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Abstract—This work aims to treat the parameter estimation
problem for fractional-integrated autoregressive moving average
(F-ARIMA) processes under external noise. Unlike the conven-
tional approaches from the perspective of the time domain, a
maximum likelihood (ML) method is developed in the frequency
domain since the power spectrum of an F-ARIMA process is in
a very explicit and more simple form. However, maximization of
the likelihood function is a highly nonlinear estimation problem.
Conventional searching algorithms are likely to converge to local
maxima under this situation. Since the genetic algorithm (GA)
tends to find the globally optimal solution without being trapped at
local maxima, an estimation scheme based on the GA is therefore
developed to solve the ML parameter estimation problem for
F-ARIMA processes from the frequency domain perspective. In
the parameter estimation procedure, stability of the F-ARIMA
model is ensured, and convergence to the global optimum of the
likelihood function is also guaranteed. Finally, several simulation
examples are presented to illustrate the proposed estimation
algorithm and exhibit its performance.

Index Terms—F-ARIMA processes, frequency domain max-
imum likelihood parameter estimation, genetic algorithm.

I. INTRODUCTION

RECENTLY, fractal signals, i.e., fractionally differenced
noises, have attracted much consideration in signal pro-

cessing, image processing, geophysical data, network traffic,
and computer vision due to the wide variety of data for which
they are inherently well suited [2]–[4], [6], [18], [19], [25]–[33].
These processes provide good models for self-similarity and
long-range correlation structure observed in several signal
processes. Fractal signals are increasingly important candidates
for data modeling in a variety of signal processing applications.
In contrast to the well-known family of autoregressive moving
average (ARMA) processes, fractal signals are characterized
by self-similarity and long-range correlation structure. The
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ARMA processes provide poor representations for such signals.
A fractal signal exhibits a strong long-range correlation with a

-type averaged spectral behavior or, more generally, with a
spectral density that is approximately proportional to with
a fractional number . In contrast to ARMA processes
that are characterized by correlation functions that decay
exponentially, fractal signals exhibit the correlation functions
that decrease hyperbolically fast [5]. A canonical model of
the fractal signal is the fractional Brownian motion introduced
by Mandelbrot and Ness [6]. The fractional Brownian motion
(fBm) is considered as the th fractional integral of
the Brownian motion. The discrete-time version of the fractal
signal has also been defined and discussed by Granger and
Joyeux [23] and Hosking [24].

Even fractal signals are more suitable for modeling processes
with long-range dependence; however, they cannot efficiently
model those with both short-range and long-range dependence.
In this situation, the F-ARIMA processes, which are modeled as
passing a fractal signal through an ARMA filter, are introduced
to model the processes with both short-range and long-range de-
pendence [5], [24], [26], [28]. The problem of restoration of a
F-ARIMA process after passing through a linear filter (channel)
was solved by Chen and Lin [1] by developing a multiscale
Wiener filterbank to restore the original signal using the wavelet
filterbank technique. However, it was assumed in [1] that the
parameters of the F-ARIMA process and additive noise are all
known. In practical signal processing, however, these parame-
ters need to be precisely estimated before restoration. This paper
is therefore a further extension of the previous work [1] that
deals with the estimation problem in F-ARIMA processes.

A parameter estimation algorithm is developed in this study
to estimate the parameters of a F-ARIMA process and noise
from the received noisy signal. A maximum likelihood (ML)
parameter estimation method for fractal signals has been
proposed by Wornell and Oppenheim [7] from the time-scale
domain perspective, based on the wavelet transform and the
expectation-maximization (EM) technique. The ML estimation
problem of the parameter for a discrete fractionally differenced
Gaussian noise process has also been discussed in [25]. In
the above studies, however, the effect of the ARMA filter
was not considered. This effect is very important in practical
signal processing, e.g., reflections in seismic data processing,
intersymbol interference (ISI) in equalization, blur in image
processing, etc. The ML parameter estimation problem of
F-ARIMA processes has been discussed in the time domain
in [5], wherein a modified EM algorithm was applied to solve
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this problem. In general, the EM method is an initial-condition
dependent algorithm, which is likely to converge to a local
maximum of the log-likelihood function if the initial condition
is not chosen appropriately.

The drawback of the ML parameter estimation methods in
the time domain is that they transform explicit parameters of
a F-ARIMA process in the frequency domain into implicit pa-
rameters of an autocorrelation function in the time domain but
in a more complicated form. This transformation increases com-
putational complexity, number of local maxima, and estimation
error. Furthermore, the stability of the F-ARIMA process cannot
be guaranteed by using the EM algorithm to treat the addressed
parameter estimation problem. This drawback will cause the ob-
tained result to be not efficacious. In this study, the parameters
of a F-ARIMA process and the additive noise are all estimated
directly in the frequency domain from the received signal. The
F-ARIMA process is expressed in the frequency domain be-
cause the spectral density of a F-ARIMA process has a simpler
form. Then, an estimation algorithm, with which the stability of
the F-ARIMA model is ensured, is developed from the perspec-
tive of the frequency domain, based on the genetic algorithm
(GA) to achieve the global optimum of the highly nonlinear like-
lihood function in the parameter estimation process.

GAs are optimization, machine learning algorithms that were
initially inspired from the process of natural selection and evo-
lution of genetics. Unlike the steepest descent approaches to pa-
rameter identification and filter design, the GA requires no cal-
culation of gradient and is not susceptible to local maxima that
arise from multimodal maximization problems. Therefore, it is
more suitable for solving the ML parameter estimation problem
for F-ARIMA processes.

In order to treat the parameter estimation problem by the GA,
a fitness function must first be formulated, according to the like-
lihood function. The proposed algorithm begins with a collec-
tion of parameter estimates (chromosomes), and each one is
evaluated for its fitness in solving the given optimization task.
In each generation, the chromosomes with higher fitness values
are allowed to mate and bear offspring. These children (new pa-
rameter estimates) then form the basis for the next generation.
Because of the use of crossover and mutation, this parameter
estimation algorithm tends to find the global optimum solution
without being trapped at local maxima. The GA was first intro-
duced by Holland [8] and then extensively explored by Goldberg
[9]. It has been successfully applied to a variety of optimization
problems, such as image processing [10], system identification
[11], [12], and fuzzy logic controller design [13]. The GA is
employed in the estimation algorithm proposed here to search
for the global maximum in the parameter space of the likelihood
function of F-ARIMA processes in frequency domain. The con-
cepts presented in [14] and [15] are adopted and modified in this
study to guarantee the convergence in probability of the pro-
posed parameter estimation algorithm.

The rest of this paper is organized as follows. The param-
eter estimation problem is described in Section II. The likeli-
hood function for parameter estimation is formulated in the fre-
quency domain in Section III. The parameter estimation method
based on the GA is described in Section IV. Convergence of the
proposed algorithm is also discussed. Several simulation results

are presented in Section V, and conclusions are summarized in
Section VI.

II. PROBLEM STATEMENT

The fractional Brownian motion (fBm) was first introduced
by Mandelbrot and Ness [6] to formalize the family of signals
with type spectra. The fBm is a generalization of the stan-
dard Brownian motion and is defined as

where is a parameter with magnitude between 0 and 1, and
is the standard Brownian motion. In case of , fBm

becomes the standard Brownian motion. The parameteris
related to the fractal dimensionof the graph of by

. Note that fBm may also be viewed as the th
integral of a white noise.

Similar to the continuous-time case, a discrete-time fractal
process called discrete fractionally differenced Gaussian noise
(fdGn) has been defined by Granger and Joyeux [23] and
Hosking [24] through

where is the delay operator with ,
is a zero-mean, Gaussian, white noise with variance,

and the coefficients s are the Cesaro numbers. The term
acts as the fractional differencing operation for a

fractional number . In this paper, we assume that
. The relation between the fractional numberand the Hurst

parameter in long memory process in the discrete-time case
is .

In [24], Hosking has proven that the process is stationary
and invertible, i.e., , if .
Moreover, since is a zero-mean process, so is . For

, the power spectrum of a discrete fractal signal
can be represented as [24]

(1)

Note that as . Therefore, the spectrum
of the discrete fractal signal has a similar behavior as that of the
fBm at low frequencies.

A fractal signal with a power spectrum as in (1) has an au-
tocorrelation asymptotically proportional to , where
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is the time lag. Therefore, it is suitable for modeling a signal
with long-range correlation structure. However, it is not flexible
enough to model a signal with short-range correlation structure.
Contrarily, an ARMA model with an exponentially decayed cor-
relation function is suitable for modeling short-range correlation
of signals but cannot capture their long-range correlation char-
acteristics. In [20], [22], [24], and [26], it is pointed out that a
hybrid structure of an input fractal signal and an ARMA filter
can be used to capture both short- and long-range dependence in
signals. Such a hybrid structure, i.e., the F-ARIMA process, has
been found useful in several areas of signal processing in prac-
tical applications [1], [25]–[28]. On the other hand, the signal is
usually interfered by environment, which can be represented by
a measurement noise . Consequently, the observed signal

of the F-ARIMA process can be represented as

(2)

where is the input fractal signal with power spectrum as in
(1), is a zero-mean, Gaussian, white noise with variance

, and the rational filter (ARMA channel) is of the
form

(3)

Assume that the orders and are known and that the white
noises and are uncorrelated. Without loss of gener-
ality, both the leading coefficient of and can be set
to unity for the purpose of normalization. That is because the
gain of can be absorbed by the parameterin (1).
For parameter estimation of the F-ARIMA model, the following
assumptions are made.

A1) The polynomials and are coprime.
A2) and are stable [i.e., all roots of and

are in ].
In practical applications, the parameters ,

, of , , and need to
be estimated from the noisy output signal before designing
the wavelet filterbank for restoration of the fractal signals [1].
Unlike the conventional treatment by using the ML method
with wavelet multiscale representation [7] in time-scale domain
or the EM-algorithm [5], [20] in the time domain, the parameter
estimation problem in the processing of the F-ARIMA process
in (2) is solved in the frequency domain in the present study.

Let denote the vector of all the unknown parameters as

The design problem now involves the estimation of the param-
eter vector from the -points observation for

of a F-ARIMA process corrupted with the ex-
ternal noise in (2).

Remark 1: In case of , the parameter vector
becomes

It is then reduced to a parameter estimation problem for fractal
signals.

III. L IKELIHOOD FUNCTION FORPARAMETER ESTIMATION

IN THE FREQUENCYDOMAIN

By observing the spectral density of the fractal signal in
(1), it is found that has a very simple structure. Moreover,
the parametersand of the fractal signal are both in an explicit
form in . Therefore, it is more convenient to estimate the
parameters in the frequency domain than in the time domain.

Taking the -point discrete Fourier transformation
of (2) yields the frequency-domain model as [22], for

(4)

with

(5)

where , , and denote the Fourier co-
efficients of , , and , respectively, and denotes
the number of data points. The zero frequency is not considered
in (4) due to the singularity of , as shown in (1). In order
to simply use the fast Fourier transform (FFT),is chosen as

for some positive integer. Technically, the FFT can be ap-
plied to the case that is a product of powers of small prime
numbers.

To derive the likelihood function for parameter estimation in
the frequency domain, we need the following results.

Theorem 1: With the Gaussian assumptions of the uncorre-
lated white noises and and the stability assumption
A2) on and , the Fourier coefficients at fre-
quencies are approximately statis-
tically independent complex Gaussian random variables with
probability densities as

var var
(6)

where var , which is the data variance at frequency
as , is given by

var (7)

where and are the power spectra of and ,
respectively.

Proof: Before presenting the proof of (6), the F-ARIMA
process in (2) is rewritten as

(8)

(9)

Recall that is the white Gaussian driving noise with zero
mean and variance .

Let us denote the jointth-order cumulants [22] of and
as and at

times , , respectively. Since the white
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noises and are zero-mean Gaussian, all the moments
of and are finite, and the following conditions hold:

(10)

(11)

for any finite .
Following from [22, Th. 4.4.1] with the finite cumulant

condition (10) on , the Fourier coefficients ,
are with the asymptotical independent

complex Gaussian distribution as .
Note that [22, Th. 4.4.1] holds only for conventional stationary
processes. For the F-ARIMA process , it is modified in
[36]. Under assumption A2), the function is
a positive and continuous function of. Then, following from
assumption A2) and (11), the Fourier coefficients ,

are with the asymptotical independent
complex Gaussian distribution as ,
where denotes the spectral density of as

where denotes the power spectrum of at .
Since we assume that the white noises and

are uncorrelated, based on the above reasoning,
for

are with the asymptotical independent Gaussian distribution
var . Then, we get the probability distribution

of as (6). Moreover, by the fact that [22]

one has var , and the result in (7)
can be easily obtained.

Since the data length is large enough, we have

The data variance var at the frequency is then ex-
pressed as

var

(12)

where denotes the absolute value of a complex number.
Invoking the approximate statistical independence of ,

, the log-likelihood function is

var

var

The term stays invariant during the maximization proce-
dure and, hence, can be discarded. Consequently, an equivalent
representation of the log-likelihood function is obtained as

var
var

(13)
Substituting (12) into (13) yields (14), shown at the bottom of
the page.

Remark 2: In case of , the log-likelihood
function in (14) is reduced to

(15)

Then, the ML parameter estimation problem of F-ARIMA
processes in the frequency domain is to find an optimal param-
eter vector to solve the following maximization problem:

(16)

(14)
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By observing the log-likelihood function as in (14), it is
found that is a highly nonlinear function of, especially
for the fractal parameter. There may exist many local optima
in the maximization of the log-likelihood function in (16). By
employing the conventional methods to treat this optimization
problem, a local solution is usually obtained. Furthermore,
some derivative information or the complete knowledge of
the problem structure and parameters are also required for
conventional optimization algorithms. These drawbacks render
them not suitable to treat our problem. Contrarily, the GA
tends to find the global solution of the ML problem in (16)
without being trapped at local optima and does not require the
information of derivative or problem structure. The GA is a
parallel and global optimal search technique that copies natural
genetic operations to simultaneously evaluate many points in
the parameter space and more likely to converge toward the
global solution of the optimization problem in (16). Hence, it
is more suitable than the other optimization algorithms to treat
our optimization problem.

IV. PARAMETER ESTIMATION VIA THE GENETIC ALGORITHM

The GA is a stochastic optimization algorithm that was origi-
nally motivated by the mechanisms of natural selection and evo-
lution of genetics. The underlying principles of the GA were
first proposed by Holland in 1962 [17], whereas the mathemat-
ical framework was developed in the late 1960s and was pre-
sented in Holland’s pioneering book [8]. In the following, a pa-
rameter estimation algorithm is developed based on the GA to
estimate the parameter vectorof the F-ARIMA process in (2)
by carrying out maximization of the log-likelihood function in
(16).

Selection of Search Space

By using the GA to solve the problem of maximization of the
log-likelihood function in (16), the search space of the
parameter vector must be specified properly beforehand. This
is because an appropriate choice of the search space may speed
up the convergence of the GA. In general, the search space can
be specified based on the characteristics of the parameters. In
case of , the choice of the search space is more
difficult than that of . This is because both the
stability of the polynomials (i.e., all the roots of and
must be in [34]) must be taken into consideration.
In general, determining the range of the coefficients of
and to guarantee their stability is difficult work, except for
low order systems. In most of the applications, the entire search
space of the parameter vectormay not simply be described
by the rectangular form as

for

where denotes the number of the parameter. Let us consider
a second-order ARMA model with the denominator
polynomial . The stable region
in this case is of the triangular form [see Fig. 1(a)]. It cannot
be expressed in the above rectangular form. Under this situa-
tion, the proposed GA is no longer applied directly. To over-
come this drawback, one can divide the stable regioninto

Fig. 1. (a) Stable region for a second-order system. (b) One of the division of
the stable region for a second-order system.

several regions , which are all stable and of the
rectangular form. Fig. 1(b) illustrates one of the division for the
second-order system. The same conclusion is also applied to
polynomial . Therefore, the entire search spacecan be
divided into a union of regions for some positive
integer . Now, by applying the proposed GA to each region

to obtain the optimal estimates, for , the
global or near global estimate can be derived by

(17)

The GA searches for the ML parameter only inside the stable
parameter space, and the stability of the and is guar-
anteed. This leads to a remarkable reduction of search space and
saves much effort of computation.

Remark 3: For the case in which , the triangular
stable region in Fig. 1(a) can be transformed into a rectangle
in a new coordinate system. However, this approach is hard to
apply to high-degree cases.

In GA, the parameter vector to be searched to solve the
ML parameter estimation problem in (16) is represented by a
population of binary strings. The choice of the bit number for
each parameter depends on the desired “resolution” we want in
the search space. For simplicity, take searching in region, for
example. With binary coding, the resolution of each parameter
can be calculated as

(18)

where
resolution;
upper bound of the search range;
lower bound of the search range;
bit number for the th parameter in .

For any , , the th parameter is chosen as

where is coded using bits such that holds.

Fitness Function

The degree of fitness depends on the performance of the pos-
sible solution represented by that particular string. The larger the
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Fig. 2. Relation betweenf (�) andL (�).

likelihood, the higher the fitness. There are a number of methods
to perform this mapping, which are known as fitness techniques.
The mapping method adopted in the present study is illustrated
in Fig. 2. The fitness function in generation of a param-
eter vector with log-likelihood function is expressed
by

(19)

where and denote the maximum and minimum
values of the likelihood function in the population of
generation , respectively; and are the prescribed best
and worst fitness values, respectively. Since is linearly
proportional to , the , which maximizes , also
maximizes . Therefore, the ML parameter estimation
problem in (16) is equivalent to the following fitness optimiza-
tion problem:

(20)

Our parameter estimation problem is to develop a GA to solve
the above fitness optimization problem, which is described by
the following genetic operators.

Genetic Operators

The most important and basic operations for the GA for
solving (20) are maintaining, reproduction, crossover, and
mutation. A brief description of these operations is presented
in the following. For more detailed introduction, see the
fundamental textbooks [8] and [9].

• Maintaining: This is a process of copying the best string
in this generation (with the highest fitness) to the next
generation. The purpose of this operation is to ensure that
the best string in the next generation is at least no worse
than the best one in this generation.

• Reproduction:Reproduction is a process in which indi-
vidual strings are copied and put in a mating pool for fur-
ther genetic operations according to their fitness values.

The probability of theth string (corresponding to theth
parameter vector ) with fitness value reproduced
for mating in the next generation is

(21)

where is the population size specified by the designer.
• Crossover: Crossover provides a mechanism for ex-

changing information in two strings via probabilistic
decision. Combined with reproduction, it is an effective
way of exchanging information and combining portions
of high-quality solutions.

• Mutation: Mutation is occasional alteration of each bit of
a chromosome from 0 to 1 or from 1 to 0 with a small
probability . The purpose of mutation is to introduce
occasional perturbation to the estimated parameters to en-
sure that all points in the search space can ultimately be
reached.

The algorithm begins with a population of randomly gener-
ated chromosomes. Each chromosome is decoded into the cor-
responding parameter vector and evaluated for its fitness value
in solving the optimization problem in (20). At each generation,
chromosomes mate and bear offspring. Note that the best candi-
date in one generation is retained in the next generation to ensure
that the best candidate in the next generation is at least as good
as the present one.

An easy way to search the entire parameter spaceis to in-
dependently apply the GA to each individual rectangular region

. Then, the ultimate global or near-global es-
timate can be derived according to (17). The steps of the
GA-based parameter estimation algorithm in a regionare
listed as follows.

Genetic-Based Parameter Estimation
Algorithm:
Step 0) Select the parameter space

properly for the parameter vector .
Step 1) Randomly generate a population of

binary strings in (generation ).
Step 2) Decode each string into the corre-

sponding parameter vector.
Step 3) Calculate the likelihood function

of each parameter vector according to
(14).

Step 4) Calculate the fitness values ac-
cording to (19).

Step 5) Perform the basic operations of
the GA, i.e., maintaining, reproduction,
crossover, and mutation.

Step 6) Increase the generation index
by 1. If the stopping criterion is not
satisfied, go to Step 2 ; otherwise, stop
the algorithm.
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Fig. 3. Flowchart of the GA-based parameter estimation algorithm.

The stopping criterion can be specified as the number of gen-
erations tolerated for no improvement on the value of the likeli-
hood function and/or the maximum number of total generations
to be performed. The decoded parameter vector corresponding
to the best chromosome at the last generation is the solution to
the problem of ML parameter estimation in (20). The whole al-
gorithm is summarized in Fig. 3.

Convergence Discussion of the Parameter Estimation
Algorithm

Convergence of the GA has been analyzed in some recent
studies [14], [15]. The concept presented in [15] is adopted here
to prove the convergence of the proposed parameter estimation
algorithm to the global optimum of [or ].

Theorem 2: The estimated parameter converges to an op-
timal estimate that attains the global maximum of the log-
likelihood function in (14).

Proof: First, note that the GA is independently applied to
each individual rectangular region . To obtain the
claimed result, it is sufficient to prove that in any fixed region

, the estimated parameter converges to an optimal estimate
that attains the global maximum of the log-likelihood function

in . Therefore, we will only discuss the problem in a
single rectangular region in the following.

Since each chromosome consists of only a finite number
of bits, the estimated parameters represented by these chro-
mosomes are actually quantized values. Let denote the
global maximum of the log-likelihood function (14) or (15),
and let denote the maximum of the log-likelihood func-
tion evaluated for all possible chromosomes. The case wherein
the quantization error in each estimated parameter is zero is
called ideal matching. In this case, is equal to . The
expected value of the log-likelihood function is shown in the
following to converge to at a specific rate.

Let us examine the generation of a child chromosome in gen-
eration from its parent chromosomes in generation.
First, the parent chromosomesand are selected from the
population according to the probability in (21). Next, a uni-
formly distributed crossover site is
chosen, and the crossover operation is performed. We denote
the probability of a child chromosome generated from parents

and with a crossover site by . Then, each chro-
mosome thus generated undergoes the process of mutation. Let
us denote the mutation pattern byand the probability of oc-
currence of this pattern by . Since the mutation operation is
performed independently at each bit of a chromosome, the set

consisting of all possible mutation patterns is of size. The
likelihood function corresponding to the child chromosome in
generation , which is generated from parents and
with crossover site and mutation pattern, is represented by

.
Some notations that are useful in the analysis of convergence

property are introduced in the following:
difference in the likelihood functions of any two
chromosomes and with corresponding likelihood
functions and , respectively, i.e., ;
minimum of subject to ;
number of all possible chromosomes with likelihood
function larger than ;
set of all possible (remember that represents the
population of chromosomes).

The chromosome with likelihood function in gener-
ation is copied directly in the next generation, whereas, all
other chromosomes in generation are generated from
the current population by the three operations, i.e., reproduc-
tion, crossover, and mutation. Assume that the maximum value
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of the likelihood functions of all the newly generated chromo-
somes (excluding the one copied directly) is . The ex-
pected value of conditioned on populationat generation

is, therefore

(22)

Define a notation as

Then, (22) can be expressed as

(23)

Each in (23) is performed for all, , , and subject to
the constraint stated previously. The number of terms contained
in the summation of the last equality in (23) is. If

, i.e., the best chromosome has not been reached,is a
positive integer. In practical applications, mutation rate

. Therefore, the minimum value of for all is

i.e., the probability that all bits are mutated.
Substitute the previous relation into (23)

where is the minimum of all possible . The expected
value of is then obtained as

(24)

Fig. 4. Convergence of the averageL (�) versus generation in Example 1.

Fig. 5. Typical trace of parameter estimates in Example 1.

Equation (24) implies that

Equation (24) illustrates that the expected value is
larger than at least by the value . This
value is positive, provided that is smaller than .
On the other hand, it is zero, provided that equals

. Consequently, , . Therefore,
in each rectangular region, the estimated parameter converges
to an optimal estimate that attains the global maximum of the
log-likelihood function in (14). .

Remark 4: The measure of the set of parameter vectors, in
which the and have common factors, is zero with
respect to the entire parameter search space. Therefore, with
probability 1, the estimated versions of and are co-
prime in any generation. On the other hand, by searching in the
preselected parameter space, the parameter estimates obey as-
sumption A2). The claim of the above theorem will be verified
by several simulation examples in Section V. Since the likeli-
hood function in frequency domain only considers the
amplitude , assumptions A1) and A2) are
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TABLE I
MEAN ESTIMATES AND THEIR STANDARD DEVIATIONS (STD) OF THE PARAMETER VECTOR[d � ] = [0:35 0:2] USING THE PROPOSEDGA-BASED METHOD

AND THE ML-EM M ETHOD VIA THE MONTE CARLO SIMULATION WITH 100 RUNS IN EXAMPLE 1

necessary in order to guarantee the uniqueness of the optimal
estimate . We should note that convergence of the estimated
parameters to the true value is not provided in the above the-
orem. Parameter convergence to true value is another signifi-
cant topic for the GA-based parameter estimation problem for
F-ARIMA processes. It needs more effort and will be treated in
further research.

V. NUMERICAL SIMULATIONS

In this section, several numerical simulation examples are
presented to illustrate the proposed parameter estimation
method and exhibit its performance. Comparisons with the
results reported in [5] and [20] are also given to demonstrate the
superior performance of the proposed method. For convenience,
to compare the proposed method with the ML-EM method in
[5] and [20], the parameter is set to be unity throughout this
section.

Example 1—A F-ARIMA Process Without ARMA Part:In
this example, the input fractal signal is generated according the
formula in [23] and [24] with data length and pa-
rameter . The value of the additive noise is set to
be . Let denote the parameter vector as

An appropriate choice of the admissible setof the parameter
vector can be specified as

In order to obtain an accurate result, the resolution for every
parameter is assumed to be slightly finer than 1.610 . Ac-
cording to the discussion in Section IV, we have

The required bit numbers and for and are therefore
derived as

Consequently, the chromosome of length is
derived, which leaves the search spacewith alternatives.

By using the proposed GA-based method to treat the parameter
estimation problem, the genetic parameters are chosen as

Population Size
Mutation Probability
Best Fitness Value
Worst Fitness Value

After 200 generations, the average estimated parameters are ob-
tained as the following via Monte-Carlo simulation with 100
runs:

Convergence of the mean log-likelihood function for
this case is illustrated in Fig. 4, in which the dash-dotted line
indicates the theoretical maximal value of . Since the al-
gorithm simultaneously searches for many points in the search
space , the proposed method converges quickly and asymp-
totically achieves the ML as generationincreases. Among the
100 runs in the Monte-Carlo simulation, a typical trace of pa-
rameter estimates is shown in Fig. 5.

A comparison of the present results with those obtained by
the conventional ML-EM algorithm via Monte-Carlo simula-
tion with 100 runs is listed in Table I. It is shown that both
the results of the proposed GA-based method and the ML-EM
method with a “good” initial condition are almost the same as
the values of true parameters. This means that both the proposed
GA-based method and the ML-EM algorithm are efficient to
treat this ML parameter estimation problem. On the other hand,
it is also shown that a worse performance is obtained if the initial
condition of the ML-EM method is not chosen properly. This is
because the EM algorithm is trapped at local maximum when a
bad initial condition is given.

Usually, choice of the data number should depend on the
decaying rate of the correlation function of the observed signal.
A fractal signal has an autocorrelation asymptotically propor-
tional to , where is the time lag. In general, when the
fractional number is close to 0.5, the correlation decays very
slowly. In this situation, could be very large. In the example,
in order to use the fast Fourier transform (FFT) algorithm, we
choose , and the accuracy of parameter esti-
mation is acceptable.

Example 2—A F-ARIMA Process With an AR Model:The
input fractal signal is taken to be the same as that in Example 1.
The AR model is assumed to be the second-order system
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Fig. 6. Sample path of the F-ARIMA process in Example 2.

The standard deviation of the addition noise is set to be
. A sample path of the F-ARIMA signal is plotted in Fig. 6.

Let us denote the parameter vectoras

The admissible set of in this example is specified as

In order to meet the requirement of desired resolution for each
parameter, all the bit numbers of the parameters,
are assumed to be 16, i.e., , for . Therefore,
the chromosome is of length , which leaves
the search space with alternatives.

To estimate the parameter vectorby employing the pro-
posed GA-based method, the genetic parameters, , ,
and are specified as the same as those in Example 1. After
200 generations, the average estimated parameters are obtained
as the following via Monte Carlo simulation with 100 runs:

The convergence of the mean log-likelihood function is
shown in Fig. 7, with quick convergence. The dash-dotted line
in Fig. 7 indicates the theoretical maximal value of . A
typical trace, among 100 runs, of the parameter estimates is il-
lustrated in Fig. 8.

The determination of the order of can be obtained
by solving the ML problem in (16) with different choices of
and . The result is shown in Table II. We find that with the
choice and , the likelihood function in (16)
attains the maximum.

A comparison of the derived results with those obtained by
using the ML-EM algorithm is presented in Table III via Monte
Carlo simulation with 100 runs. It is shown that the proposed
GA-based method exhibits a better performance than those of
the ML-EM method with different initial conditions. Since there

Fig. 7. Convergence of the average log-likelihood function versus generation
in Example 2.

Fig. 8. Typical trace of parameter estimates in Example 2.

TABLE II
MAXIMUM LIKELIHOOD L (�) ATTAINED BY THE PROPOSEDMETHOD

UNDER DIFFERENTMODEL ORDERSn AND n IN EXAMPLE 2

may be many local maxima near the optimal value, the ML-EM
algorithm is usually trapped at a local maximum. Therefore, it
is not easy to obtain a good estimate via the ML-EM method.
However, it is seen that parameter estimation will be better if
the initial value is chosen near the true value of the parameter.

Example 3—A F-ARIMA Model:The input fractal signal
with length 1024 is the same as that in Example 1. The ARMA
model is assumed to be
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TABLE III
MEAN ESTIMATES AND THEIR STANDARD DEVIATIONS (STDS) OF THE PARAMETER VECTOR[d � a a ] = [0:35 0:2 �0:4 0:8] USING THE PROPOSED

GA-BASED METHOD AND THE ML-EM M ETHOD VIA THE MONTE CARLO SIMULATION WITH 100 RUNS IN EXAMPLE 2

Additive noise is assumed to be of standard deviation .
Let us denote as

The preassigned parameter spaceof in this example is as-
sumed to be

All the required bit numbers of parameters are assumed to be
16 to meet the requirement of the desired resolution for each
parameter. The search space is, therefore, withalternatives.
In this example, the genetic parameters, , and are the
same as those in Example 1. The population sizeis taken to
be 400. After 200 generations via Monte Carlo simulation with
100 runs, the obtained average results are listed as

Convergence of the log-likelihood function with respect to
the increasing of generationis exhibited in Fig. 9, wherein the
dash-dotted line shows the theoretical maximal value of the like-
lihood function. A typical trace, among 100 runs, of the param-
eter estimates is shown in Fig. 10. In comparison with the result
obtained by using the ML-EM method, the derived results via
Monte Carlo simulation with 100 runs are shown in Table IV. It
is shown that the proposed GA-based method has a performance
that is superior to the ML-EM method. The reason is that a local
maximum result is obtained with the ML-EM method, but a near
global optimal result is obtained with our proposed method.

Remark 5: From (14) and (15), it is seen that (14) is a more
complicated function of the parameter vector than (15). There-
fore, the manifold of the parameter space in the case without the
ARMA part is less complex than that in the case with the AR
or ARMA part. In this situation, it has a significant effect on
parameter estimation. This effect can be found by viewing the
simulation results in Figs. 4, 7, and 9, where the convergence
rate in Fig. 4 is much faster than that in Figs. 7 and 9. The same

Fig. 9. Convergence of the average log-likelihood function versus generation
in Example 3.

Fig. 10. Typical trace of parameter estimates in Example 3.

claim can also be obtained by observing the estimated results in
Examples 1–3, where the derived result in Example 1 is more
accurate than that in Examples 2 and 3.

Remark 6: In the following, some brief comparisons of
the proposed GA-based method with the ML-EM method are
described.

The ML-EM method is an optimal estimation one for which
the gradient-based optimization algorithm is used. In most of the
gradient-based algorithms, the derivative information is usually
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TABLE IV
MEAN ESTIMATES AND THEIR STANDARD DEVIATIONS (STDS) OF THE PARAMETER VECTOR [d � a a b b ] = [0:35 0:2 �0:4 0:8 �1 0:85]

USING THE PROPOSEDGA-BASED METHOD AND THE ML-EM M ETHOD VIA THE MONTE-CARLO SIMULATION WITH 100 RUNS IN EXAMPLE 3

required. Many complicated computations, such as matrix in-
version, are involved. By applying the ML-EM method to solve
the optimal estimation problem addressed in this study from
time domain perspective, the required computational time is
very large, especially in the case of large amount of data points.
However, a fractal signal is inherently a signal of long-range
correlation structure. To capture this characteristic of a fractal
signal, a large enough data of the observed signal is usually
required. In this situation, ML-EM becomes inefficient. More-
over, ML-EM is an initial-condition dependent method owing to
the use of the gradient-based algorithm. It is therefore easy to be
trapped at local optima to obtain a suboptimal result, especially
for highly nonlinear likelihood functions. Furthermore, the sta-
bility of the obtained result for the F-ARIMA model cannot be
guaranteed by using the ML-EM method.

On the contrary, the proposed GA-based method is inherently
a global optimization method. It is unnecessary to start with a
good initial condition. Some simple operations such as string
copying, string swapping, and bit changing are involved in the
searching algorithm. Moreover, only some simple calculations
are required in the computation of the log-likelihood function
in the frequency domain. Because a stable search space is pre-
specified, the stability of the obtained result for the F-ARIMA
model is guaranteed. These characteristics make the proposed
GA-based method in the frequency domain more suitable than
the ML-EM method in the time domain to treat the parameter
estimation problem for the F-ARIMA processes.

VI. CONCLUSIONS

A new class of the F-ARIMA processes is playing an
increasingly important role in the area of signal processing.
Accurate estimation of the parameters, especially the parameter
, is, however, important for practical applications. In this

study, an ML estimation problem for estimating the parameters
in the F-ARIMA processes has been proposed and efficiently
solved in the frequency domain. The maximum of the highly
nonlinear log-likelihood function is searched by employing
the GA in the proposed estimation algorithm. Since the pro-
posed algorithm simultaneously searches for many peaks and
exchanges information among the peaks during the searching
procedure, unlike other ML estimation methods, it possesses
the property of global convergence in probability. Further-
more, stability of the F-ARIMA model is also guaranteed in

the parameter estimation procedure. The simulation results
indicate that the proposed algorithm offers an effective and
simple method to solve the nonlinear parameter estimation
problem for the F-ARIMA processes. It has been shown that
the proposed method is more initial-condition independent than
the conventional ML-EM algorithm in solving the nonlinear
parameter estimation problem. Therefore, the present results
are believed to be useful for modeling and identification of
the F-ARIMA processes before the design problems such as
restoration, filtering, etc., are addressed.
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