commen-
surate between the two methods, the amount of computation re-
quired to obtain the estimate is far from equivalent. In particular,
under matlab 5.3 for which FLOP count can be quantified, the
measured total FLOP count load to termination was (averaged
over the one hundred experiments) thirty times more for a gra-
dient based search than for the EM based method. A difference
between minutes and hours per experiment then results.

This theme of considering measured FLOP count, but now
per iteration, is continued in Table I. The quantity shown there
is relative FLOP count normalized to whatever is required for
the smallest case shown in each individual table. The left most
table shows how FLOP count scales with data length for an

system. The middle table shows relative FLOP
scaling versus model order for data points, and
an system. Finally, the right most table shows relative
FLOP scaling versus input dimension for an nd order
system with outputs and data point.

This illustrates the point made in Section VI, that while both
EM and GN based methods involve a computational load that
scales linearly with data length , this same load increases
faster with system size for GN based methods than for the EM
algorithm derived here.

To complete this empirical study, a more substantial size
problem is considered. For this purpose, thirty randomly chosen
twentieth order, four input, four output systems were estimated
using the EM-based methods developed here. Initialization was
via a linear N4SID method as before, and the convergence from
these initializations is shown in Fig. 7. Note that in all cases,
the global minimum of was reached, with acceptable
variability in convergence to this minimum. A gradient based
method was not profiled on this same problem, largely due to

Fig. 7. Average, best, and worst case prediction error cost at each iteration
of the EM algorithm deployed on thirty randomly chosen twentieth order four
input four output systems. The thick line indicates average performance while
the thin lines indicate best and worst case performance.

the fact that (as analyzed in Section VI) the FLOPs required per
iteration are times greater (with in
this case) for a gradient based method relative to the EM-based
one, which made the relevant GN simulation impossible.

VIII. CONCLUSION

This paper has derived, analyzed, and illustrated a new
EM-based algorithm for maximum likelihood estimation of
multivariable bilinear systems, and has profiled it against ef-
fective pre-existing methods employing gradient based search.
This exposed that, while the EM and gradient search algorithms
can both perform well, there are important relative strengths and
weaknesses of the two approaches that should be considered.

As illustrated, the new EM based methods derived here have
robustness advantages including the avoidance of local minima,
and consistent convergence rate performance with respect to
data realization, initialization point, and underlying true system.
However, this is achieved at the cost of slower convergence rate
relative to the best case scenario for gradient based methods.
The latter is a strength for gradient based methods, but as was
shown, this can come at the expense of lower reliability in terms
of capture in local minima, and variability in convergence. Fur-
thermore, for larger sized systems, the computational load (per
iteration) for gradient based methods can be very much larger
than for the EM based methods derived here.

Since the two approaches are both able to work with the
same fully parametrized model structure, handover between
them is straightforward. These facts, and further advantages
to the EM-based method, such as the ability to accommodate
nonsteady-state data records via the straightforward estimation
of initial state, suggest the use of hybrid approaches whereby
EM-based search is followed by gradient based search.

Further work could usefully examine how this handover
should be managed. In relation to this, for readers interested
in assessing the ideas in this paper, a suite of MATLAB based
routines that implement all the estimation algorithms profiled
here is available from the authors upon request [35].



GIBSON et al.: MAXIMUM-LIKELIHOOD PARAMETER ESTIMATION OF BILINEAR SYSTEMS 1593

APPENDIX I
PROOF OF LEMMA 4.1

Proof: Repeated application of Bayes’ Rule, and use of
Markov properties implied by (3) yields

...
...

... (85)

(86)

Furthermore, straightforwardly from (3), (5), and (9)

and

(87)

where is defined by (24). Using these densities and excluding
terms that are independent of the quantities to be estimated, (86)
may be expressed as

(88)

Applying the conditional expectation operator to
both sides of (88) yields (23).

APPENDIX II
PROOF OF LEMMA 4.2

Proof: Equations (35) and (36) are the well-known
Rauch–Tung–Striebel recursions for fixed interval Kalman
Smoothing of the system (3), (5) (see, for example, [23]) once
transformed according to the techniques in [18] to accommo-
date as follows:

(89)

(90)

(91)

where now

(92)

Equation (37) is easily established by multiplying each ma-
trix by its transpose and then comparing submatrices. Expres-
sions (43) and (44) are established in [40, Prop P4.3], except
for , which is proved as follows. Define

. Then, (90) implies

where the assumed i.i.d. structure of was used to proceed
from the second to the third equality.

The quantities are well known as being com-
putable via (38) and (39), [24], and the expression for computing

((47)) is also very well-known [23].

APPENDIX III
PROOF OF LEMMA 4.3

Proof: Notice that (23) can be partitioned into two
parts—one whose terms depend only upon and and one
whose terms depend solely on and . Consider the
terms

and

They are clearly (globally) minimized over by (49).
Furthermore, the chain rule and Lemma 5.1 provides

These derivatives are clearly zero for the choices of
and, hence, a stationary point of

over . In order to calculate so that positive–semidef-
initeness and symmetry is ensured, compute the Cholesky fac-
torization
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Identifying submatrices on each side we obtain

and

and therefore

APPENDIX IV
PROOF OF LEMMA 4.4

Consider the following definitions:

which allow to be expressed as

By construction

and, therefore, by virtue of the fact that

Since , Lemma 5.2 proves that for some
positive constant and all . Therefore

where we have used (55) and the well-known identity
where denotes the eigenvalues of a

matrix . Finally, then

and thus

As a consequence, according to (49), (51), and (52), is
uniquely defined.

APPENDIX V
TECHNICAL LEMMATA

Lemma 5.1: Suppose , and is invertible.
Then

Proof: See [17].
Lemma 5.2: Consider the system (3), (5) with .

Then, there exists a constant such that

(93)

Proof: Begin by transforming (3), (5) into (90)–(92). No-
tice that since and by construction, [
and are defined in (41) and (42)]

(94)

for some constant . Therefore, via the matrix inversion
lemma,

(95)

for some constant . Finally, (95) allows us to bound
below as follows:

(96)

(97)

(98)

(99)

(100)

for some constant .
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