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Maximum Likelihood Parameter Estimation
of F-ARIMA Processes Using the Genetic
Algorithm in the Frequency Domain
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Abstract—This work aims to treat the parameter estimation ARMA processes provide poor representations for such signals.
problem for fractional-integrated autoregressive moving average A fractal signal exhibits a strong long-range correlation with a
(F-ARIMA) processes under external noise. Unlike the conven- 1/ f-type averaged spectral behavior or, more generally, with a

tional approaches from the perspective of the time domain, a . ) . . .
maximum likelihood (ML) method is developed in the frequency SPECtral density that is approximately proportionafto" with

domain since the power spectrum of an F-ARIMA process is in @ fractional numbery > 0. In contrast to ARMA processes

a very explicit and more simple form. However, maximization of that are characterized by correlation functions that decay
the likelihood function is a highly nonlinear estimation problem. exponentially, fractal signals exhibit the correlation functions
Conventional searching algorithms are likely to converge to local that decrease hyperbolically fast [5]. A canonical model of
maxima under this situation. Since the genetic algorithm (GA) . . ; . L

tends to find the globally optimal solution without being trapped at the fractal signal is the fractional Browman motion .|ntroduc.:ed
local maxima, an estimation scheme based on the GA is therefore Py Mandelbrot and Ness [6]. The fractional Brownian motion
developed to solve the ML parameter estimation problem for (fBm) is considered as thgf — (1/2))th fractional integral of
F-ARIMA processes from the frequency domain perspective. In the Brownian motion. The discrete-time version of the fractal

the parameter estimation procedure, stability of the F-ARIMA signal has also been defined and discussed by Granger and
model is ensured, and convergence to the global optimum of the Joyeux [23] and Hosking [24]

likelihood function is also guaranteed. Finally, several simulation ] . .
examples are presented to illustrate the proposed estimation EVven fractal signals are more suitable for modeling processes

algorithm and exhibit its performance. with long-range dependence; however, they cannot efficiently
Index Terms—F-ARIMA processes, frequency domain max- mod_el thosg with both short-range and Iong-_range dependence.
imum likelihood parameter estimation, genetic algorithm. In this situation, the F-ARIMA processes, which are modeled as
passing a fractal signal through an ARMA filter, are introduced
to model the processes with both short-range and long-range de-
pendence [5], [24], [26], [28]. The problem of restoration of a
ECENTLY, fractal signals, i.e., fractionally differencedF-ARIMA process after passing through a linear filter (channel)
noises, have attracted much consideration in signal pivas solved by Chen and Lin [1] by developing a multiscale
cessing, image processing, geophysical data, network traffigiener filterbank to restore the original signal using the wavelet
and computer vision due to the wide variety of data for whicfiiterbank technique. However, it was assumed in [1] that the
they are inherently well suited [2]-[4], [6], [18], [19], [25]-[33]. parameters of the F-ARIMA process and additive noise are all
These processes provide good models for self-similarity akdown. In practical signal processing, however, these parame-
long-range correlation structure observed in several sigriats need to be precisely estimated before restoration. This paper
processes. Fractal signals are increasingly important candidasetherefore a further extension of the previous work [1] that
for data modeling in a variety of signal processing applicationdeals with the estimation problem in F-ARIMA processes.
In contrast to the well-known family of autoregressive moving A parameter estimation algorithm is developed in this study
average (ARMA) processes, fractal signals are characterizedestimate the parameters of a F-ARIMA process and noise
by self-similarity and long-range correlation structure. Thsom the received noisy signal. A maximum likelihood (ML)
parameter estimation method for fractal signals has been
proposed by Wornell and Oppenheim [7] from the time-scale
Manuscript received January 17, 2000; revised May 24, 2002. Th(i.jsom‘?"in perspective, based on the wavelet transform and the
work was supported by the National Science Council under Contracts N®&pectation-maximization (EM) technique. The ML estimation
90-2213-E-007-019, NSC-90-2213-E-216-009, and NSC90'2213'E‘?50i0%’r0blem of the parameter for a discrete fractionally differenced
The associate editor coordinating the review of this paper and approving it tar . . . .
publication was Editor-in-Chief Dr. Arye Nehorai. aussian noise process has also been discussed in [25]. In
B.-S. Chen is with the Department of Electrical Engineeringthe above studies, however, the effect of the ARMA filter

National Tsing-Hua University, Hsinchu, Taiwan, R.O.C. (e-mailygs not considered. This effect is very important in practical
bschen@moti.ee.nthu.edu.tw).

B.-K. Lee is with the Department of Electrical Engineering, Chung-Hua Un’riﬂgn"’lI processing, e.g., reflections in seismic data processing,

versity, Hsinchu, Taiwan, R.O.C. (e-mail: bklee@chu.edu.tw). intersymbol interference (ISI) in equalization, blur in image
S.-P. Peng is with the Department of Electrical Engineering, Natio”ﬂrocessing, etc. The ML parameter estimation problem of

Huwei Institute of Technology, Huwei, Yunlin, Taiwan, R.O.C. (e-mail: . . . .

scpeng@nhit.edu.tw). F-ARIMA processes has been discussed in the time domain

Publisher Item Identifier 10.1109/TSP.2002.801918. in [5], wherein a modified EM algorithm was applied to solve

. INTRODUCTION

1053-587X/02$17.00 © 2002 IEEE



CHEN et al. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION OF F-ARIMA PROCESSES 2209

this problem. In general, the EM method is an initial-conditioare presented in Section V, and conclusions are summarized in
dependent algorithm, which is likely to converge to a loc&ection VI.
maximum of the log-likelihood function if the initial condition
is not chosen appropriately. [l. PROBLEM STATEMENT
The drawback of the ML parameter estimation methods in

the time domain is that thev transform exolicit parameters fThe fractional Brownian motion (fBm) was first introduced
! nis y Xplicit paramet By Mandelbrot and Ness [6] to formalize the family of signals
a F-ARIMA process in the frequency domain into implicit pa-

. SR : " with 1/f type spectra. The fBm is a generalization of the stan-
rameters of an autocorrelation function in the time domain bHSrd Brownian motion and is defined as

in amore complicated form. This transformation increases com-

putational complexity, number of local maxima, and estimation B (0) =0

error. Furthermore, the stability of the F-ARIMA process cannot 1 + 0
be guaranteed by using the EM algorithm to treat the addresseg (t)— By (0) = 7F{/ (t—s)H=03 dB(s)+/
parameter estimation problem. This drawback will cause the ob- P(H+0.5) Lo

tained result to be not efficacious. In this study, the parameters [(t — 505 _ (—g5)H=03] dB(s)}
of a F-ARIMA process and the additive noise are all estimated

directly in the frequency domain from the received signal. The . . .
F-ARIMA process is expressed in the frequency domain pwhereH is a parameter with magnitude between 0 and 1, and

cause the spectral density of a F-ARIMA process has a simpféf#) iS the standard Brownian motion. In casetbt= 0.5, fBm

form. Then, an estimation algorithm, with which the stability oP€cOmMes the standard Brownian motion. The paramétes

the F-ARIMA model is ensured, is developed from the perspei@latedto the fractal dimensidh of the graph o3 (¢) by D =
— H. Note that fBm may also be viewed as ¥ + 0.5)th

tive of the frequency domain, based on the genetic algorith?n

(GA) to achieve the global optimum of the highly nonlinear likeint€gral of a white noise. , _
lihood function in the parameter estimation process. Similar to the continuous-time case, a discrete-time fractal

GAs are optimization, machine learning algorithms that we ocess called discrete fractionally differenced Gaussian noise

initially inspired from the process of natural selection and evé-dGn_) has been defined by Granger and Joyeux [23] and
lution of genetics. Unlike the steepest descent approaches to'g8Sking [24] through

rameter identification and filter design, the GA requires no cal-

— o0

—1\—d
culation of gradient and is not susceptible to local maxima that un) = (L_ )" un)
arise from multimodal maximization problems. Therefore, it is _ Z —d> (—1)*u(n — k)
more suitable for solving the ML parameter estimation problem =\ k
for F-ARIMA processes. = (k+d—1)!
In order to treat the parameter estimation problem by the GA, = Z m v(n —k)

a fitness function must first be formulated, according to the like-
lihood function. The proposed algorithm begins with a collec-
tion of parameter estimates (chromosomes), and each one is
evaluated for its fitness in solving the given optimization task.
In each generation, the chromosomes with higher fithess valmreq_l is the delay operator with~'v(n) = v(n — 1),

are allowed to mate and bear offspring. These children (new 7) is a zero-mean, Gaussian, white noise with variaste

rameter estimates) then form the basis for the next generatignq the coefficients(k, d)s are the Cesaro numbers. The term
Because of the use of crossover and mutation, this parameter_ g~1)¢ acts as the fractional differencing operation for a

estimation algorithm tends to find the global optimum solutioR;ctional numberd. In this paper, we assume that< d <
without being trapped at local maxima. The GA was first intrq; 5 The relation between the fractional numbdamnd the Hurst
duced by Holland [8] and then extensively explored by GOMbefEarameterH in long memory process in the discrete-time case
[9]. It has been successfully applied to a variety of optimizatiqe 7 — 4 +0.5.

problems, such as imagg processing [10], system identificgtioqn [24], Hosking has proven that the procegs) is stationary
[11], [12], find fuzzy Iog_lc contro!ler design [13]. The GA isypq invertible, i.e.(1 — ¢~1)%u(n) = v(n),if 0 < d < 0.5.
employed in the estimation algorithm proposed here to Searlgllareover, sinces(n) is a zero-mean process, sou). For

for the global maximum in the parameter space of the likelihogd .- ; 0.5, the power spectrum of a discrete fractal signal
function of F-ARIMA processes in frequency domain. The corn); n) can be represented as [24]

cepts presented in [14] and [15] are adopted and modified in this
study to guarantee the convergence in probability of the pro- 2—2d;2
posed parameter estimation algorithm. S(w) = W (1)

The rest of this paper is organized as follows. The param-
eter estimation problem is described in Section II. The likelNote thatS(w) ~ 02 w™2¢ asw — 0. Therefore, the spectrum
hood function for parameter estimation is formulated in the fref the discrete fractal signal has a similar behavior as that of the
guency domain in Section Ill. The parameter estimation meth&im at low frequencies.
based on the GA is described in Section IV. Convergence of theA fractal signal with a power spectrum as in (1) has an au-
proposed algorithm is also discussed. Several simulation restidtsorrelation asymptotically proportional to (=24 wherer

}.
Il
S

e(k, dv(n — k)

M

o~
Il
S
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is the time lag. Therefore, it is suitable for modeling a signal lll. L IKELIHOOD FUNCTION FOR PARAMETER ESTIMATION
with long-range correlation structure. However, it is not flexible IN THE FREQUENCY DOMAIN

enough to model a signal with short-range correlation structure
Contrarily, an ARMA model with an exponentially decayed cor. 1), itis found thatS(w) has a very simple structure. Moreover
relation function is suitable for modeling short-range correlati e, parametergands of the fractal signal are both in an explicit,
of signals but cannot capture their long-range correlation chgge, i S(w). Therefore, it is more convenient to estimate the
acteristics. In [20], [22], [24], and [26], it is pointed out that ?)arameters in the frequency domain than in the time domain.
hybrid structure of an input fractal signal and an ARMA filte Taking the N-point discrete Fourier transformation
can be used to capture both short- and long-range dependen%q(iqz) yields the frequency-domain model as [22], for
signals. Such a hybrid structure, i.e., the F-ARIMA process, h%s: 1 N/2-1 '
been found useful in several areas of signal processing in prac- """’

tical applications [1], [25]-[28]. On the other hand, the signal is o B(ei«w) o o 27k

usually interfered by environment, which can be represented b}/(‘?} ‘)= A(ci=n) U(™) + W(e™),  wr = N (4)

a measurement noise(n). Consequently, the observed signal

By observing the spectral densityw) of the fractal signal in

y(n) of the F-ARIMA process can be represented as with
— B(q) 2 Jw = —jJwpn
y(n) = @u(n) + w(n) 2 V()= 3 y(n)eios (5)

n=0
whereuw(n) is the input fractal signal with power spectrum as in i o i .
(1), w(n) is a zero-mean, Gaussian, white noise with variandd1€reY (¢+), U(e’*), andW (¢/*) denote the Fourier co-

o2, and the rational filter (ARMA channe¥(q)/A(q) is of the efficients ofy(n), w(n), andw(n), respectively, an&v denotes
the number of data points. The zero frequency is not considered

form
. . in (4) due to the singularity of(w), as shown in (1). In order
Blg) _ 1+big +---4byg™ _ (3) tosimply use the fast Fourier transform (FFT),is chosen as
Alg) 1+ag i+ +an,qgm 2! for some positive integdr. Technically, the FFT can be ap-

Assume that the orders, andn, are known and that the white plied to the case thaV is a product of powers of small prime
noisesv(n) andw(n) are uncorrelated. Without loss of genernumbers. o _ S
To derive the likelihood function for parameter estimation in

ality, both the leading coefficient aB(q) and A(g) can be set ! )
to unity for the purpose of normalization. That is because ti€ frequency domain, we need the following results.
gain of B(¢)/A(q) can be absorbed by the parameten (1). Theorem 1: With the Gaussian assumptions of the uncorre-

For parameter estimation of the F-ARIMA model, the followind2ted White noises(n) andw(n) and the stability assumption
assumptions are made. A2) on A(q) andB(q), the Fourier coefficienty (¢?“*) at fre-

. . quenciesv, k = 1, ..., N/2 — 1 are approximately statis-
23 E(ls)pgrl\)élngg)a lZ;le(qthEIdeB[gg a:jl igg;lsmgﬁ(z) and tically independent complex Gaussian random variables with

B(z) are in{z| 2| < 1}]. probability densities as

In practical applications, the parameters, ..., a,,, on 1 Y (€98 )Y (e 9%)
bi, ..., bn,, d, 0, 0 Of B(q)/A(q), u(n), andw(n) need to  P(Y (™)) = wvary (=) "\ vary (o))
be estimated from the noisy output signéh) before designing (6)

the wavelet filterbank for restoration of the fractal signals [1jvhere vafY (¢/“*)), which is the data variance at frequengy
Unlike the conventional treatment by using the ML methods N — o, is given by
with wavelet multiscale representation [7] in time-scale domain ' '
or the EM-algorithm [5], [20] in the time domain, the parameter jor B(c?“")B(e™/*x) 2

L . . varn(Y (e’“*)) = . —~ NS(wr) + No. 7
estimation problem in the processing of the F-ARIMA process (™)) A(edwre) A(e=Iwr) (W) + New, (7)
in (2) is solved in the frequency domain in the present study.

Let § denote the vector of all the unknown parameters as WhereS.(wT) ando?, are the power spectra efn) andw(n),
respectively.

by --- bm,]T. Proof: Before presenting the proof of (6), the F-ARIMA

. . . process in (2) is rewritten as
The design problem now involves the estimation of the param-

6=[d o oy a1 -~ ay

a

eter vectord from the N-points observatioqy(n)} for n = y(n) =z(n) + win) (8)
0,1,..., N—1ofaF-ARIMA process corrupted with the ex- B 1
ternal noise in (2). z(n) = ﬁ —w(n). (9)
Remark 1: In case ofB(g)/A(q) = 1, the parameter vector Ag) (1—g~1)¢
9 becomes Recall thatu(n) is the white Gaussian driving noise with zero
0=[d o ou]" mean and variance?.
Let us denote the joiritth-order cumulants [22] ab(n) and
It is then reduced to a parameter estimation problem for fractdln) asCy’ (n1, na, ..., ng—1) andCy(n, no, ..., ng_1) at

signals. O timesn,n 4+ nq, ..., n + ni+1, respectively. Since the white
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noisesw(n) andv(n) are zero-mean Gaussian, all the moment&he data variance véx (e/*)) at the frequencyy, is then ex-
of w(n) andv(n) are finite, and the following conditions hold: pressed as

1+ blejwk 4+ bm)ejnbwk 2

> var(Y (e**)) = No?2, + : .
Z |Ciu(n17 n2, -, nk*1)| <0 (10) r( (C )) Tw 1+a16]‘~‘k +"'+ana6]nawk
N, yeee R -] =— O 272dN 2
e eV
” sin(wy
Z |Cr(n1, nay .., np—1)| <oo  (11) k
N1 e | =— 0O where|A| denotes the absolute value of a complex number
o Invoking the approximate statistical independenc# 6f/< ),
for any finite &. k=1,...,N/2—1, the log-likelihood function is

Following from [22, Th. 4.4.1] with the finite cumulant
condition (10) onw(n), the Fourier coefficientdlV (e/+),
k=1,2,..., N/2—1are with the asymptotical independent Ly() = logp(Y(e™*))
complex Gaussian distributiotv¢(0, No2) as N — oc. k=1

N/2—-1

Note that [22, Th. 4.4.1] holds only for conventional stationary N2l N

processes. For the F-ARIMA proces$n), it is modified in =~y [—108“ — logvar(Y (¢"**))

[36]. Under assumption A2), the functioB(c/«)|/|A(c7*)] is k=1 ,

a positive and continuous function of Then, following from Y }

assumption A2) and (11), the Fourier coefficiedtge/*r), var(Y (ei«x))

k=1,2,..., N/2— 1 arewith the asymptotical mdependentl-he termlog 7 stays invariant during the maximization proce-

complex Gaussian distributiaN°(0, N f..(wy)) asN — oo,

_ dure and, hence, can be discarded. Consequently, an equivalent
wheref, (w;,) denotes the spectral density:afn) as

representation of the log-likelihood function is obtained as

N/2-1

B (ejwk) B (e_j'“’k) ‘ o |Y(ej“"")|2
(13)
whereS(w;,) denotes the power spectrumaf) atw,. Substituting (12) into (13) yields (14), shown at the bottom of

Since we assume that the white noise¢n) and the page.
w(n) are uncgrrelated, pased on the above reasoningremark 2: In case ofB(q)/A(q) = 1, the log-likelihood
Y(et) = X(e/") + W(e/ ) fork =1,2,..., N/2—=1 fynction in (14) is reduced to
are with the asymptotical independent Gaussian distribution

N¢(0, varY (¢?*+)). Then, we get the probability distribution N/2-1 0—2d N ;2 ,
Jwp Ly (6) ~ — log| ——F— N
of Y(e/**) as (6). Moreover, by the fact that [22] v(0) ; Og((sin(wk/2))2d + ffw>
E (W(e/ )W (e™“r)) = No?, =T (15)
(WemW(e™) (G + Nt )
one has var (¢/“*) = No?2 + N f,(wy), and the result in (7) 0O
can be easily obtained. - Then, the ML parameter estimation problem of F-ARIMA
Since the data lengthV is large enough, we have processes in the frequency domain is to find an optimal param-
eter vecto®* to solve the following maximization problem:
2—2(10_2
S(wr) = S(W)| o m2miyn = (sin(wr/2)2" max Ly (6). (16)

N/2-1 - o

1 by ed«k ... bn INp Wk

Ly@)~— 3 |log ‘ toe T A One _+No?,
(sinfeon/2))

2 _
2-2d N 52 5
=1 1+ aredws 4+ ..o+ ., cinawh
Y(ej‘“"v)|2

P 2

14b1ed“k +--4b,,, eI"b“k —2d N g2

= e | o ey T NoZ
14a1e?“k4-tan, ek | (sin(wy/2)) w

(14)
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By observing the log-likelihood function as in (14), it is
found thatLy () is a highly nonlinear function df, especially
for the fractal parametet. There may exist many local optima
in the maximization of the log-likelihood function in (16). By
employing the conventional methods to treat this optimization
problem, a local solution is usually obtained. Furthermore,, ,
some derivative information or the complete knowledge of
the problem structure and parameters are also required fc s
conventional optimization algorithms. These drawbacks rende
them not suitable to treat our problem. Contrarily, the GA
tends to find the global solution of the ML problem in (16) | | | | | |
without being trapped at local optima and does not require the 2 N 2 2 N 2
information of derivative or problem structure. The GA is a
parallel and global optimal search technique that copies natul'—:@. 1. (a) Stable region for a second-order system. (b) One of the division of
genetic operations to simultaneously evaluate many pointstii stable region for a second-order system.
the parameter space and more likely to converge toward the

@ o)
|

0.5

global solution of the optimization problem in (16). Hence, iteveral region®,,, ..., ©,,, which are all stable and of the
is more suitable than the other optimization algorithms to tresgctangular form. Fig. 1(b) illustrates one of the division for the
our optimization problem. second-order system. The same conclusion is also applied to
polynomial B(z). Therefore, the entire search sp&ean be
IV. PARAMETER ESTIMATION VIA THE GENETIC ALGORITHM  divided into a union of region®y, ..., ©; for some positive
iptegerJ. Now, by applying the proposed GA to each region

The GA is a stochastic optimization algorithm that was orig
nally motivated by the mechanisms of natural selection and e\%
lution of genetics. The underlying principles of the GA weré
first proposed by Holland in 1962 [17], whereas the mathemat- ¢ = argmax Ly (). (17)
ical framework was developed in the late 1960s and was pre- 6c{©1,09s,..,0s}

sented in Holland’s pioneering book [8]. In the following, a pa- _
rameter estimation algorithm is developed based on the GA t The GA searches for the ML parameter only inside the stable

) , . pgrameter space, and the stability of ther) and B(z) is guar-
estimate the parameter vec f the F'AR.IMA Process in (2). anteed. This leads to a remarkable reduction of search space and
by carrying out maximization of the log-likelihood function in

16 saves much effort of computation.
(16). Remark 3: For the case in which, = 2, the triangular
stable region in Fig. 1(a) can be transformed into a rectangle

_ o in a new coordinate system. However, this approach is hard to
By using the GA to solve the problem of maximization of thg |y to high-degree cases. O

log-likelihood functionLy (¢) in (16), the search space of the |, GA, the parameter vectdr to be searched to solve the

is because an appropriate choice of the search space may speghiation of binary strings. The choice of the bit number for
up the convergence of the GA. In general, the search space gggn parameter depends on the desired “resolution” we want in
be specified based on the characteristics of the parametersy@search space. For simplicity, take searching in re@igiior

case ofB(q)/A(g) # 1, the choice of the search space is morgyample. With binary coding, the resolution of each parameter
difficult than that ofB(¢)/A(q) = 1. This is because both the g pe calculated as

stability of the polynomials (i.e., all the roots df ») and B(q) v ool
must be in{z| |z| < 1} [34]) must be taken into consideration. Ry = O — b
In general, determining the range of the coefficientsA¢f) 2% —1
andB(q) to guarantee their stability is difficult work, except forwhere
low order systems. In most of the applications, the entire searchr,,  resolution;
spaceO of the parameter vectérmay not simply be described 9Y  upper bound of the search range;
by the rectangular form as 6% lower bound of the search range;

4, bit number for theith parameter ir®;.
Foranyk, 1 < k < M, thekth paramete#;, is chosen as

; to obtain the optimal estimatés, fori =1, 2, ..., J, the
obal or near global estima& can be derived by

Selection of Search Space

(18)

o: {al6F <6, <67, fori=1,...,M}

where denotes the number of the parameter. Let us consider 6 = 6F + xRy

a second-order ARMA modé}(z)/A(z) with the denominator

polynomial A(z) = 1 + a12~! + apz~2. The stable regio®, Wwherexy is coded using;. bits such tha# < 6, < 6}/ holds.
in this case is of the triangular form [see Fig. 1(a)]. It cannot )

be expressed in the above rectangular form. Under this sitf@ness Function

tion, the proposed GA is no longer applied directly. To over- The degree of fithess depends on the performance of the pos-

come this drawback, one can divide the stable regigrinto  sible solution represented by that particular string. The larger the
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(e The probability of theth string (corresponding to thigh
A parameter vectat;) with fitness valuef*(6;) reproduced
for mating in the next generation is

-f;’ _________________________________________ I Pt — ft(el) (21)

g:l f4(6;)

wheren,, is the population size specified by the designer.

e Crossover: Crossover provides a mechanism for ex-
changing information in two strings via probabilistic
decision. Combined with reproduction, it is an effective
way of exchanging information and combining portions
of high-quality solutions.

L. L,M » L,(6) « Mutation: Mutation is occasional alteration of each bit of
a chromosome from 0 to 1 or from 1 to 0 with a small
Fig. 2. Relation betweefi*(4) and Ly (4). probability P,,,. The purpose of mutation is to introduce

occasional perturbation to the estimated parameters to en-

likelihood, the higher the fitness. There are a number of methods ~ Sure that all points in the search space can ultimately be

to perform this mapping, which are known as fitness techniques. réached.
The mapping method adopted in the present study is illustratedl e algorithm begins with a population of randomly gener-
in Fig. 2. The fitness functiorfi*(¢) in generatiort of a param- ated chromosomes. Each chromosome is decoded into the cor-
eter vectord with log-likelihood functionLy () is expressed responding parameter vector and evaluated for its fitness value
by in solving the optimization problem in (20). At each generation,
chromosomes mate and bear offspring. Note that the best candi-
FHO) = fu + M (Ly(#) — Lt (19) dateinone generationisretained inthe next generation to ensure

t min . B . .
Ltax = Ligin that the best candidate in the next generation is at least as good

ax ’in denote the maximum and minimum@S the present one. ) .
ali ; ; ; An easy way to search the entire parameter sgaisto in-
values of the likelihood functiorly (#) in the population of

generatior, respectively;f, and f,, are the prescribed bestdependently apply the GA to each individual rectangular region
and worst fitness values, respectively. Sinés) is linearly ©i, 1 < ¢ < J. Then, the ultimate global or near-global es-
proportional toLy (), the #*, which maximizesf*(6), also timate¢* can be derived according to (17). The steps of the
maximizes Ly (#). Therefore, the ML parameter estimatior5A-based parameter estimation algorithm in a reginare
problem in (16) is equivalent to the following fitness optimizakisted as follows.

tion problem:

where Lt __ and L?

max O] (20)

Genetic-Based Parameter Estimation

Our parameter estimation problem is to develop a GA to sol@%gegmg)m: Select the parameter space o,

the above fitness optimization problem, which is described by

. . properly for the parameter vector 0.
the following genetic operators. Step 1) Randomly generate a population of
binary strings in O, (generation t =0).

Genetic Operators e
P Step 2) Decode each string into the corre-

The most important and basic operations for the GA for ghonding parameter vector.
solving (20) are maintaining, reproduction, crossover, ar§len, 3) Calculate the likelihood function
mutation. A brief description of these operations is presentedof each parameter vector according to
in the following. For more detailed introduction, see the (14),

fundamental textbooks [8] and [9)]. Step 4) Calculate the fitness values ac-
 Maintaining: This is a process of copying the best string cording to (19).
in this generation (with the highest fitness) to the nex@tep 5) Perform the basic operations of
generation. The purpose of this operation is to ensure thathe GA, i.e., maintaining, reproduction,
the best string in the next generation is at least no worsecrossover, and mutation.
than the best one in this generation. Step 6) Increase the generation index t
* Reproduction:Reproduction is a process in which indi- by 1. If the stopping criterion is not
vidual strings are copied and put in a mating pool for fur- satisfied, go to Step 2 ; otherwise, stop
ther genetic operations according to their fitness values.the algorithm.
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t—>t+1

Generating
Chromosomes

=0

v

Decoding

The stopping criterion can be specified as the number of gen-¢
erations tolerated for no improvement on the value of the likeli-
hood function and/or the maximum number of total generationsThe chromosome with likelihood functioht

No

Likelihood Function

v

Fitness Value

_________________ ¢

Maintaining

v

Reproduction

v

Crossover

v

Mutation

Decoding

Stopping
criterion are
met?

Choose the best one

| Basic Genetic

Operations

Fig. 3. Flowchart of the GA-based parameter estimation algorithm.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 9, SEPTEMBER 2002

Convergence Discussion of the Parameter Estimation
Algorithm

Convergence of the GA has been analyzed in some recent
studies [14], [15]. The concept presented in [15] is adopted here
to prove the convergence of the proposed parameter estimation
algorithm to the global optimuré* of Ly-(8) [or f*(6)].

Theorem 2:The estimated parameter converges to an op-
timal estimated* that attains the global maximum of the log-
likelihood functionLy (6) in (14).

Proof: First, note that the GA is independently applied to
each individual rectangular regié®, 1 < ¢ < .J. To obtain the
claimed result, it is sufficient to prove that in any fixed region
0,, the estimated parameter converges to an optimal estimate
that attains the global maximum of the log-likelihood function
Ly (6) in ©;. Therefore, we will only discuss the problem in a
single rectangular region in the following.

Since each chromosome consists of only a finite number
of bits, the estimated parameters represented by these chro-
mosomes are actually quantized values. Lgt,. denote the
global maximum of the log-likelihood function (14) or (15),
and letL%, . denote the maximum of the log-likelihood func-
tion evaluated for all possible chromosomes. The case wherein
the quantization error in each estimated parameter is zero is
called ideal matching. In this casb$ . is equal toL,,,. The
expected value of the log-likelihood function is shown in the
following to converge td.%_ . at a specific rate.

Let us examine the generation of a child chromosome in gen-
eration(t + 1) from its parent chromosomes in generatton
First, the parent chromosomes andx; are selected from the
populations according to the probability in (21). Next, a uni-
formly distributed crossover site, € {1,2,...,¢ — 1} is
chosen, and the crossover operation is performed. We denote
the probability of a child chromosome generated from parents
x; andx; with a crossover site; by F;;... Then, each chro-
mosome thus generated undergoes the process of mutation. Let
us denote the mutation pattern fayand the probability of oc-
currence of this pattern b¥,. Since the mutation operation is
performed independently at each bit of a chromosome, the set
U consisting of all possible mutation patterns is of 22eThe
likelihood function corresponding to the child chromosome in
generationt + 1), which is generated from parents andx;
with crossover site, and mutation pattern, is represented by

JSome notations that are useful in the analysis of convergence
property are introduced in the following:

6;; difference in the likelihood functions of any two
chromosomes; andx; with corresponding likelihood
functionsL; andL;, respectively, i.e$;; = |L; — L;|;

& minimum of §;; subject tod;; # 0;

! number of all possible chromosomes with likelihood
function larger tharl?, __;
set of all possibles (remember that represents the
population of chromosomes).

C

in gener-

max

to be performed. The decoded parameter vector correspondifign ¢ is copied directly in the next generation, whereas, all
to the best chromosome at the last generation is the solutiorother chromosomes in generatiéh+ 1) are generated from
the problem of ML parameter estimation in (20). The whole athe current populatiorn by the three operations, i.e., reproduc-

gorithm is summarized in Fig. 3.

tion, crossover, and mutation. Assume that the maximum value
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of the likelihood functions of all the newly generated chromo-
somes (excluding the one copied directly)ll;’ctu. The ex- Ansz2 | ]
pected value of.tfL conditioned on populationat generation ausa b
t is, therefore
41158 [
t+1 o t Optimal value
E(Lmax ) - Z Z Z ‘PUCSP max Lmax7 LZ]C u) 4S8 - -
LiCs s uel 3: 4116 K _
_ - t t
— Z -Pz]cs Pu InaX(Lma.)U LZ]C u) (22) 41162 |{ Evolton ofL, @®)
5,0,
41164
Define a notatiors;;, , as sk
t t+1 t t+1 t L
6ZJCSU - LZJC U LIIlaX? VLZJC U > Lma.x 41168
an . . . . . . s . .
Then, (22) can be expressed as 20 40 60 80 Gan::ptbn t120 140 160 180 200
E(Lf}‘g{ ) Fig. 4. Convergence of the averafie (9) versus generation in Example 1.
— t
- Z PZJCSP Lmax 0.45
Lt+1 <[t
ijesu=Lmax
t t v1s 4
+ Z ‘PU(’ PU(Lmax + 67‘,]'(23'11,) o4
Lt+1 >Lt
iiesu” Linax
0.35 :”_\ Estimate of d
t t
Z ‘PUCSP Lmax Z ‘PUCSP 61]c u
by s Gy th t4+1
By d5 Coy U Ly e u” Llnax oaf 1
_ 7t t
Lmax Z PUCSPU + Z ‘PUCSP 6zjc u o025k
e P t+1
b0 cosu Lo > Thax
t t L i
= Lmax + Z RJCSP 6Uc w* (23) 0'2_\‘ Beimatesfo,
AT
ijesu” Timax
0.15

EachX in (23) is performed for alf, j, ¢;, andu subject to
the constraint stated previously. The number of terms contained
in the summation of the last equality in (23)i$. If L!

<

max’?

i.e., the best chromosome has not been reaotted;

' L ' L L
100 120 140 160 180
Generation t

s s
20 80 200

Fig. 5. Typical trace of parameter estimates in Example 1.
max

Equation (24) implies that

positive integer. In practical applications, mutation r&lg <
5. Therefore, the minimum valul of P, forall u € U is —1
_ E(L',.) > E(L°, )+ PumP > E(n*
P — (P,rn)[ ( max) ( ma.x) kz:;) ( )
i.e., the probability that all bits are mutated. Equation (24) illustrates that the expected Vaﬂ(agfg—alx)
Substitute the previous relation into (23) larger thanE(L! ) at least by the valu@,,;, P 6 E(n). This
_ value is positive, provided tha(L! . ) is smaller thanl%, . .
E(LYLS) > L+ Poin? > min(8;, ) On the other hand, it is zero, provided thafL! ) equals
Lt > Lo L%... Consequentilim, ..., E(L! ) = L%,.. Therefore,
> Lo+ 1 P P min(6t;,_,) in each rectangular region, the estimated parameter converges
. to an optimal estimate that attains the global maximum of the
> Lmax + nchliﬂP 6

where Py, is the minimum of all possiblé’; ;.
value of LfL is then obtained as

)= 5))

Lt+1

max

Lf—l—l

max

= E(B(Lif

S
sCS

> Z P Lmax + Z PSRninFETLZ
sCS sCS

_E(Lf ) + anFSE(TLZ)

max

E(

. The expected

log-likelihood functionLy-(6) in (14). .
Remark 4: The measure of the set of parameter vectors, in
which the A(z) and B(z) have common factors, is zero with
respect to the entire parameter search space. Therefore, with
probability 1, the estimated versions 4{q) and B(q) are co-
prime in any generation. On the other hand, by searching in the
preselected parameter space, the parameter estimates obey as-
sumption A2). The claim of the above theorem will be verified
by several simulation examples in Section V. Since the likeli-
hood functionLy (#) in frequency domain only considers the
(24) amplitude|A(e??*)/B(e??*)|, assumptions A1) and A2) are
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TABLE |
MEAN ESTIMATES AND THEIR STANDARD DEVIATIONS (STD) OF THE PARAMETER VECTOR[d o] = [0.35 0.2] USING THE PROPOSEDGA-BASED METHOD
AND THE ML-EM M ETHOD VIA THE MONTE CARLO SIMULATION WITH 100 RUNS IN EXAMPLE 1

Estimated Parameters Mean STD
Estimation Method (d, 6) (std d, std 6,)
The proposed GA-based method (0.3429, 0.1929) | (0.1136, 0.0678)

ML-EM method with initial condition (0.34, 0.18) | (0.3456, 0.1850) | (0.1288, 0.0990)
ML-EM method with initial condition (0.10, 0.01) | (0.3401, 0.0498) | (0.1334, 0.2254)

necessary in order to guarantee the uniqueness of the optiBylusing the proposed GA-based method to treat the parameter
estimated*. We should note that convergence of the estimatedtimation problem, the genetic parameters are chosen as
parameters to the true value is not provided in the above the-

orem. Parameter convergence to true value is another signifi- POP“'?'UO” SiZ%?_ = 200
cant topic for the GA-based parameter estimation problem for Mutation Probability?,, = 0.1
F-ARIMA processes. It needs more effort and will be treated in Best Fltpess Valug, = 100
further research. Worst Fitness Valug,, = 10.

After 200 generations, the average estimated parameters are ob-

tained as the following via Monte-Carlo simulation with 100
In this section, several numerical simulation examples amens:

presented to illustrate the proposed parameter estimation .

method and exhibit its performance. Comparisons with the d = 0.3429, 0w = 0.1929.

results reported in [5] and [20] are also given to demonstrate the

superior performance of the proposed method. For convenienceConvergence of the mean log-likelihood functibg () for

to compare the proposed method with the ML-EM method ihis case is illustrated in Fig. 4, in which the dash-dotted line

[5] and [20], the parameter is set to be unity throughout this indicates the theoretical maximal valuelof (#). Since the al-

section. gorithm simultaneously searches for many points in the search
Example 1—A F-ARIMA Process Without ARMA Pdrt: space®, the proposed method converges quickly and asymp-

this example, the input fractal signal is generated according tia¢ically achieves the ML as generatioincreases. Among the

formula in [23] and [24] with data lengthV = 1024 and pa- 100 runs in the Monte-Carlo simulation, a typical trace of pa-

rameterd = 0.35. The values,, of the additive noise is set to rameter estimates is shown in Fig. 5.

V. NUMERICAL SIMULATIONS

be0.2. Let # denote the parameter vector as A comparison of the present results with those obtained by
T T _ T the conventional ML-EM algorithm via Monte-Carlo simula-
0=1[d ou] =[00 bo] =1[0.35 0.2]" . tion with 100 runs is listed in Table I. It is shown that both

the results of the proposed GA-based method and the ML-EM
method with a “good” initial condition are almost the same as
the values of true parameters. This means that both the proposed
O: {#|0< 6, <0.5,0<0, <1}, GA-based method and the ML-EM algorithm are efficient to
treat this ML parameter estimation problem. On the other hand,
In order to obtain an accurate result, the resolution for evefys a1so shown that a worse performance is obtained if the initial
parameter is assumed to be slightly finer thanx1.60~". Ac-  condition of the ML-EM method is not chosen properly. This is

An appropriate choice of the admissible &ebf the parameter
vectoré can be specified as

cording to the discussion in Section IV, we have because the EM algorithm is trapped at local maximum when a
0.5 — (—0.5) s bad initial condition is given.
Ry = o - <16x10 Usually, choice of the data numbaf should depend on the
decaying rate of the correlation function of the observed signal.
Ry = 1; < 1.6 %1077, A fractal signal has an autocorrelation asymptotically propor-
28 —1 tional tor—(:=24) wherer is the time lag. In general, when the
The required bit number§ and#, for 8; and#, are therefore fractional number! is close to 0.5, the correlation decays very
derived as slowly. In this situation NV could be very large. In the example,
‘ L in order to use the fast Fourier transform (FFT) algorithm, we
016> logio (W + 1) — 15.9316 chooseN = 210 = 1024, and the accuracy of parameter esti-
L log;, 2 ) mation is acceptable.
Example 2—A F-ARIMA Process With an AR Mod&he
logyq (ﬁ + 1) input fractal signal is taken to be the same as that in Example 1.
£y =16 > log,, 2 = 15.9316. The AR model is assumed to be the second-order system
Consequently, the chromosome of lendgth+ ¢, = 32 is B(z) 1

derived, which leaves the search sp&cwith 232 alternatives. A(z)  1-04z L+08z 2
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=
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Fig. 7. Convergence of the average log-likelihood function versus generation

Fig. 6. Sample path of the F-ARIMA process in Example 2. in Example 2.

1

The standard deviation,, of the addition noises(n) is setto be
0.2. A sample path of the F-ARIMA signal is plotted in Fig. 6.  csf—
Let us denote the parameter vecfcais

0= [d Ty Q1 CLQ]T

— (61 6 65 64" imstoot ¢
. T
—[0.35 02 —0.4 0.8]". e
o 2

Estimate of a,

06

The admissible séb of 8 in this example is specified as 0
O: {#0< 6, <05 0<6,<1, —06<63<06 -02 ]
—03 S 94 S 1} . 04 Estimate of a,
In order to meet the requirement of desired resolution for eacr_Dts . . ‘ . . . , .
parameter, all the bit numbers of the paramefigrs=1, ..., 4 ' 4 80 80 P M 10 e 200
are assumedto be 16,i.6,—= 16,fori =1, ..., 4. Therefore,
the chromosome is of length= E?:l ¢; = 64, which leaves Fig. 8. Typical trace of parameter estimates in Example 2.
the search spad@ with 254 alternatives.
To estimate the parameter vectiy employing the pro- TABLE I
posed GA-based method, the genetic parametgrs’,,, f;, MAXL'J"&‘;“QRL[')‘TFEFLQ:{OE%’I\%SQ 8;;2'2? BY THE PROPOSEDMETHOD
- . n, AND 1, IN EXAMPLE 2

and f,, are specified as the same as those in Example 1. After
200 generations, the average estimated parameters are obta Model ng=0 | ng=1| n,=1 1 n,=2
as the following via Monte Carlo simulation with 100 runs: Order =0 | =0 | npy=1 ] np=0
R Maximum likelihood | -4575.92 | -4536.53 | -4298.66 | -4122.16
d=0.3325 &, =0.1922, & = —0.4002, a, = 0.8010. max Ly (6)

o . Model Ng = 2 Ng = 2 Ng =3 Ng =3
The convergence of the mean log-likelihood function(é) is Order ne=1 | ny=2 | mp=0 | my=1
shown in Fig. 7, with quick convergence. The dash-dotted linMaximum likelihood | -4175.68 | -4180.42 | -4180.55 | -4202.08
in Fig. 7 indicates the theoretical maximal valuelof(6). A max Ly (f)

typical trace, among 100 runs, of the parameter estimates is il-

lustrated in Fig. 8. b local . th timal value. the ML-EM
The determination of the order 8f(z) /A(z) can be obtained May be manylocaimaxima near the optimal vajue, the V-l
algorithm is usually trapped at a local maximum. Therefore, it

by solving the ML problem in (16) with different choicesof . . . .
andn;. The result is shown in Table Il. We find that with the'> not easy t'o obtain a good estimate Y'a the ML._EM methoq.
choicen, = 2 andn, = 0, the likelihood function in (16) However, it is seen that parameter estimation will be better if

attains the maximum. the initial value is chosen near the true value of the parameter.

. . : : Example 3—A F-ARIMA ModelThe input fractal signal
A comparison of the derived results with those obtained by. . .
using the ML-EM algorithm is presented in Table Il via Montevy'tzlﬁr.]gth 1024 |ds;[h%same as thatin Example 1. The ARMA
Carlo simulation with 100 runs. It is shown that the proposerH0 el1s assumed o be

GA-based method exhibits a better performance than those of B(z) 1—214+085277

the ML-EM method with different initial conditions. Since there A(z)  1-042"14+0.8272"
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TABLE 1lI
MEAN ESTIMATES AND THEIR STANDARD DEVIATIONS (STDSs) OF THE PARAMETER VECTOR[d 0., a1 az] =[0.35 0.2 —0.4 0.8] USING THE PROPOSED
GA-BASED METHOD AND THE ML-EM M ETHOD VIA THE MONTE CARLO SIMULATION WITH 100 RUNS IN EXAMPLE 2

Parameter Estimation Mean STD

(d, 6.) (std d, std &)

Estimation Method (@1, G2) (std @y, std G:)
The proposed GA-based method | (0.3325, 0.1922) | (0.1241, 0.0843)
(-0.4002, 0.8010) | (0.1039, 0.0995)

ML-EM method with initial (0.3401, 0.0881) | (0.1353, 0.1746)
condition (0.34, 0.18, -0.38, 0.78) | (-0.3883, 0.7642) | (0.1473, 0.1183)
ML-EM method with initial (0.2080, 0.0193) | (0.2154, 0.2052)
condition (0.10, 0.01, -0.10, 0.10) | (-0.3463, 0.6131) | (0.1546, 0.1587)

~4100

Additive noise is assumed to be of standard deviatign= 0.2.
Let us denot& as

Optimal value

4150 |-

0= [d Ty Q1 Ao bl bQ]T
=61 6> 65 64 65 66]"
=1[0.35 0.2 —0.4 0.8 —1 0.85]" .

Evolytbn ofL, @)

4200

L@

The preassigned parameter spé&cef ¢ in this example is as-

4250
sumed to be

©: [0 <6, <05 0<f<1
-06<6;<06, —-03<6,<1
=5<0;<5, —5<6s <5},

4300

-4350

0 2‘0 4'0 6‘0 a'o 160' 1%0 liﬂ Illiﬂ lﬂlﬂ 200
All the required bit numbers of parameters are assumed to be Sonemeen ¢
16 to meet the requirement of the desired resolution for eagb. 9. Convergence of the average log-likelihood function versus generation
parameter. The search space is, therefore, #itfalternatives. in Example 3.

In this example, the genetic parametéls, f,, andf,, are the

same as those in Example 1. The population sjzés taken to

1

Estimate of a,

be 400. After 200 generations via Monte Carlo simulation with °* __L/U_/——Mu— Estmato o 5,
100 runs, the obtained average results are listed as 06 .
d=0.3279, 5, =0.1668, a = —0.3864 o Esimate of
~ ~ 0.2
az =0.7911, b; = —0.9355, by = 0.7851. Estimate of o,

0

Convergence of the log-likelihood function with respect to _,,
the increasing of generatians exhibited in Fig. 9, wherein the
dash-dotted line shows the theoretical maximal value of the like-™* Estimate of , |
lihood function. A typical trace, among 100 runs, of the param- -os
eter estimates is shown in Fig. 10. In comparison with the resul _,||
obtained by using the ML-EM method, the derived results via kit B—
Monte Carlo simulation with 100 runs are shownin Table IV. It ™o~ = 4 e s i = 1w e w0 20
is shown that the proposed GA-based method has a performance
that is superior to the ML-EM method. The reason is that a local Fig. 10. Typical trace of parameter estimates in Example 3.
maximum result is obtained with the ML-EM method, but a near
global optimal result is obtained with our proposed method. claim can also be obtained by observing the estimated results in
Remark 5: From (14) and (15), it is seen that (14) is a mor&xamples 1-3, where the derived result in Example 1 is more
complicated function of the parameter vector than (15). Thergecurate than that in Examples 2 and 3. O
fore, the manifold of the parameter space in the case without thdRemark 6: In the following, some brief comparisons of
ARMA part is less complex than that in the case with the Alhe proposed GA-based method with the ML-EM method are
or ARMA part. In this situation, it has a significant effect ordescribed.
parameter estimation. This effect can be found by viewing theThe ML-EM method is an optimal estimation one for which
simulation results in Figs. 4, 7, and 9, where the convergentte gradient-based optimization algorithm is used. In most of the
rate in Fig. 4 is much faster than that in Figs. 7 and 9. The sameadient-based algorithms, the derivative information is usually
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TABLE IV
MEAN ESTIMATES AND THEIR STANDARD DEVIATIONS (STDs) OF THE PARAMETER VECTOR[d o, ai a= by b:] =[0.35 0.2 —0.4 0.8 —1 0.85]
USING THE PROPOSEDGA-BASED METHOD AND THE ML-EM M ETHOD VIA THE MONTE-CARLO SIMULATION WITH 100 RUNS IN EXAMPLE 3

Parameter Estimation Mean STD
(d, 6w, 81) (std d, std &, std )
Estimation Method (Go, b1, bs) (std ag, std by, std bs)

The proposed GA-based method 0.3279, 0.1668, -0.3864)
0.7911, -0.9355, 0.7851)
0.3325, 0.0388, -0.3755)

0.7492, -1.1504, 0.9845)

(0.1015, 0.1020, 0.1034)
(0.1058, 0.1105, 0.1005)
)
)

ML-EM method with initial

condition (0.34, 0.18, -0.38, 0.78, -1.2,
0.95)

ML-EM method with initial

condition (0.10, 0.01, -0.10, 0.10, -5, 2)

(0.1327, 0.1565, 0.1418
(0.1296, 0.1330, 0.1241

P p—

(0.1945, 0.0212, -0.3125)
(0.6565, -2.1044, 1.1101)

(0.1523, 0.1664, 0.1631)
(0.1600, 0.1539, 0.1470)

required. Many complicated computations, such as matrix ithe parameter estimation procedure. The simulation results
version, are involved. By applying the ML-EM method to solvéndicate that the proposed algorithm offers an effective and
the optimal estimation problem addressed in this study frosmmple method to solve the nonlinear parameter estimation
time domain perspective, the required computational time psoblem for the F-ARIMA processes. It has been shown that
very large, especially in the case of large amount of data pointise proposed method is more initial-condition independent than
However, a fractal signal is inherently a signal of long-ranghe conventional ML-EM algorithm in solving the nonlinear
correlation structure. To capture this characteristic of a fractghrameter estimation problem. Therefore, the present results
signal, a large enough data of the observed signal is usualg believed to be useful for modeling and identification of
required. In this situation, ML-EM becomes inefficient. Morethe F-ARIMA processes before the design problems such as

over, ML-EM is an initial-condition dependent method owing toestoration, filtering, etc., are addressed.

the use of the gradient-based algorithm. Itis therefore easy to be
trapped at local optima to obtain a suboptimal result, especially
for highly nonlinear likelihood functions. Furthermore, the sta-
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a global optimization method. It is unnecessary to start with a
good initial condition. Some simple operations such as string
copying, string swapping, and bit changing are involved in the
searching algorithm. Moreover, only some simple calculations
are required in the computation of the log-likelihood function
in the frequency domain. Because a stable search space is pr[eZJ
specified, the stability of the obtained result for the F-ARIMA 3]
model is guaranteed. These characteristics make the proposed
GA-based method in the frequency domain more suitable tharf*!
the ML-EM method in the time domain to treat the parameter (g
estimation problem for the F-ARIMA processes. O

(1]

(6]
(7]

VI. CONCLUSIONS

A new class of the F-ARIMA processes is playing an
increasingly important role in the area of signal processing.
Accurate estimation of the parameters, especially the parameté#!
d, is, however, important for practical applications. In this [9
study, an ML estimation problem for estimating the parameters
in the F-ARIMA processes has been proposed and efficientl{20]
solved in the frequency domain. The maximum of the highly[11]
nonlinear log-likelihood function is searched by employing
the GA in the proposed estimation algorithm. Since the pro-
posed algorithm simultaneously searches for many peaks ar[n1 ]
exchanges information among the peaks during the searching
procedure, unlike other ML estimation methods, it possessd$3!
the property of global convergence in probability. Further-[14]
more, stability of the F-ARIMA model is also guaranteed in
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