
866

Mol. Biol. Evol. 18(5):866–873. 2001
q 2001 by the Society for Molecular Biology and Evolution. ISSN: 0737-4038

Maximum-Likelihood Phylogenetic Analysis Under a Covarion-like Model
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Here, a model allowing covarion-like evolution of DNA sequences is introduced. In contrast to standard represen-
tation of the distribution of evolutionary rates, this model allows the site-specific rate to vary between lineages.
This is achieved by adding as few as two parameters to the widely used among-site rate variation model, namely,
(1) the proportion of sites undergoing rate changes and (2) the rate of rate change. This model is implemented in
the likelihood framework, allowing parameter estimation, comparison of models, and tree reconstruction. An ap-
plication to ribosomal RNA sequences suggests that covarions (i.e., site-specific rate changes) play an important
role in the evolution of these molecules. Neglecting them results in a severe underestimate of the variance of rates
across sites. It has, however, little influence on the estimation of ancestral G1C contents obtained from a nonho-
mogeneous model, or on the resulting inferences about the evolution of thermophyly. This theoretical effort should
be useful for the study of protein adaptation, which presumably proceeds in a typical covarion-like manner.

Introduction

Markov models of DNA sequence evolution are
widely used for reconstructing phylogenetic trees and
studying the processes of molecular evolution from ge-
nomic sequence data. Considerable progress has been
made since the precursor works of Jukes and Cantor
(1969) and Kimura (1980): models have been built to
account for unbalanced base composition (Hasegawa,
Kishino, and Yano 1985; Tamura 1992), variable G1C
content between sequences (Galtier and Gouy 1998),
and synonymous versus nonsynonymous changes (Gold-
man and Yang 1994), to mention only a few. A signif-
icant advance occurred when Yang (1993, 1994) intro-
duced a model allowing variable substitution rates
across sites within the likelihood framework. Yang
showed that adding a single parameter—namely, the
shape parameter of an assumed Gamma distribution of
rates—could increase the likelihood by many orders of
magnitude. This is presumably because selective con-
straints vary across sites. Some sites in a protein or an
RNA evolve more or less freely, whereas others can
hardly be substituted without a significant drop in fit-
ness. Accounting for this effect greatly improves our
representation of molecular evolution.

This picture, however, is an instantaneous one. It is
quite likely that the selective constraints applying to a
particular site also vary in time and between lineages.
As far as long periods of time are concerned, critical
sites with respect to the function of a macromolecule
may change, making the evolutionary rate of a particular
site variable across the phylogeny. This notion was in-
troduced as early as 30 years ago by Fitch and Markow-
itz (1970) and Fitch (1971) and was called the ‘‘cova-
rion’’ process. The terminology comes from the idea that

Abbreviations: ASRV, among-site rate variation; SSRV, site-spe-
cific rate variation; USSRV, unequal site-specific rate variation.

Key words: covarion, Markov model, thermophyly, LUCA, pos-
itive selection.

Address for correspondence and reprints: Centre National de la
Recherche Scientifique UMR 5000—Génome, Populations, Interac-
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the rate of a site might be modified by a substitution
arising at a distinct site of the molecule, with which it
therefore covaries. Site-specific rate variation, however,
can as well be caused by external factors such as envi-
ronmental changes. In this paper, I refer to ‘‘true cova-
rions’’ when two (several) sites of a sequence are un-
dergoing nonindependent evolution, and I use the term
‘‘site-specific rate variation’’ (SSRV) or ‘‘covarion-like
evolution’’ in the more general case.

There are at least two good reasons for being in-
terested in modeling SSRV. First, it might improve phy-
logenetic reconstructions. Philippe and colleagues have
shown that SSRV is common in genes widely used for
the recovery of deep phylogenies and have and sug-
gested that it induces tree-building biases (Germot and
Philippe 1999; Lopez, Forterre, and Philippe 1999; Phi-
lippe et al. 2000). Second, modeling SSRV should help
to obtain an understanding of the way natural selection
applies at the molecular level. In particular, episodic
adaptive evolution presumably proceeds with frequent
changes of rates at various sites.

Little theoretical work was achieved after Fitch’s
early reports about SSRV until Tuffley and Steel (1998)
proposed an explicit Markov model that resulted in a
distance-based test for detecting SSRV effects (Lockhart
et al. 1998, 2000). In this paper, I introduce a more
general Markov model of site-specific rate variation and
devise a maximum-likelihood implementation of this
model. This method is applied to ribosomal RNA se-
quences to assess the amount of covarion-like evolution
for this kind of data and to check the robustness of pre-
viously reported inferences about the early evolution of
life.

Methods
The Model

Yang (1994) proposed a discrete-Gamma model of
among-site rate variation where the evolutionary rate of
a particular site is one out of an arbitrary finite number
g of possible relative rates (r1, r2, . . . , rg). These pos-
sible relative rates and their probabilities are obtained
by discretizing a Gamma distribution with mean unity;
one can ensure equal probabilities for the ri’s by using
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FIG. 1.—Distribution of rates across sites and lineages under three
models of evolution. Each tree plot describes the distribution of rates
across lineages for a particular site under the considered model. Three
categories of rate are assumed, represented by different line thickness-
es. Under the equal-rates (ER) model, all sites evolve at a constant,
unique, moderate rate. Under the among-site rate variation (ASRV)
model, each site has its own rate (low, moderate, or high), which is
constant between lineages. Under the site-specific rate variation
(SSRV) model, the rate of a site can switch between categories; a site
has distinct rates in distinct lineages.

appropriate cutting points, which was done by Yang and
in this study. The probability distribution of rates across
sites is therefore determined by a single parameter,
namely, the shape parameter a of the Gamma distribu-
tion. Under this model, simulating the evolution of a site
on a given tree using a given Markov process M of
nucleotide substitution involves three steps: (1) random-
ly draw a rate from the discretized Gamma distribution,
(2) randomly draw an ancestral nucleotide state at the
root of the tree, and (3) make this state evolve along the
branches of the tree according to process M and the rate
that was drawn at step 1. A site therefore belongs to a
‘‘category’’ (following Felsenstein’s terminology) which
is fixed during the entire simulation process.

I now generalize Yang’s model by allowing site-
specific rates to vary in time. It is assumed that the rate
of a particular site can switch from one category to an-
other according to a continuous Markov process R. With
rate n, the current evolutionary rate moves to a new
category, obtained by randomly drawing from the dis-
tribution of ri’s. Switches between distant categories of
rates are therefore assumed to be as probable as short-
range changes. The parameter n could be called the
‘‘rate variation rate.’’ It determines the amount of site-
specific rate variation. It is assumed constant over sites
and in time. Note that the process R of rate change is
continuous: switches can occur anywhere in the tree, not
specifically at nodes.

Simulating the evolution of a site under the SSRV
model now involves four steps: (1) randomly draw an
ancestral rate at the root of the tree from the discretized
Gamma distribution; (2) make this rate evolve along the
branches of the tree according to process R, and record
the rate assigned to each segment of the tree (i.e., be-
tween switching points); (3) randomly draw an ancestral
nucleotide state at the root of the tree; and (4) make this
state evolve along the branches of the tree according to
process M and the local rate determined at step 2 (i.e.,
scaling the length of each segment according to its rel-
ative rate). Nucleotide process M is therefore com-
pounded with (i.e., superimposed on) rate process R. R
is time-reversible, making the compound process time-
reversible if M is so. Note that sites are independent and
identically distributed under this model: there is no
‘‘true covariation’’ here. The equal-rates (ER), among-
site rate variation (ASRV), and site-specific rate varia-
tion (SSRV) models are graphically compared in figure
1. SSRV reduces to ASRV when n 5 0 (no change of
rate) and to ER when n tends to infinity (permanent
change of rate results in constant rate).

In the formulation above, the rate of a site can be
reassigned its current category when a switch occurs.
This has no biological relevance: process R is identical
to a process where switches would occur at rate n9 5
n·(g 2 1)/g without self-reassignment. The chosen pa-
rameterization simplifies some of the calculations below.

Maximum-Likelihood Implementation

This section aims at computing the probability of
a particular DNA sequence data set under the SSRV

model given a tree topology, a set of branch lengths
{li}, a time-reversible nucleotide Markov process (or
substitution matrix) M, a Gamma shape parameter a,
and an SSRV rate n.

Felsenstein (1981) introduced likelihood calcula-
tion across trees under the ER model (a 5 `, n 5 0).
Since independent evolution of sites is assumed, the
probability of a data set is the product of the probabil-
ities of observing each site. The probability of a partic-
ular site is computed by conditioning over all possible
nucleotide states at internal nodes of the tree. For ex-
ample, the probability of site (AAG) under ER in the
three-species tree of figure 1 (top left) is

Pr(AAG) 5 Pr(R 5 X ) 3 Pr(X → A/l )O O 0 0 1
X X0 1

3 Pr(X → X /l ) 3 Pr(X → A/l )0 1 2 1 3

3 Pr(X → G/l ), (1)1 4

where R is the nucleotide state at the root node, X0 and
X1 belong to {A, C, G, T}, and Pr(X → Y/l) is the
probability of reaching state Y when evolving from state
X along a branch of length l according to process M.
These transition probabilities are derived from the the-
ory of stochastic processes (e.g., see Yang 1995). With
time-reversible M, the likelihood does not depend on
the location of the root as soon as the probabilities of
nucleotide states at the root are taken from the stationary
distribution of M—the so-called pulley principle (Fel-
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868 Galtier

senstein 1981). Equation (1) can be generalized to any
tree topology using a recurrent formula. Let y be a site;

Pr(y) 5 Pr(R 5 X) 3 Pr(y/R 5 X) (2)O
X

Pr(y/N 5 X) 5 Pr(X → X /l ) 3 Pr(y/N 5 X )O 1 1 1 1
X1

3 Pr(X → X /l ) 3 Pr(y/N 5 X ),O 2 2 2 2
X2

(3)

where R is the nucleotide state at the root node, N is the
state at any internal node, N1 and N2 are the states at
the son nodes of N, and l1 and l2 are the lengths of
branches leading from N to N1 and from N to N2, re-
spectively. The summation for X1 and X2 is over {A, C,
G, T}. Equations (2) and (3) show that the likelihood
of a site under ER can be computed by a single pass on
the tree, in time linear in the number of leaves and in
the square of the number of states (four for nucleotide
sequences).

I now extend this method to the above SSRV mod-
el. The probability of a site can be computed by con-
ditioning on both states and rates at ancestral nodes.
Equations (2) and (3) become

Pr(y) 5 Pr(R 5 X, r 5 r)O O R
X r

3 Pr(y/R 5 X, r 5 r) (4)R

Pr(y/N 5 X, r 5 r) 5 Pr(X → X , r → s/l , n)O ON 1 1
X s1

3 Pr(y/N 5 X , r 5 s)1 1 N1

3 Pr(X → X , r → t/l , n)OO 2 2
X t2

3 Pr(y/N 5 X , r 5 t),2 2 N2 (5)

where rR, rN, are the rates at nodes root, N,r , and rN N1 2

N1, and N2, and the summations for s and t are over the
range {r1, . . . , rg}. Equations (4) and (5) show that
computing the likelihood under the SSRV model with
four states (nucleotides) has the same complexity as
computing the likelihood under equal rates with 4·g
states. The time required is therefore g2 times as great
as that required under the ER model, and g times as
great as that required under the ASRV model (Yang
1994).

Now comes the problem of calculating transition
probabilities in equation (5), namely, the probability of
evolving from rate ri to rate rj and from state X to state
Y during length l under processes R and M. This can
be done following the standards of stochastic process
theory. The combined R 3 M process can be viewed
as a single Markov process Q in which states are defined
as (X, ri) pairs, where X is a nucleotide state and ri is a
rate. There are 4·g possible states. Transitions between
states occur at rate

Q(X, r → Y, r ) 5 r 3 M(X → Y)i i i

(nucleotide change)

Q(X, r → X, r ) 5 n/g (rate changes)i j

Q(X, r → Y, r ) 5 0 (simultaneous changesi j

neglected). (6)

The probability matrix P of final state (Y, rj) given initial
state (X, ri) after evolution according to Q along branch
length l is given by taking the exponent of matrix Q·l
(Yang 1995):

P 5 exp(Q·l). (7)

This approach allows exact calculation of the like-
lihood. It is not optimal, however, for technical purpos-
es, because equation (7) requires numerical diagonaliza-
tion of 4·g 3 4·g matrix Q, which can be time-consum-
ing. This numerical step, moreover, precludes analytical
calculation of the derivatives of the likelihood with re-
spect to parameters of the model, quite useful for like-
lihood maximization. This is especially problematic
when a complex model of nucleotide change is used (e.g.,
see below). I now derive an approximate calculation of the
transition probabilities that does not require any matrix
diagonalization. This is achieved by writing

Pr(X → Y, r → r ) 5 Pr(r → r /l, n)i j i j

3 Pr(X → Y/r , r , l, n). (8)i j

Equation (8) holds because rate changes do not depend
on nucleotide states. The left-hand factor depends only
on the rate process R. From stochastic process theory,
it equals (1 2 exp(2n·l))/g if j ± i, and exp(2n·l) 1
(1 2 exp(2n·l))/g if j 5 i. The right-hand factor is the
probability of evolving from nucleotide state X to nu-
cleotide state Y along branch length l given that the
initial rate was ri and the final rate is rj. This can be
approximated by

Pr(X → Y/r , r , l, n) ø Pr(X → Y/l · r̄ (l, n)), (9)i j ij

where r̄ij(l, n) is the mean of the relative rate across its
evolution along a branch of length l at rate n given the
initial and final rates ri and rj. Equation (9) is an ap-
proximation because the nucleotide process is assumed
to apply along the average net branch length, rather than
to be integrated over the distribution of the net length
(where the net length of a branch is the length obtained
after every segment has been scaled according to its
rate). The conditional average rate is

2l·n(a 1 b ·l ·n) ·e 1 l ·n 2 a
r̄ (l, n) 5 , (10)ij 2l·nl ·n · [1 1 (c 2 1)·e ]

where a 5 2·(1 2 ri), b 5 1 1 (g 2 2)·ri, and c 5 g
if j 5 i, and where a 5 2 2 ri 2 rj, b 5 1 2 ri 2 rj,
and c 5 0 if j ± i. The derivation of equation (10) is
given in the appendix. The approximation was found to
be quite good when applied to the data sets used in this
study. The approximate transition probabilities can be
differentiated analytically, allowing the use of efficient
maximization algorithms.
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Unequal SSRV Rates Among Sites

A constant rate of rate change n is assumed in the
above SSRV model, which might be unrealistic. It is
likely that for many proteins or RNAs the rate of some
sites remains more or less constant for long periods,
while other sites switch more often. Some sites might
remain critical for the function of the macromolecule
and evolve at a slow rate in all of the branches of the
tree as a consequence of strong purifying selection pres-
sure. Some may escape any selective pressure and
evolve at a (fast) neutral rate in the long run. Other sites,
involved in episodic adaptive events, might recurrently
switch between a slow and a fast rate, in agreement with
the above-described SSRV process. I now generalize the
SSRV model to account for this possibility. It is as-
sumed that a proportion p of the sites evolve according
to SSRV (with SSRV rate n), while the remaining sites
evolve according to ASRV (with SSRV rate 0). This
general model is called unequal site-specific rate varia-
tion (USSRV).

The probability of site y under USSRV is given by

Pr (y) 5 p·Pr (y) 1 (1 2 p)·Pr (y),USSRV SSRV ASRV (11)

where PrSSRV(y) is given by equations (4) and (5) and
PrASRV(y) is obtained by setting n 5 0 in equations (4)
and (5) (or see Yang 1994). The USSRV model ac-
knowledges g 1 1 categories of sites: sites with constant
rate r1 (proportion [1 2 p]/g), sites with constant rate
r2 (proportion [1 2 p]/g), . . . , sites with constant rate
rg (proportion [1 2 p]/g), and sites with variable rates
(proportion p). The likelihood of a site under USSRV
is computed by averaging likelihoods conditional on that
site belonging to every category. USSRV reduces to
SSRV when p 5 1 and to ASRV when p 5 0.

The approximate likelihood is maximized using the
Newton-Raphson method. Then, the exact calculation is
performed using the near-optimal parameter values
sought in the previous step. Finally, the exact likelihood
is maximized using the downhill-simplex method. These
algorithms are available as part of the NHML package
(ftp://pbil.univ-lyon1.fr/pub/molpphylogeny).

Data Analysis

Ribosomal RNA (rRNA) sequences are widely
used for reconstructing ancient evolutionary events. Re-
cently, an improved model of nucleotide substitutions
was applied to data from Eukaryotes, Bacteria, and Ar-
chaea for the purpose of estimating ancestral rRNA base
compositions (Galtier, Tourasse, and Gouy 1999). This
model, however, did not allow for site-specific rate var-
iation. In this section, I investigate the importance of
SSRV effects in rRNA evolution. The relevance of the
above-mentioned study is checked in the light of the
SSRV model. Ribosomal RNA data are also used to
examine the influence of the number of taxa on SSRV
estimation.

Two data sets, each including 40 species (10 Ar-
chaea, 17 Bacteria or chloroplasts, and 13 Eukaryotes),
were used: small-subunit (SSU) rRNA (695 unambigu-
ously aligned, complete sites) and large-subunit (LSU)

rRNA (1,409 sites). Applying a nonhomogeneous, non-
stationary model of nucleotide substitution (Galtier and
Gouy 1998) to these data, Galtier, Tourasse, and Gouy
(1999) estimated the G1C content of the most recent
common ancestor (MRCA) to extant life forms. They
found that the moderate estimated G1C content (56.1%
6 5% for SSU, 54.0% 6 2.5% for LSU) is not com-
patible with life at very high temperatures: high ribo-
somal G1C content is a necessary condition for survival
of present-day species in hot environments (Galtier and
Lobry 1997). This result therefore questions the hypoth-
esis of a thermophilic common ancestor (e.g., see Woese
1987; Forterre 1996).

Galtier, Tourasse, and Gouy (1999) assumed a
Gamma distribution of rates among sites. I conducted
the analysis again under the more general SSRV and
USSRV models, allowing covarion-like effects. This in-
volved combining the above piece of theory with Galtier
and Gouy’s (1998) nonhomogeneous model of DNA
evolution. The latter allows G1C content to vary in time
and between lineages. The combined model accounts for
unequal transition/transversion ratio, variable G1C con-
tent between lineages, variable rates among sites and,
site-specific rate changes. The assumed Gamma distri-
bution was discretized in g 5 4 equally probable classes
of rates. Table 1 displays the log likelihoods and the
details of parameter estimates for four models of rate
variation, namely, ER, ASRV, SSRV, and USSRV (as-
sumed tree topology: fig. 1 of Galtier, Tourasse, and
Gouy 1999).

This analysis suggests that site-specific changes of
evolutionary rates (i.e., covarion-like evolution) is a ma-
jor feature of rRNA evolution. Allowing site-specific
rate changes resulted in a vast increase in log likelihood
(ln LSSRV 2 ln LASRV 5 105.1 for SSU, 230.2 for LSU).
Allowing unequal n among sites (USSRV) also signifi-
cantly improved the fit (23.6 more log likelihood units
for SSU, 37.7 for LSU). The difference in log likelihood
was highly significant according to likelihood ratio tests.
The estimated proportion p of sites undergoing rate
changes under USSRV was remarkably high. Although
the increase of log likelihood was lower than than be-
tween ER and ASRV, accounting for site-specific chang-
es of rates seemed to significantly improve our repre-
sentation of rRNA evolution.

Allowing covarion-like evolution made a differ-
ence with respect to the estimation of parameters of the
evolutionary model. Although the general shape of the
tree was unchanged (data not shown), branches were
slightly longer under (U)SSRV than under ASRV (total
tree length was increased by roughly 10%). This sug-
gests that some saturation might be overlooked when
site-specific rate variation exists and is not taken into
account. The transition/transversion ratio k was also
higher when estimated under (U)SSRV. Again, this is
reminiscent of the previously reported (and confirmed
here) underestimate of k when among-site rate variation
is not accounted for (e.g., Wakeley 1996). Underesti-
mating k is a consequence of overlooking multiple sub-
stitutions, since transitions saturate more quickly than
transversions. The shape parameter a of the Gamma dis-
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Table 1
Likelihood Analysis of Two 40-Species rRNA Data Sets Under Four Models of Site-Specific Rate Distribution

SSU

ER ARSVa SSRV USSRV

LSU

ER ASRVa SSRV USSRV

No. of parameters . . .
Log likelihood . . . . . .

158
210,380.4

159
29,762.6

160
29,657.5

161
29,633.9

158
221,488.3

159
220,302.6

160
220,072.4

161
220,034.7

k . . . . . . . . . . . . . . . . .
a . . . . . . . . . . . . . . . . .
n . . . . . . . . . . . . . . . . .
p . . . . . . . . . . . . . . . . .
Total tree length. . . . .
GC (%). . . . . . . . . . . .

2.70
—
—
—

3.257
59.8

3.22
0.603

—
—

4.448
56.1

3.57
0.279
1.118

—
4.804
55.7

3.86
0.113
6.864
0.639
5.208
55.4

2.52
—
—
—

3.211
55.7

2.81
0.650

—
—

3.825
53.8

3.07
0.247
1.825

—
4.142
53.0

3.18
0.120
6.337
0.689
4.334
53.6

NOTE.—SSU 5 small-subunit rRNA data set; LSU 5 large-subunit rRNA data set; ER 5 equal-rates model; ASRV 5 among-site rate variation model; SSRV
5 site-specific rate variation model; USSRV 5 unequal site-specific rate variation model; k 5 transition/transversion ratio; a 5 Gamma shape; n 5 SSRV rate; p
5 proportion of SSRV sites; GC 5 ancestral G1C-content.

a The small differences between these results and those of Galtier, Tourasse, and Gouy (1999) are a consequence of a difference in the number of classes of the
discretized Gamma distribution (eight in the above reference, four in this analysis).

Table 2
Influence of the Number of Analyzed Sequences on Site-Specific Rate Variation Detection and Parameter Estimates

NO. OF

SPECIES

ASRV

a

SSRV

a n Dln L

USSRV

a n p Dln L

40 . . . . . .
20 . . . . . .

10 . . . . . .

5 . . . . . .

0.65
0.68a

(0.66, 0.70)a

0.75
(0.64, 0.85)

0.82
(0.74, 0.98)

0.25
0.29

(0.25, 0.31)
0.39

(0.32, 0.46)
0.74

(0.43, 0.98)

1.83
1.70

(1.52, 1.99)
1.47

(1.22, 1.84)
0.36

(0.0, 1.52)

229.9
72.4

(64.3, 77.3)
11.9

(7.1, 15.3)
0.3

(0.0, 1.5)

0.12
0.14

(0.06, 0.25)
0.29

(0.05, 0.39)
0.69

(0.49, 0.96)

6.34
6.81

(3.99, 9.05)
4.70

(1.38, 10.0)
110.5

(0.0, 551.4)

0.69
0.68

(0.65, 0.70)
0.70

(0.61, 0.91)
0.27

(0.0, 0.97)

41.2
12.7

(4.2, 20.3)
2.0

(0.0, 6.6)
0.0

(0.0, 0.0)

NOTE.—ASRV 5 among-site rate variation model; SSRV 5 site-specific rate variation model; USSRV 5 unequal site-specific rate variation model; Dln L 5
increase in log likelihood obtained by adding parameters n (SSRV) and p (USSRV).

a Mean and (minimal, maximal) estimates out of five data sets.

tribution is the most sensitive to covarion-like effects. It
is dramatically decreased when site-specific rate varia-
tion is allowed—remember that a decrease in a means
a higher variance of rates across categories. This is pre-
sumably because the mean evolutionary rate of a rate-
changing site is not extreme: fast and slow periods av-
erage in the long run. These sites are ‘‘seen’’ as mod-
erately fast when considered from the point of view of
ASRV, while they are actually a mixture of slow and
fast rates. The variance of the overall distribution of
rates is therefore underestimated.

The use of a nonhomogeneous, nonstationary mod-
el of evolution allows one to estimate ancestral base
compositions. The SSRV and USSRV estimates of the
MRCA’s rRNA G1C content are very close to (and even
slightly lower than) the ASRV estimate. Galtier, Tour-
asse, and Gouy’s (1999) result is therefore confirmed
when site-specific rate variation is taken into account.
Their claim of a nonhyperthermophilic common ances-
tor did not result from a biased analysis—as far as cov-
arion-like effects are concerned.

LSU rRNA data were used to assess the sensitivity
of SSRV detection to the number of analyzed sequences.
Fifteen subsets of sequences including 20, 10, or 5 spe-
cies (5 of each category) were randomly drawn from the
total of 40 sequences, making sure that four domains
(namely, Eukaryotes, Bacteria, Euryarchaea, and Cren-
archaea) were represented in proportions roughly iden-

tical to those of the total data set. Each subset was an-
alyzed using ASRV, SSRV, and USSRV. Results are
shown in table 2 (the approximate likelihood calculation
was used here). For all three models, the estimated var-
iance of rate across sites was decreased (parameter a
increases) when the number of species decreased, as pre-
viously reported (e.g., Tourasse and Gouy 1997). A sim-
ilar effect was found for parameters n and p. Twenty-
species data sets were quite consistent with the total 40-
species data set but 10- and 5-species data sets contained
little information with respect to site-specific rate vari-
ation, as indicated by the small difference in log like-
lihood between models and the high variance of param-
eter estimates. With 10 species, a significant increase in
log likelihood was found when moving from the ASRV
to the SSRV model, but not when moving from SSRV
to USSRV (excepting one data set out of five). With five
species, no (U)SSRV effect was detected. This again
underlines the importance of species sampling in mo-
lecular phylogeny and evolution studies. There is little
hope of detecting any SSRV effect using fewer than 20
or 30 sequences.

Discussion

The SSRV and USSRV models introduced in this
paper are more general than Fitch and Markowitz’s
(1970) original description of the so-called ‘‘covarion’’
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process, recently formalized by Tuffley and Steel (1998).
In the original model, sites can be either ‘‘on’’ or ‘‘off’’:
there are two classes of rates, one of which is rate 0. A
common rate of switch between the two categories is
assumed for all sites. The proposed SSRV model allows
an arbitrary number of classes but involves the addi-
tional assumption of discrete-Gamma distribution (i.e.,
constraints on the relative rates of distinct categories).
The advantages of (discrete-)Gamma versus discrete rate
class models are discussed by Yang (1996) in the con-
text of among-site rate variation. Discrete-Gamma mod-
els provide a good fit to many data sets at the cost of
few, easily interpretable parameters. Yang’s arguments
presumably also apply to SSRV. The USSRV model is
original in allowing a proportion of sites not to experi-
ence rate changes, relaxing a dubious assumption of Tuf-
fley and Steel’s (1998) and SSRV models. It is quite
unlikely that every site of a molecule undergoes rate
changes at a common rate.

A maximum-likelihood implementation was
achieved by making use of the properties of the com-
pound process of rate and nucleotide changes. A desir-
able property of the SSRV and USSRV models in the
likelihood framework is their generalization of the wide-
ly used ER and ASRV models. (U)SSRV reduces to
ASRV when n 5 0 and/or p 5 0, and to ER when a
or n tends to infinity. This means that the parameters
are easily interpretable. They directly measure the im-
portance of site-specific rate variation and can be com-
pared between data sets. Furthermore, the nested rela-
tionship between the four models allows relevant com-
parisons of likelihoods and election of the most appro-
priate model through likelihood ratio tests.

The new models revealed a significant amount of
site-specific rate variation when applied to ribosomal
RNA data. This analysis suggested that neglecting
SSRV when it exists has at least two important conse-
quences. First, the variance of the distribution of rates
among sites is underestimated (Gamma shape parameter
overestimated). Second, correction of multiple substi-
tutions is less efficient (total tree length and transition/
transversion ratio underestimated). The two effects pre-
sumably result from a unique cause: highly switching
sites have a moderate average rate in the long run. Said
simply, these sites are considered moderately fast when
analyzed under ASRV, so the number of multiple sub-
stitutions they experience during fast-rate episodes is
underestimated. The ability of (U)SSRV models to de-
tect some saturation that is hidden to ASRV suggests
that these models might improve phylogenetic recon-
structions. Lockhart et al. (1998) feel the same: they
argue that the internal edge that separates plastid and
cyanobacterial 16S rRNA sequences is mainly the con-
sequence of overlooked covarion effects. The large
number of taxa required to properly account for SSRV
effects and the resulting extensive running time preclude
any attempt to search the tree space with reasonable ef-
ficiency, however. If these models have to be used for
phylogenetic purposes, it should be in the context of
evaluating a small number of competing topologies pre-
viously sought using faster algorithms.

Another promising application field is the study of
protein adaptation. An important and popular goal of
molecular evolution is the detection of positive selection
at the sequence level. Classically, this was achieved by
comparing nonsynonymous (Ka) and synonymous (Ks)
rates of evolution (e.g., Hughes and Nei 1988). Positive
selection was invoked when Ka was higher than Ks,
which was found for a very small fraction of proteins
(Endo, Ikeo, and Gojobori 1996). This approach, how-
ever, is limited by averaging of nonsynonymous and
synonymous rates over all sites. It would not detect pos-
itive selection acting on a few sites. Yang et al. (2000)
improved this strategy by applying the ASRV model,
therefore separating rather than averaging fast and slow
nonsynonymous rates across sites. Yang et al. (2000)
found that a larger number of proteins than expected
included sites evolving according to a positive-selection-
like process. Following their comment, I argue that the
importance of positive selection might still be underes-
timated when data are analyzed under ASRV. This is
because the nonsynonymous/synonymous rate of each
site is averaged over the whole tree. ASRV cannot detect
short episodes of positive selection involving sites
which are constrained (i.e., slow) in other parts of the
tree. It is quite likely, however, that protein adaptation
involves short adaptive episodes, followed by stasis
when a new local optimum of fitness has been reached.
Yang, Swanson, and Vacquier (2000) dealt with this
problem by allowing a distinct Ka/Ks ratio (their v pa-
rameter) in each branch of the tree. This was done at
the cost of a large number of additional parameters and
of again averaging Ka/Ks over sites.

SSRV models might be the right approach to ac-
count for episodic evolution of proteins. Both lineage
and site effects are automatically separated at the cost
of only one or two parameters. Perspectives of this work
therefore include generalization to codon-based models
of evolution and the use of data analysis tools for char-
acterizing those sites and lineages involved in positive
selection in the context of (U)SSRV models.
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APPENDIX

Derivation of the Average Relative Rate r̄ij Along a
Branch of Length l Conditional on Initial Rate ri
and Final Rate rj

With rate n, the relative rate changes from its cur-
rent category to any of the g possible categories with
equal probabilities. The mean rate along a pathway of
length l starting from ri and ending with rj is computed
by conditioning on the number of changes C:

`

r̄ 5 r(C 5 k) 3 Pr(C 5 k/r , r , l, n), (A1)Oij i j
k50

where rij(C 5 k) is the mean relative rate given initial
and final rates ri and rj, respectively, and given that k
changes occurred. First, consider the i ± j case. Since
changes are equiprobable, the mean rate conditional on
k . 0 changes is

r 1 r 1 k 2 1i j
r(C 5 k) 5 . (A2)

k 1 1

Equation (A2) holds because k changes cut the branch
into k 1 1 intervals, the first and last of which have
rates ri and rj, respectively, with the remaining k 2 1
having average rate 1 since they are randomly sampled
from a distribution of mean 1 (remember that reassign-
ment of current rate is allowed).

The probability that k changes occurred given ri

and rj ± ri is 0 for k 5 0 and

Pr(C 5 k, r /r , l, n)j i
Pr(C 5 k/r , r , l, n) 5 (A3)i j Pr(r /r , l, n)j i

for k ± 0. These probabilities can be computed by not-
ing that (1) the probability of k changes irrespective of
initial and final states is (l·n)k·exp(2l·n)/k! (changes oc-
cur according to a Poisson process with rate l·n), and
(2) all g possible final states are equiprobable given that
at least one change occurred. The numerator and denom-
inator in equation (A3) are therefore
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k 2l·n(l ·n) ·e
Pr(C 5 k/r , r , l, n) 5 (A4)i j g ·k!

` m 2l·n(l ·n) ·e
Pr(r /r , l, n) 5 Oj i g ·m!m51

l·n1 2 e
5 . (A5)

g

The ratio (A4)/(A5) simplifies to

k(l ·n)
Pr(C 5 k/r , r , l, n) 5 . (A6)i j l·n(e 2 1)·k!

Substituting equations (A2) and (A6) into equation (A1)
and summing (noting that the term corresponding to k
5 0 in equation (A1) is 0 when i ± j) results in equation
(10). Similar reasoning can be used when j 5 i.
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