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Maximum Likelihood PSD Estimation for Speech

Enhancement in Reverberation and Noise
Adam Kuklasiński, Student Member, IEEE, Simon Doclo, Senior Member, IEEE,

Søren H. Jensen, Senior Member, IEEE, and Jesper Jensen

Abstract—In this contribution we focus on the problem of
power spectral density (PSD) estimation from multiple micro-
phone signals in reverberant and noisy environments. The PSD
estimation method proposed in this paper is based on the
maximum likelihood (ML) methodology. In particular, we derive
a novel ML PSD estimation scheme that is suitable for sound
scenes which besides speech and reverberation consist of an
additional noise component whose second-order statistics are
known. The proposed algorithm is shown to outperform an
existing similar algorithm in terms of PSD estimation accuracy.
Moreover, it is shown numerically that the mean squared esti-
mation error achieved by the proposed method is near the limit
set by the corresponding Cramér-Rao lower bound. The speech
dereverberation performance of a multi-channel Wiener filter
(MWF) based on the proposed PSD estimators is measured using
several instrumental measures and is shown to be higher than
when the competing estimator is used. Moreover, we perform a
speech intelligibility test where we demonstrate that both the
proposed and the competing PSD estimators lead to similar
intelligibility improvements.

Index Terms—PSD estimation, maximum likelihood estimation,
Cramér-Rao lower bound, reverberation, microphone array.

I. INTRODUCTION

REVERBERATION and additive noise can lower the

perceived quality and hinder the intelligibility of speech.

This is particularly a problem in speech communication

scenarios where the microphones of the receiving/recording

device are at a distance from the speaker, e.g. as in hands-free

telephony or in hearing aids. Clearly, noise and reverberation

reduction algorithms are of practical interest.

In the literature many types of processing algorithms have

been proposed for dereverberation and/or noise reduction in
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speech signals. Because in most scenarios both noise and

reverberation are present, we focus on algorithms that can

be used to jointly reduce these two types of interference (as

opposed to only one of them). Moreover, we specifically

focus on reduction of the late reverberation because it is

believed to be particularly detrimental for speech intelligibility

[3]. Following [4], speech dereverberation algorithms can be

broadly divided into spectral enhancement, spatial processing,

and system identification/inversion algorithms. The latter class

of algorithms is generally more appropriate for dereverberation

than for noise reduction (with some exceptions, e.g.: [5], [6])

and is generally used for equalization of the deterministic

part of the impulse responses, rather than their stochastic

(i.e. predominately late) part. On the other hand, the first

two classes of algorithms (spectral enhancement and spatial

processing) are well suited for noise reduction [7] and for

late reverberation reduction [4]. Hence, we focus on these two

types of algorithms.

Most spectral enhancement algorithms are implemented

in the spectro-temporal domain and are usually based on

an a priori statistical model of the signal components (for

overviews see [7]–[9]). For example, in many noise reduction

algorithms the noise power is estimated only in some spectro-

temporal regions (e.g. when the signal is dominated by the

noise) and is assumed to be approximately stationary between

them. Speech dereverberation algorithms are mostly targeted at

suppression of the late reverberation, which is often modeled

as exponentially decaying and additive (e.g. [10], [11]). These

and similar statistical models are used to estimate the signal-to-

interference ratio in individual spectro-temporal regions, which

are processed accordingly using e.g. the spectral subtraction

rule or the Wiener filter [10], [11].

Spatial processing algorithms, or beamformers, work by

combining the signals of an array of microphones such that

it is sensitive to sounds impinging from a specific direction

while suppressing sounds from other directions. Obviously,

beamformers are only effective in scenarios where the interfer-

ence (noise and/or reverberation) impinges on the microphone

array from different directions than the target speech.

Spectral enhancement and beamforming algorithms are of-

ten combined to create a two-step algorithm where the beam-

former is followed by a single channel spectral enhancement

scheme (in this context referred to as the post-filter). Among

the first methods of this type proposed for speech derever-

beration and noise reduction were [12], [13], both composed

of a delay-and-sum beamformer and a coherence-based post-

filter. The beamformers and post-filters in algorithms proposed
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more recently are generally based on some optimality criteria,

most notably the linear minimum mean square error (MMSE)

resulting in the multi-channel Wiener filter (MWF) [14],

[15]. The MWF depends on the inter-microphone covariance

matrices of the desired (target speech) and of the interference

(noise and late reverberation) components of the input signal.

These matrices are usually not known but in some scenarios

their structure can be modeled such that only few parameters

remain to be estimated. In this paper we employ a set of

assumptions that result in a signal covariance model where

only the power spectral densities (PSDs) of the target speech

and of the late reverberation need to be estimated.

Several methods exist for estimating the speech and the late

reverberation PSDs in the considered setup. Estimators oper-

ating on a single microphone signal are generally considered

inferior to PSD estimators using multiple microphones [16].

In the past, multi-microphone estimators based on the inter-

microphone coherence have been proposed [12], [13]. These

estimators generally are based on the assumption that the late

reverberation is uncorrelated between microphones (invalid

e.g. for low frequencies and finite inter-microphone distance).

More recently, estimators based on optimality criteria have

been proposed, e.g. by Braun and Habets [17], and by the

authors of this study [18]. Both these estimators are based on

the maximum likelihood (ML) methodology, and have been

compared with respect to the estimation accuracy in [1]. For

the special case where the signals are composed of only speech

and reverberation, the estimator from [18] has been found

to yield superior statistical performance compared with the

estimator from [17]. In fact, in [16] it was argued that the

estimator used in [18] is optimal in the minimum variance

unbiased (MVU) sense.

A disadvantage of the estimator in [18] compared to the

estimator in [17] is that the former does not take the additive

noise into account. On the other hand, the estimator in [17]

is derived using an unrealistic statistical assumption which

results in its decreased estimation performance [1]. In this

contribution we propose a scheme which avoids both these

limitations. Specifically, we propose a novel multi-microphone

PSD estimator which is ML-optimal and generalizes the

method from [18] to signal models including a target signal

contaminated by late reverberation and additive noise.

This paper is structured as follows. Section II presents

the signal model and discusses the employed statistical

assumptions. In Section III the proposed estimator is derived

and several practically relevant special cases are presented

for which the estimator is particularly simple. In Section IV a

detailed experimental evaluation is performed and the statisti-

cal performance of the proposed estimator is compared to the

estimator from [17]. It is also shown, that the mean squared

error of the proposed PSD estimator is close to the lowest

possible for unbiased estimators, as set by the Cramér-Rao

lower bound (CRLB). In Section V the speech dereverberation

performance of an MWF based on the two compared PSD

estimation methods is evaluated in terms of: the frequency-

weighted segmental signal-to-noise ratio (FWSegSNR)

[19], the perceptual evaluation of speech quality (PESQ)

[20] measure, two interference attenuation, and one speech

distortion measure [21], [22]. Lastly, in Section VI, the two

variants of the MWF are evaluated in a speech intelligibility

(SI) test with human subjects. Section VII concludes the paper.

II. SIGNAL MODEL AND STATISTICAL ASSUMPTIONS

Consider an array of M microphones in a reverberant

room where a single talker is active. Speech generated by

the talker reaches the microphones not only via the direct

propagation path, but also via multiple reflections off the walls

and other surfaces in the room. In most practical situations the

microphone signals are further disrupted by the microphone

self-noise and by other additive noise sources.

For a particular arrangement of a sound source and a sound

receiver, acoustic properties of a room can be compactly

expressed in terms of a room impulse response (RIR). We

adopt an often-made assumption that RIRs are composed

of three distinct parts: the direct path response, the early

reflections, and the late reverberation. The direct and early

components of reverberant speech are generally considered

advantageous for speech intelligibility [3]; hence, we refer to

their sum as the target signal. In specific scenarios it might

not be desirable or practical to include all early reflections

(conventionally the first 50 ms of the RIR) in the target signal

model. For this reason we define the target signal as the direct

path speech plus those of its early reflections whose delay

relative to the direct path is less than a certain threshold ts.

The remaining early reflections are not accounted for in the

signal model. All other components of the signal, i.e. the late

reverberation, the microphone self-noise, and other additive

noise types, are all considered an interference because of their

detrimental effect on speech quality and intelligibility.

Let ym(t) denote the time-domain signal of the m-th

microphone of the array (m = 1, . . . ,M ), where t is a discrete

time index. Due to the wide-band and non-stationary nature

of the speech, it is often convenient to implement speech

processing algorithms in the spectro-temporal domain. Thus,

we express ym(t) as its short time Fourier transform (STFT)

given by:

ym(k, n) =
T−1∑

t=0

ym(t+ nD)w(t)e−2πik t

T ,

where k is the frequency bin index, n is the time frame index,

the STFT length is denoted by T , the filterbank decimation

factor is denoted by D, and w(t) is the analysis window

function. For notational conciseness we stack the STFT co-

efficients corresponding to all of the microphones in a vector

y(k, n) = [ y1(k, n) . . . yM (k, n) ]T . Furthermore, we assume

that y(k, n) is a sum of three components:

y(k, n) = s(k, n) + r(k, n) + x(k, n), (1)

where s(k, n) corresponds to the target signal, r(k, n) corre-

sponds to the late reverberation, and x(k, n) is the additive

noise component (i.e. sum of the microphone self-noise,

ambient noise, and possibly other additive interferences).

We assume that y(k, n) is uncorrelated across frequency

bins, which allows us to omit the frequency bin index k in
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the subsequent presentation. All processing is performed in-

dependently in all frequency bins. Moreover, for mathematical

tractability, we assume that y(n) is uncorrelated across time

frames. In other words, we neglect the influence of any existing

overlap between the time frames and any autocorrelation the

microphone signals may exhibit for delays larger than the

STFT length. Because reverberant speech signals are autocor-

related and the time frames do overlap, this assumption is, at

best, only approximately valid. Nevertheless, it is employed

in many speech processing algorithms (e.g. [10], [17], [23])

and the general success of these methods reflects that it is a

useful working assumption.

Because the additive noise is generated by physical pro-

cesses independent of the speech, we assume that x(n) is

uncorrelated with s(n) and r(n). Moreover, we assume that

the late reverberation r(n) is uncorrelated with the target

signal s(n). This is an often used assumption (e.g. [10], [11],

[17]), which can be justified by the fact that the late part

of RIRs is disturbed by thermal fluctuations of the air [24]

and slight movements of the source and the microphone array

[25] which are unavoidable in practical scenarios. Moreover, in

applications where the STFT length has to be very short (such

as in hearing aids), in any time frame the reverberation can

be argued to be correlated mostly with the speech component

of the preceding time frames, but not of the current one.

The covariance matrix of y(n) is defined as:

Φy(n) = E[y(n)yH(n)], (2)

where E[·] denotes the expectation operator and (·)H is the

Hermitian transpose. Each of the diagonal elements of Φy(n)
is equal (up to a normalization constant) to the power spectral

density (PSD) of the respective microphone signal in the

particular frequency bin. Similarly, off-diagonal elements of

Φy(n) correspond to the cross-PSDs between the respective

microphones. Hence, we refer to Φy(n) as the cross-PSD

matrix of y(n). Because we assume that the signal components

are uncorrelated, Φy(n) can be decomposed into a sum

of cross-PSD matrices of the individual signal components.

Hence:

Φy(n) = Φs(n) +Φr(n) +Φx(n), (3)

where Φs(n), Φr(n), and Φx(n) denote the cross-PSD ma-

trices of s(n), r(n), and x(n), respectively.

We assume that the STFT coefficients of the microphone

signal and its individual components are circularly-symmetric

complex Gaussian distributed, e.g: y(n) ∼ NC(0,Φy(n)).
While it is known that the STFT coefficients, particularly of

the speech component, are more accurately modeled using

super-Gaussian distributions (see e.g. [26]–[28]), the resulting

estimators tend to become significantly more complicated (see

e.g. [22]). Thus, the Gaussian assumption appears to be a good

tradeoff between accuracy and mathematical tractability.

We model the talker as a single point-source. The direct

path and the early reflections can be modeled as linear filters

acting on the speech emitted by the talker. In effect, the target

signal received by any of the microphones is a linearly filtered

version of the target signal anywhere else in the room. In

order to use this property, we select a certain reference position

(conventionally one of the microphones) and denote the STFT

of the target signal at that position by s(n) (a scalar). Next, we

let d denote a vector of relative transfer functions (RTFs) [29]

of the target signal from the chosen reference position to all

of the microphones (evaluated at the center frequency of the

current frequency bin). For d to represent the RTFs accurately,

the early reflection threshold ts must be shorter than the STFT

length. Using the above definitions, we can write:

s(n) = s(n)d. (4)

We assume that an estimate of d is available (e.g. because the

application at hand allows its accurate off-line estimation, or,

alternatively, by use of an on-line estimation scheme such as

[30], [31]). Using (4) in the definition of Φs(n) results in:

Φs(n) = E[s(n)sH(n)] = φs(n)dd
H . (5)

It follows that the matrix Φs(n) is rank-one and constant up

to a scaling factor φs(n), which denotes the time-varying PSD

of the target speech at the reference position.

The late reverberation cross-PSD matrix may be written as:

Φr(n) = φr(n)Γr, (6)

where φr(n) denotes the time-varying (scalar) PSD of the late

reverberation at the reference position and Γr is the cross-

PSD matrix of the late reverberation normalized by φr(n). The

proposed method is based on the assumption that Γr is full-

rank and known, or, equivalently, that the spatial distribution

of the late reverberation is known. Drawing from statistical

models employed in theoretical room acoustics (see e.g. [32])

we assume that all directions contribute equally to the late

reverberant sound field, i.e. that this sound field is isotropic.

In consequence, Γr can be measured a priori as it does not

depend on the position or orientation of the microphone array

within the room. For free-field microphone arrays, Γr can even

be calculated analytically using information on the microphone

array geometry [33], [34]. For other microphone arrays, Γr

has to be measured or modeled numerically. In many rooms,

the floor and the ceiling are the most acoustically damped

surfaces. In effect, the vertical component of the reverberant

sound field is damped more than its horizontal components.

In such rooms the reverberation is more accurately modeled

as cylindrically, rather than spherically isotropic.

We assume that the third component of the signal model,

x(n), is related to an additive noise whose statistics are

varying slowly—a realistic assumption if x(n) is used to

model the sum of the noise generated by the microphones

and by other sources: ambiance, ventilation equipment, car

or airplane cabin noise, etc. As a consequence, the cross-PSD

matrix Φx can be assumed approximately constant across short

spans of time (hence, we omit index n). We assume that Φx

is known or that a reliable estimate thereof is available. In

practice, an estimation scheme such as the multi-microphone

speech probability estimator proposed in [35] could be used to

periodically update Φx during time-frequency regions where

speech and late reverberation levels are low compared to that

of the noise (e.g. between speech utterances).

Using (5) and (6), the overall model for the microphone
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input cross-PSD matrix can be re-written as (cf. (3)):

Φy(n) = φs(n)dd
H + φr(n)Γr +Φx. (7)

In this model only the scalar PSDs φs(n) and φr(n) are

unknown; their estimation and application to speech derever-

beration is the focus of this paper. To facilitate the derivation of

the proposed estimators, we assume that φs(n) and φr(n) can

be considered approximately constant across a certain number

L of consecutive time frames of the STFT. For small L, such

that L frames span less than 50 ms, this is analogous to the

commonly made assumption of short-time speech stationarity.

The proposed PSD estimation method is intended for rever-

berant and noisy speech signals, and the employed assump-

tions are motivated by this application. However, the proposed

algorithm is equally useful for other types of signals, provided

that the assumptions made are satisfied, i.e. that the signals are

approximately Gaussian and that their cross-PSD matrix can

be modeled using (7).

III. DERIVATION OF THE PROPOSED PSD ESTIMATORS

In this section we derive the proposed maximum likelihood

estimators (MLEs) of φs(n) and φr(n). We begin by formu-

lating a probability density function (PDF) of the input signal

y(n), which we subsequently use to define a joint likelihood

function of φs(n) and φr(n).
Due to the assumptions outlined in Section II, the input

signal vectors y(n) in any L consecutive time frames can

be considered approximately independent and identically dis-

tributed. It follows, that the joint PDF of the signal in these

L time frames can be calculated as the product of the PDFs

of y(n) in individual time frames. Denoting the sample cross-

PSD matrix of the input signal as:

Φ̂y(n) =
1

L

L−1∑

l=0

y(n− l)yH(n− l), (8)

we can compactly express the joint complex Gaussian PDF of

y(n) in L consecutive time frames as:

f =
1

πLM |Φy(n)|L
exp

[
−L tr

(
Φ̂y(n)Φ

−1
y (n)

)]
. (9)

This joint PDF depends on φs and φr (through Φy(n), cf.

(7)), which are regarded as deterministic but unknown.

The required joint likelihood function is obtained by in-

terpreting the joint PDF (9) as a function of φs and φr.

For mathematical convenience we will be operating on its

natural logarithm L = log(f). Omitting one non-essential term

(−ML log(π)), this log-likelihood L can be written as:

L(φs, φr) = −L log |Φy(n)| − L tr
[
Φ̂y(n)Φ

−1
y (n)

]
, (10)

where tr[·] denotes the matrix trace operator. The MLEs of

φs(n) and φr(n) are defined as the coordinates of the global

maximum of L(φs, φr) and can be found by solving a two-

dimensional optimization problem:
(
φ̂s,ML(n), φ̂r,ML(n)

)
= arg max

φs, φr

L(φs, φr), (11)

where φ̂s,ML(n) and φ̂r,ML(n) denote the MLEs of φs(n) and

φr(n), respectively.

A. Estimator of the target speech PSD

As shown in [36], the MLE of φs(n) can be analytically

found by maximizing the likelihood function (10) conditioned

on φ̂r,ML(n), i.e. by solving a one-dimensional optimization

problem (cf. (11)):

φ̂s,ML(n) = argmax
φs

L(φs; φ̂r,ML).

Let Φ̂v(n) = φ̂r,ML(n)Γr + Φx denote the MLE of the

cross-PSD matrix of the total interference. Then, the MLE

φ̂s,ML(n) can be written as [36, Appendix B]:

φ̂s,ML(n) = wH
MVDR(n)

[
Φ̂y(n)− Φ̂v(n)

]
wMVDR(n), (12)

where

wMVDR(n) =
Φ̂−1

v (n)d

dHΦ̂−1
v (n)d

(13)

is the weight vector of a minimum variance distortionless re-

sponse (MVDR) beamformer [37]. The MLE (12) is a function

of (is conditioned on) φ̂r,ML(n) and can be interpreted as

the difference between the estimates of the total PSD and the

interference PSD at the output of the MVDR beamformer.

B. Estimator of the late reverberation PSD

Because φ̂s,ML(n) and φ̂r,ML(n) are analytically related

by (12), a one-dimensional, concentrated likelihood function

of φr can be defined as: L
′

(φr) = L
(
φ̂s,ML(φr), φr

)
. The

exact MLE of φr(n) can be found as the argument of the

maximum of L
′

(φr) [36]. Unfortunately, for the signal model

at hand this optimization problem is not easily tractable.

Instead of resorting to numerical optimization methods to find

the maximum of L
′

(φr), we propose a simplified MLE of

φr(n) using a modified form of the input signal model.

The modifications consist of two steps. First, we pass the

input STFT vector y(n) through a target-blocking matrix B ∈
CM×(M−1) defined as [38]:

[B b] = I− d(dHd)−1dH , (14)

where B denotes the first M − 1 columns and b denotes the

last column of the matrix on the right-hand-side of (14). The

columns of B can be interpreted as a set of M − 1 target-

canceling beamformers, i.e.: BHs(n) = 0. Hence, the blocked

input signal can be written as: BHy(n) = BHr(n)+BHx(n)
(cf. (1)), and its cross-PSD matrix as (cf. (2)):

E[BHy(n)yH(n)B] = BHΦy(n)B

= BHΦr(n)B+BHΦxB.

The second modification of the signal model has the

objective of diagonalizing BHΦxB, i.e. the additive noise

component of the blocked input cross-PSD matrix. To that end,

we use a whitening matrix D ∈ C(M−1)×(M−1) and define it

as the Cholesky factor of the inverse of BHΦxB:

DDH = (BHΦxB)−1. (15)

It is necessary to assume that BHΦxB is full rank. N.b.: it

is sufficient that real (and, therefore, noisy) microphones are

used in the array to guarantee that BHΦxB is full rank, even if
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the other noise types contributing to x(n) (e.g. ambient noise)

do not by themselves result in a full rank cross-PSD matrix.

The blocked and whitened signal is given by ỹ(n) =
DHBHy(n) and its cross-PSD matrix can be found as:

Φỹ(n) = DHBHΦy(n)BD = φr(n)Γr̃ + I, (16)

where Γr̃ = DHBHΓrBD.

As a result of the described modifications, the matrix Φỹ(n)
exhibits a useful feature: its eigenvectors are the same as that

of the matrix Γr̃. Equivalently, the eigendecompositions of

Φỹ(n) and Γr̃ use the same unitary matrix U:

Φỹ(n) = UΛΦ(n)U
H , Γr̃ = UΛΓU

H , (17)

where the orthonormal columns of U are the eigenvectors, and

where ΛΦ(n) and ΛΓ are diagonal matrices of the eigenvalues

of Φỹ(n) and Γr̃, respectively. Because Γr̃ is constant, so are

U and ΛΓ. Due to (16), ΛΦ(n) and ΛΓ are related as:

ΛΦ(n) = φr(n)ΛΓ + I. (18)

Equivalently: λΦ,m = φr(n)λΓ,m +1, where λΦ,m and λΓ,m

denote the m-th eigenvalue of Φỹ(n) and Γr̃, respectively.

Using the blocked and whitened signal model (16) we can

formulate a new and simplified log-likelihood of φr. It has

a form analogous to (10) with the input cross-PSD matrix

and its estimate substituted by their blocked and whitened

counterparts Φỹ(n) and Φ̂ỹ(n):

L
′′

(φr) = −L log |Φỹ(n)| − L tr
[
Φ−1

ỹ (n)Φ̂ỹ(n)
]
. (19)

The proposed MLE of φr is defined as: φ̂r(n) =
argmaxφr

L
′′

(φr). To find φ̂r(n) we must first find the

derivative of L
′′

(φr) with respect to φr. We compute it by

using the fact that for any invertible matrix A(θ) the following

identities hold (A(θ) is a function of θ) [39], [40]:

d log |A(θ)|

dθ
= tr

[

A−1(θ)
dA(θ)

dθ

]

,

d tr
[
A−1(θ)Z

]

dθ
= − tr

[

A−1(θ)
dA(θ)

dθ
A−1(θ)Z

]

.

We also note that the derivative of Φỹ(n) with respect to φr

is equal to Γr̃ (cf. (16)). The (known) result is [36, Eq. (2)]:

dL
′′

(φr)

dφr

= −L tr
[
Φ−1

ỹ (n)Γr̃ −Φ−1
ỹ (n)Γr̃Φ

−1
ỹ (n)Φ̂ỹ(n)

]
.

(20)

The proposed estimator is found by setting (20) to zero and

solving for φr. To do so, we re-write (20) using (17):

tr
[
Λ−1

Φ (n)ΛΓ −Λ−1
Φ (n)ΛΓΛ

−1
Φ (n)UHΦ̂ỹ(n)U

]
= 0.

Exploiting the diagonal structure of the involved matrices and

using (18), this can be written as:

M−1∑

m=1

[
λΓ,m

(φrλΓ,m + 1)
−

λΓ,m gm(n)

(φrλΓ,m + 1)2

]

= 0, (21)

where gm(n) denotes the m-th diagonal element of

UHΦ̂ỹ(n)U. It can be seen that (21) is a sum of 2(M − 1)
rational terms. By converting all these terms to a common

1: Define: d, Γr, Φx

2: [B b] = I− d(dHd)−1dH (14)

3: DDH = (BHΦxB)−1 (15)

4: Γr̃ = DHBHΓrBD (16)

5: UΛΓU
H = Γr̃ such that: UUH = I (17)

6: λΓ,m = [ΛΓ]m,m

7: for all n do

8: Define: y(n)

9: Update: Φ̂y(n) (8)

10: gm(n) = [UHDHBHΦ̂y(n)BDU]m,m

11: Define: p(φr) (22)

12: P(n) = {φr : p(φr) = 0}

13: if
∣

∣P(n)
∣

∣ = 1 then

14: φ̂r(n) = {P(n)}

15: else

16: φ̂r(n) = argmaxφr∈P(n) L
′′(φr) (19)

17: end if

18: Φ̂v(n) = φ̂r(n)Γr +Φx

19: wMVDR(n) = Φ̂−1
v (n)d

[

dHΦ̂−1
v (n)d

]−1
(13)

20: φ̂s(n) = wH
MVDR(n)

[

Φ̂y(n)− Φ̂v(n)
]

wMVDR(n) (12)
21: end for

Fig. 1. A pseudocode representation of the proposed PSD estimation method.
The presented routine is to be applied in all frequency bins (possibly in
parallel). The set of roots of the polynomial p(φr) in the n-th time frame
is denoted as P(n), with |P(n)| being its cardinality (number of elements).
Relevant equation numbers are provided for cross-reference.

denominator (
∏M−1

k=1 (φrλΓ,m+1)2 ), taking only the resulting

numerators into account, and some additional simplifications,

(21) can be expressed as a sum of M − 1 polynomials in φr:

p(φr) =
M−1∑

m=1

pm(φr), where (22)

pm(φr) =

(

φr −
gm(n)− 1

λΓ,m

)

︸ ︷︷ ︸

order 1

M−1, k 6=m
∏

k=1

(

φr +
1

λΓ,k

)2

︸ ︷︷ ︸

order 2(M−2)

.

The polynomial p(φr) is of odd order: 2M−3. Hence, at least

1 and at most 2M − 3 real roots of p(φr) exist. When more

than one real root of p(φr) exists, the one yielding the highest

value of the likelihood (19) must be chosen as the MLE φ̂r(n).
For convenience, a pseudo-code representation of the algo-

rithm for computing the proposed PSD estimators is provided

in Figure 1. As we show in Appendix A, usually only one real

root of p(φr) exists. Therefore, in most cases the condition in

Figure 1, line 13 is satisfied, and it is not necessary to compute

the numerical value of the likelihood (19).

In general, numerical methods must be applied to find the

roots of p(φr) as no closed-form solution appears obtainable.

For microphone arrays with few microphones, such as often

found in hearing aids, this is computationally trivial. For large

microphone arrays, solving (22) may become problematic in

applications where computing power is limited.

The proposed late reverberation PSD estimator φ̂r(n) is the

exact MLE of φr(n) in the blocked signal domain (16) (to

within the precision of the root-finding algorithm). However,

numerical simulations indicated that φ̂r(n) is not equal to
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the MLE φ̂r,ML(n) defined in (11), i.e. in the unmodified

signal domain (7). This is due to the loss of information about

the signal induced by the blocking operation. Additionally,

the target speech PSD estimator computed according to (12)

but conditioned on φ̂r(n) instead of φ̂r,ML(n) is not equal

to the exact MLE φ̂s,ML(n). Therefore, both proposed PSD

estimators are only approximations of the true MLE in the

unmodified signal domain. Nevertheless, experimental results

reported in Section IV show that the loss of the estimation

performance is very small.

C. Estimator of the late reverberation PSD for x(n) = 0

A special case of the proposed late reverberation PSD

estimator can be derived for signals where x(n) = 0. Because

Φx = 0, the whitening operation is undefined and must

be omitted. It follows, that (16) has to be re-written as

Φỹ(n) = φr(n)Γr̃. Using this in (20) a new equation for

the MLE is found:

φ−1
r (n) tr

[
I−Φ−1

ỹ (n)Φ̂ỹ(n)
]
= 0.

Unlike in the general scenario, in this special case a closed

form solution for the MLE exists:

φ̂r|x=0(n) =
1

M − 1
tr
[
Γ−1
r̃ Φ̂ỹ(n)

]
. (23)

This expression can be recognized as the multi-microphone

noise PSD estimator proposed in [38]. In [16] this estimator

has been shown to be minimum variance unbiased (MVU).

Furthermore, (an equivalent form of) the estimator (23) was

used for late reverberation PSD estimation in an earlier paper

[18] by the authors of this study.

Although the assumption that x(n) = 0 often does not hold

in practical applications, it is approximately satisfied in sce-

narios where the additive noise x(n) is negligible compared to

the late reverberation r(n). In some applications, the benefits

of using a closed-form estimator like (23) may outweigh the

benefits of modeling the signal more accurately.

D. Estimator of the late reverberation PSD for M = 2

Another special case may be considered for devices with

only two microphones, such as some hearing aids, smart-

phones, and laptops. Because the blocking matrix reduces the

dimensionality of the signal by one, all vectors and matrices

involved in the estimation of φr(n) degenerate into scalars.

Then, the polynomial (22) degenerates into a linear equation

which is easily solved:

φ̂r|M=2(n) =
g(n)− 1

λΓ

= (Φ̂ỹ(n)−Φx̃)Γr̃
−1. (24)

Note that this equation is composed of scalars; we maintain

the bold print for the sake of notation continuity. For M = 2,

the proposed late reverberation PSD estimator (24) and the

one proposed by Braun and Habets in [17] are equivalent (can

be written as identical equations).

IV. EVALUATION OF THE PROPOSED PSD ESTIMATOR IN

TERMS OF THE NORMALIZED MEAN SQUARED ERROR

In this section we evaluate the proposed PSD estimator and

compare it with the estimator proposed by Braun and Habets

[17]. As the performance metric we use the normalized mean-

squared error (MSE) of estimation defined as:

nMSEφs
=

E
[
(φ̂s − φs)

2
]

φ2
s

, nMSEφr
=

E
[
(φ̂r − φr)

2
]

φ2
r

.

(25)

Because the proposed PSD estimators are not of closed form,

in general it is not possible to compute their MSE analytically.

Instead, we measure the MSE achieved by the considered PSD

estimators in an experiment involving a test signal simulating

reverberant and noisy speech. Because the proposed estimators

lack closed form, we were only able to numerically verify their

unbiasedness. Unbiasedness of the estimators from [17] can be

shown analytically (proof omitted). As a result, the MSE of

all considered PSD estimators is equal to their variance.

In the special case when the input signal contains no

additive noise component (x(n) = 0), the proposed PSD

estimators and their MSE can be found analytically. For this

restricted scenario it is also possible to analytically find the

MSE of the estimators in [17]. In Appendix B we show that in

the noise-free scenario the MSE of the proposed estimators is

always lower than (or equal to) that of the estimators in [17].

A. Experimental setup

In the present experiment, the goal was to measure and

compare the performance of the considered estimators in a

synthetic scenario where all the assumptions made in Section

II are precisely met. Thus, in each iteration of the experiment

a test signal consisting of 25000 STFT sample vectors y(n),
independently drawn from a circularly-symmetric, multivariate

complex Gaussian distribution, was used. The covariance

matrix of that distribution was modeled according to (7)

(i.e. simulating a cross-PSD matrix of a reverberant and

noisy speech signal) with known and constant φs and φr.

Component s(n) was modeled using a realistic RTF vector

d, measured in an anechoic chamber using microphones of

two hearing aids placed on the ears of a head and torso

acoustic simulator (HATS) and a loudspeaker positioned in

front of the HATS. Each of the two behind-the-ear hearing

aids had two microphones spaced 1 cm apart, resulting in the

total number of microphones M = 4. Component r(n) was

modeled using a normalized cross-PSD matrix Γr measured

in a simulated cylindrically isotropic sound field using the

same microphone array as before. The cross-PSD matrix of the

component x(n) was modeled as a scaled identity matrix. Both

evaluated algorithms were set to estimate the input covariance

matrix (8) using the L = 10 most recent time frames.

The simulation experiment was repeated for two different

conditions. In the first one, the MSE of the PSD estimation

was evaluated as a function of frequency, and the values of φs

and φr were fixed to result in a speech-to-reverberation ratio

(SRR) of 0 dB (averaged over all microphones). In the second

condition, the MSE was evaluated as a function of the SRR

and the frequency was fixed to 1500 Hz. In both conditions,

the additive noise component x(n) was scaled such that its

power was 10 dB lower than the power of the component r(n)
(averaged over all microphones).
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Fig. 2. Normalized MSE of PSD estimation of the proposed PSD estimators
(Proposed) and the PSD estimators from [17] (Braun) as a function of: (a)
frequency (SRR: 0 dB), (b) SRR (frequency: 1500 Hz). M = 4, L = 10.

B. Experimental results

Results obtained in the two described conditions are pre-

sented in Figures 2a and 2b, respectively. These results are

complemented by Cramér-Rao lower bounds (CRLBs) which

set a theoretical bound on the lowest possible variance any

unbiased estimator of φs(n) and φr(n) can achieve in the

considered signal model (7). We outline the derivation of the

CRLBs in Appendix C.

From Figures 2a and 2b it may be observed that in all exper-

imental conditions the target speech and the late reverberation

PSD estimators proposed in this study (labeled as “Proposed”)

achieve lower MSE than the corresponding estimators from

[17] (“Braun”). The difference between the MSEs yielded

by the late reverberation PSD estimators was substantial.

However, the difference between the two target speech PSD

estimators was very small in virtually all conditions. This

was expected because the two target speech estimators are

conditioned on different late reverberation PSD estimators but

are otherwise identical [1].

As shown in Figure 2a, the late reverberation PSD estimator

by Braun and Habets achieved MSEs close to the CRLB only

for frequencies below 1 kHz. For higher frequencies the MSE

of estimation was up to 3.5 dB higher than the CRLB. The

proposed late reverberation PSD estimator achieved MSEs

close to the CRLB at all analyzed frequencies and SRRs. It

is worth highlighting that this has been accomplished despite

the simplifications (14)–(19) of the signal model and the

likelihood function used in the derivation of the proposed

estimator. It follows, that even the exact MLEs defined using

the unmodified signal model (11), or any other unbiased

estimator based on (11), could at best perform only slightly

better that the proposed simplified method. The steep rise

of the MSEs and the CRLBs for low frequencies is due to

the wavelength becoming much larger than the dimensions

of the array. This results in an increasing correlation of the

microphone signals, which limits the attainable gain from

averaging between the microphones.

The performance difference between the two compared late

reverberation PSD estimators is substantial despite the fact

that both estimators are derived using the maximum likelihood

method and are based on similar signal models. The specific

cause of this difference is the likelihood function used in

[17]. This likelihood is based on the assumption that real and

imaginary parts of all entries of the blocked sample cross-PSD

matrix BHΦ̂y(n)B are mutually independent Gaussians with

equal variances. However, since sample covariance matrices

are Hermitian, entries that are symmetric with respect to

the main diagonal are complex conjugate pairs (and, hence,

not independent). Furthermore, the distribution of diagonal

elements of sample covariance matrices has a positive support

(i.e. they are not Gaussian), and, generally, the elements of

sample covariance matrices can have different variances. In

the proposed method the likelihood function (19) is defined

directly on the (modified) input signal STFT vector and a more

realistic assumption on its PDF. Despite the simplifications of

the signal model, this results in nearly optimal performance.

As expected, and as can be observed in Figure 2b, negative

SRRs resulted in a much higher target speech PSD estimation

MSE (and CRLB) than positive SRR values. Because both

“Braun” and “Proposed” late reverberation PSD estimators

are based on the blocked version of the input signal, their

theoretical performance does not depend on the target speech

component and, hence, the SRR.

V. EVALUATION OF AN MWF BASED ON THE PROPOSED

PSD ESTIMATOR: OBJECTIVE PERFORMANCE MEASURES

The proposed PSD estimator and the estimator in [17]

are both primarily intended for use with a multi-channel

Wiener filter (MWF) for joint speech dereverberation and

denoising. Therefore, it is of interest to evaluate the influence

the PSD estimators have on the performance of the MWF.

To this end, we conducted an experiment where realistically

simulated reverberant and noisy speech signals were processed

by the MWF based on either the proposed or the competing

PSD estimator from [17]. The speech dereverberation and

denoising performance of the two versions of the MWF was

measured and compared in terms of the frequency-weighted

segmental SNR (FWSegSNR) [19], perceptual evaluation of

speech quality (PESQ) [20] measure, mean noise attenuation

(NA), mean reverberation attenuation (RA), and speech-to-

speech-distortion ratio (SNR-S) [21], [22].

A. Experimental setup

Both versions of the MWF were implemented as a concate-

nation of an MVDR beamformer and a single-channel Wiener
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TABLE I
BASIC ACOUSTIC PARAMETERS OF THE REVERBERANT CONDITIONS

Room T60 [s] C50 [dB] DRR [dB]

Bathroom 0.8 5.2 −10.1

Cellar 1.2 5.7 2.2

Staircase 2.3 11.0 4.1

Office 1.4 8.8 2.3

Auditorium 1.3 13.4 5.2

Isotropic 1.0 4.7 −0.4

post-filter. The MVDR beamformer coefficients wMVDR(n)
were calculated according to (13) with the estimate of the

total interference cross-PSD matrix Φ̂v(n) based on φ̂r(n).
The output signal ŝ(n) of the MWF was computed as:

ŝ(n) =

[

φ̂so(n)

φ̂so(n) + φ̂vo
(n)

]

wH
MVDR(n)y(n),

where:

φ̂so(n) = φ̂s(n),

φ̂vo(n) = wH
MVDR(n)Φ̂v(n)wMVDR(n),

denote the estimated PSDs of the target speech and the

total interference at the output of the MVDR beamformer,

respectively.

Contrary to the experiment in Section IV, in this experiment

the goal was to compare the performance of the estimators

in realistic conditions (violating some of the assumptions

made in Section II) and for a practical application (in

hearing aids). Thus, the microphone signals were generated

using real speech recordings from the TIMIT database [41]

and several reverberant and noisy conditions based on real

room impulse responses (RIRs) and simulated microphone

noise. Specifically, we used a subset of the TIMIT database

containing 17 minutes of male and female speech. TIMIT

sentences were convolved with RIRs measured in five real

rooms using a microphone array composed of two behind-the-

ear hearing aids on the HATS (same as described in Section

IV). The reverberation time T60, clarity index C50, and the

direct-to-reverberation ratio (DRR) of these five RIRs are

presented in Table I. The rooms are denoted by their function

as: “Bathroom”, “Cellar”, “Staircase”, “Office”, and “Audi-

torium”, and represent a wide range of acoustic conditions a

hearing aid user might encounter. A sixth, synthetic impulse

response, where the reverberation was modeled as perfectly

cylindrically isotropic was also used and is denoted as

“Isotropic”. To simulate the electrical noise that is generated

by real-world microphones, spatially white and spectrally

pink noise was added to the convolved speech signals. The

simulations were repeated for two levels of that noise, such

that at the frequency of 1 kHz the noise PSD was either 20 dB

or 30 dB lower than the PSD of the target speech material.

The sampling frequency of the simulated time-domain

signals was 16 kHz and the STFT length was set to 8 ms

(T = 128 samples). This ensured a processing delay of the

MWF shorter than 10 ms, which is a requirement for hearing

aid systems. A square root Hann window with 50% overlap

between frames was used in the analysis filterbank and in

the overlap-add inverse STFT procedure used for re-synthesis

of the output signal. The input cross-PSD matrix Φ̂y(n) was

estimated using recursive averaging (equivalent to exponential

weighting) with a time constant of 50 ms (instead of the

moving average smoothing used in (8)). For processing of the

signals simulated using each of the six impulse responses, the

MWF algorithm and the PSD estimators were implemented

using RTF vectors d extracted from the first 2.5 ms of the

RIR in question (i.e. ts = 40 samples). For the RIRs used

in the experiment this resulted in d being based solely on

the direct path response. It follows that the early reflections

(particularly strong in the “Bathroom” condition) were left

unaccounted for in the assumed signal model. This resulted in

a realistic mismatch between the used RTF vector d and the

actual RTF of the target speech component in the simulated

signals. Moreover, because d depended only on the direction

of the target source, the assumption that d is known became

more realistic. The normalized cross-PSD matrix Γr of the

cylindrically isotropic sound field was measured a priori in

a simulated cylindrically isotropic sound field using the same

microphone array as used for measuring the RIRs. In none of

the five real rooms, the late reverberation was truly isotropic

which, again, resulted in a realistic mismatch between the

assumed model and the actual structure of the signal. Only

in the “Isotropic” condition the model of the target signal and

of the reverberation component was accurate.

B. Experimental results

The results of the experiment are presented in Figure 3.

Performance scores obtained by using the MWF based on the

proposed PSD estimator (“Proposed”) and on the estimator

proposed in [17] (“Braun”) are included along the scores

obtained by using only the MVDR part of the two MWFs

(“MVDR”). The scores calculated from the unprocessed input

signal (“Input”) are included for reference. The relative per-

formance between the proposed and the competing MWFs and

MVDRs was the same for the higher and the lower microphone

noise level setting. Thus, we show only the results obtained

for the −30 dB setting, which better corresponds to the typical

microphone noise and speech levels encountered in practice.

In all simulated conditions, both versions of the MWF and

the MVDR beamformer succeeded in improving FWSegSNR

and PESQ. The RA was also always positive, indicating

algorithms’ effectiveness in reducing the reverberation. How-

ever, the NA scores were exclusively negative, indicating

that on average all algorithms amplified the noise. This was

expected because the NA measure (as well as RA and SNR-S)

only accounts for those signal segments where the target

speech component is active (see [22]). Because the MVDR

beamformer adapts to jointly suppress the noise and the late

reverberation, it was expected that during speech and, hence,

reverberation activity the noise component will have negligible

impact on the MVDR coefficients. Naturally, during speech

and reverberation absence the MVDR beamformers adapted

to primarily reduce the noise component.
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Fig. 3. (a) FWSegSNR, (b) PESQ, (c) RA, (d) NA, and (e) SNR-S scores
obtained by using MWFs and MVDR beamformers based on the PSD
estimators from [17] (denoted “Braun”) and the proposed estimators (denoted
“Proposed”). Scores obtained from the unprocessed input signal (“Input”)
are also included.

The total improvement of the FWSegSNR and PESQ over

the unprocessed signal was greatest in the “Isotropic” and

lowest in the “Bathroom” condition. This difference can be

explained by the fact that in the “Isotropic” condition Γr

and d accurately characterized the actual input signal whereas

in the “Bathroom” condition the input signal did not match

the assumed model. Prominent early reflections present in the

“Bathroom” condition were unaccounted for and resulted in

substantial leakage of the early speech component into the

output of the blocking matrix. This lead to an overestimation

of the late reverberation PSD and, ultimately, over-suppression

and distortion of the target speech in the post-filter (note the

very high RA and very low SNR-S in this condition).

The differences in the performance scores obtained by using

the MVDR beamformers based on “Braun” and “Proposed”

PSD estimators were very small. Although the performance

difference between the MWFs was somewhat bigger, it was

still only moderately large. For example in the “Isotropic”

condition “Proposed” MWF performed only marginally better

than “Braun”. In the remaining conditions the difference is

larger and the proposed method appears to systematically

perform better than “Braun”. This suggests that the proposed

estimators are more robust to the mismatch between the

signal model and its actual structure than the estimators from

[17]. The SNR-S measure indicated stronger speech distortion

when using the proposed PSD estimator. While being a clear

disadvantage, low SNR-S scores are counterbalanced by higher

RA and NA values.

Informal listening tests indicated similar trends as the ob-

jective performance measures. In all simulated conditions, the

MWFs resulted in a decrease of the perceived reverberation

and noise strength. The MVDR beamformers also reduced the

amount of perceived interference, but to a smaller degree.

Differences between “Braun” and “Proposed” MWFs were

barely perceivable; only in specific signal scenarios a small

increase in the audibility of musical noise could be noticed

in the “Braun” MWF output. This was expected because the

PSD estimators from [17] have higher MSE.

We close this section by noting that (when implemented in

Matlab) the proposed algorithm resulted in computation times

roughly 1.7 times longer than the algorithm from [17].

VI. EVALUATION OF AN MWF BASED ON THE PROPOSED

PSD ESTIMATOR: SPEECH INTELLIGIBILITY IMPROVEMENT

In addition to the two experiments with technical/objective

performance measures in Sections IV and V, we conducted

a speech intelligibility (SI) test with human subjects. Dantale

II [42] sentences were presented via Sennheiser HD280 pro

headphones to 20 subjects, who were requested to select the

words they heard from an on-screen list of options [43].

A. Experimental setup

Stimuli were constructed as follows. The Dantale II sen-

tences were concatenated with 2 s of silence before and after

the utterance and underwent the same realistic reverberation

simulation as in the “Cellar” condition in Section V, cor-

responding to a frontal position of the target source at a

distance of 2 m. Since the SI in this condition was close to

100%, speech-like interference consisting of randomly shifted

and superimposed copies of the international speech test

signal (ISTS) [44] was added to the reverberated Dantale II

sentences. The interferer signals were convolved with 5 RIRs

recorded in the same room as the target RIR but with the

sound source positioned at 90°, 135°, 180°, −135°, and at

−90° azimuth angle, at 2 m distance. Each of the simulated

babble talkers radiated the same power as the target source.

Different levels of SI were achieved by manipulating the DRR
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of the the target source RIR. This was done by attenuating the

direct part of the target speech while keeping the rest of the

signal intact. In this way the DRR was offset by 0, −4, −8,

and −12 dB from its original value of 2.2 dB (cf. Table I).

The RTF vector d and the cross-PSD matrix Γr were ob-

tained in the same way, and the simulated microphone signals

were processed using the same algorithms as in Section V. The

additional noise cross-PSD matrix Φx was estimated from the

first 2 s of each stimuli, which was known to contain only the

reverberated ISTS babble and the simulated microphone noise.

In order to provide correct binaural cues of the target speech,

signals presented to each of the subjects’ ears were processed

by separate instances of the algorithms, each using the front

microphone of the corresponding hearing aid as the reference

position. In the unprocessed condition (“Input”) the signals of

the left and right reference microphones were presented to the

corresponding ears of the subject. This allowed the subjects

to localize the target and the ISTS interferers at their original

(simulated) positions and benefit from the binaural advantage

[45]. In the processed conditions this was not possible, as all

components of the enhanced signals were perceived as coming

from the target direction (a known side-effect of using binaural

beamformers [46]). To each of the experimental conditions five

Dantale II sentences were randomly assigned (independently

for each subject). The sentences were processed and then

presented to subjects in a randomized order.

B. Experimental results

The word intelligibility obtained in each of the processing

conditions was calculated as the percentage of words identified

correctly by the subjects and is plotted in Fig. 4 as a function

of the DRR offset. In order to interpret these results, we

performed a two-way repeated measures ANOVA procedure

[47] on the rationalized arcsine-corrected [48] subject mean

word intelligibility scores. The effect of the processing type

(F4,76 = 232.6), the DRR offset (F3,57 = 383.8), and the

interaction term (F12,228 = 5.0) on the measured intelligibility

were all found to be significant at the p < 0.001 level.

Pairwise comparisons of the marginal means revealed that:

a) each of the algorithms significantly improved the SI over

the “Input”, b) the MWFs outperformed their correspond-

ing MVDR beamformers, and additionally, c) the “Proposed

MWF” outperformed the “Braun MVDR”. The familywise

type I error rate was limited to 1% using Bonferroni correction.

The lack of significant differences between the SI obtained

with the proposed and the competing PSD estimators was

somewhat expected, given the minute instrumental perfor-

mance differences of the two MWFs and MVDR beamformers

obtained in Section V. On the other hand, significant im-

provement of SI resulting from the post-filters of the two

MWFs is apparently in contrast with the general understanding

that single channel spectral filters usually fail to increase

SI [49]. The fact that the post-filters of the two evaluated

MWFs succeeded in improving SI can be explained by the fact

that they were computed using information from the multi-

microphone signal (contrary to the single channel schemes

discussed in [49]).
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Fig. 4. Word intelligibility scores obtained in the listening test with the RIR
from the “Cellar” condition and ISTS interferers, averaged across 20 subjects.

VII. CONCLUSION

In this paper we have proposed a pair of novel ML-based

speech and late reverberation PSD estimators. The proposed

method models the interference as consisting of late rever-

beration and additive noise; in this sense it can be seen as

an extension of the method in [18] which only considers the

late reverberation. We have numerically demonstrated that the

proposed estimator yields lower mean squared error (MSE) of

PSD estimation than the method in [17], and that this MSE is

very close to the corresponding Cramér-Rao lower bound.

In an experiment with realistically simulated reverberation,

we have compared speech dereverberation performance of an

MWF based on the proposed estimator and on the estimator

from [17]. The proposed estimator generally resulted in higher

FWSegSNR, PESQ, RA, and NA scores than the estimator

from [17]. However, the SNR-S indicated stronger speech dis-

tortion. In terms of speech intelligibility, the MWFs based on

both PSD estimators provided statistically significant improve-

ments over the unprocessed signal, but were not significantly

different from each other. The output of both MWFs was

statistically significantly more intelligible than the output of

the corresponding MVDR beamformers.

Evaluation of the proposed algorithm in environments which

more severely violate the assumptions made in this paper is

an area for future work. In an ongoing study, we evaluate

the proposed algorithm’s robustness to erroneous estimates of

the direction of the target speech arrival. Preliminary results

for signals without the noise component have already been

published in [50].
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APPENDIX A

PROPERTIES OF THE PROPOSED LATE REVERBERATION

PSD ESTIMATOR

In the following, we show that in the majority of practical

cases the polynomial equation (22) (repeated below for con-

venience) has exactly one real-valued root and that this root

is non-negative. Due to this property, the proposed MLE of

φr(n) can be found more easily, as the likelihood (19) does

not need to be calculated in order to determine which of the

roots of (22) corresponds to the MLE of φr(n).

p(φr) =
M−1∑

m=1

pm(φr), where (22)

pm(φr) =

(

φr −
gm(n)− 1

λΓ,m

)

︸ ︷︷ ︸

order 1

M−1, k 6=m
∏

k=1

(

φr +
1

λΓ,k

)2

︸ ︷︷ ︸

order 2(M−2)

.

We begin by noting that the order of the polynomial p(φr)
depends linearly on the number of microphones M and it is

equal to 2M − 3. Because this is always an odd number, at

least one root of p(φr) is real. This means that for all possible

input signals the proposed method will return a result.

The polynomial p(φr) is a sum of M − 1 polynomials

pm(φr), and each pm(φr) has exactly one root of algebraic

multiplicity one and exactly M − 2 roots of multiplicity

two (cf. (22)). The double roots of each pm(φr) are equal

to −λ−1
Γ,k. These roots are always negative because Γr̃ is

assumed positive-definite, i.e. all of its eigenvalues λΓ,m are

strictly positive. The singular root of each pm(φr) is equal

to (gm(n) − 1)λ−1
Γ,m, which is non-negative if and only if

gm(n) ≥ 1. This condition is expected to be satisfied whenever

φr(n) ≥ 0, because (17), (18):

E[gm(n)] = E
{
[UHΦ̂ỹ(n)U]m,m

}
(A.1)

= φr(n)λΓ,m + 1.

The structure of the component polynomials pm(φr) allows

us to draft their approximate plots in Figure A.1. We note that

each of the component polynomials attains a value of zero,

but it does not cross it at the double roots. The M − 1 double

Double roots Single roots

p1(φr)

p2(φr)

p3(φr)

p(φr) =

3∑

m=1

pm(φr)

φr = 0 φr > 0φr < 0

pm=0

pm<0

pm>0

MLE of φr(n)

Fig. A.1. Schematic illustration of the polynomial (22) (denoted p(φr)) and
its M − 1 components pm(φr) for M = 4.

roots are repeated between pm(φr) but each of them is absent

from exactly one of the polynomials (cf. (22)). It follows that

the polynomial p(φr) is strictly negative between −∞ and

the lowest of the singular roots. Analysis of the derivatives

and inflection points of p(φr) leads to a conclusion that given

gm(n) ≥ 1, the graph of the polynomial p(φr) crosses the

abscissa only once at a point between the lowest and the

highest of the singular roots of the component polynomials,

i.e. it has exactly one real root and it is non-negative. The

condition gm(n) ≥ 1 can be expected to be satisfied, because

in reverberant scenarios φr(n) is almost always positive (cf.

(A.1)). Our simulations confirm that; the polynomial (22) has

a single positive root in over 99% of cases.

APPENDIX B

THEORETICAL PERFORMANCE OF THE PROPOSED LATE

REVERBERATION PSD ESTIMATOR IN NOISE ABSENCE

In this appendix we compare analytical expressions for the

mean squared error (MSE) of the PSD estimators proposed

in this study and the PSD estimators proposed by Braun and

Habets in [17]. This comparison does not appear to be possible

in the general case where x(n) 6= 0 because of the lack of a

closed-form solution for the proposed late reverberation PSD

estimator. Therefore, in this appendix we are restricted to the

special case where no additive noise component is present

(i.e. x(n) = 0). As shown in Section III-C, in such a signal

scenario the proposed late reverberation PSD estimator can be

written in closed-form (23).

Since the proposed PSD estimators in the special case of

x(n) = 0 are identical to the speech and reverberation PSD

estimators proposed by us in [18], the comparison we make

in this appendix is equivalent to the one presented in [1]. We

outline it in the following for completeness.

The target speech PSD estimator proposed by Braun and

Habets in [17] has the same form as the target speech PSD

estimator (12) proposed in the present study. The difference

between the estimators is that they are conditioned on different

late reverberation PSD estimates. Hence, it is sufficient to com-

pare the late reverberation PSD estimators in order to capture

the difference between the two PSD estimation methods.

We start the comparison of the late reverberation PSD

estimator proposed by Braun and Habets (denoted φ̂r,Braun(n))
and the one proposed in this study (denoted φ̂r,Kukl.(n)) by

noting that they are both unbiased (proof omitted):

E
[
φ̂r,Kukl.(n)

]
= φr(n), E

[
φ̂r,Braun(n)

]
= φr(n).

Therefore, the MSEs of these estimators are identical to their

variances.

The variance of the proposed late reverberation PSD esti-

mator (23) can be shown to be equal to (for proof see [16]):

var
(
φ̂r,Kukl.(n)

)
= φ2

r(n)
1

L

1

M − 1
. (B.1)

The variance of the late reverberation PSD estimator proposed

by Braun and Habets [17] has been previously derived in [1]
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and can be concisely written as:

var
(
φ̂r,Braun(n)

)
= φ2

r(n)
1

L

1

M − 1

(

1 +
γ̃2

γ̄2

)

, (B.2)

where γ̃ and γ̄ denote the sample variance and the mean of the

squared eigenvalues of the matrix Γř = BHΓrB, respectively.

Comparing (B.2) and (B.1) and using the fact that γ̃ and γ̄

are non-negative we can conclude that the MSE of φ̂r,Braun(n)
can be either greater or equal to the MSE of φ̂r,Kukl.(n), but

can never be lower. The MSEs of these two estimators are

equal only when the eigenvalues of Γř are all equal (i.e. when

γ̃2 = 0). Since Γř is Hermitian, it follows that for this special

case to occur, Γř must be a scaled identity matrix [51]. In all

other cases, the proposed late reverberation PSD estimator has

lower MSE than the one from [17].

An important observation is that for M = 2 the matrix Γř

reduces to a scalar, such that γ̃2 is always equal to zero. It

follows that for M = 2 the proposed late reverberation PSD

estimator (23) and the one proposed by Braun and Habets [17]

achieve the same MSE. In this case they are, in fact, identical

(proof omitted).

APPENDIX C

CRAMÉR RAO LOWER BOUNDS ON PSD ESTIMATION

In this appendix we outline the calculation of the Cramér-

Rao lower bounds (CRLBs) included in Figures 2a and 2b. By

definition, the CRLBs are equal to the elements of the inverse

of the Fisher information matrix (FIM). The i, j-th element of

the FIM is defined as follows [52]:

Ii,j = −E

[
∂2L(θ)

∂θi ∂θj

]

, (C.1)

where L is the log-likelihood function of the parameter vector

θ = [θ1, . . . , θp]
T , given the input data. For a p-parameter

signal model the FIM is a p × p symmetric matrix. For L

independent identically distributed circularly-symmetric com-

plex Gaussian observations the i, j-th element of the FIM is

found as [52]:

Ii,j = L tr

[

Φ−1
y

∂Φy

∂θi
Φ−1

y

∂Φy

∂θj

]

, (C.2)

where Φy is the cross-PSD matrix of the input signal. Note

that because of the above equation, any invertible linear

operation applied to the input signal vector (such as whitening)

does not change the FIM or the CRLB.

In the signal model considered in this study (7) there are

two unknown parameters (θ = [φs, φr]
T ); hence, the FIM is a

2× 2 matrix. Using the log-likelihood function (10) in (C.1),

or equivalently the cross-PSD matrix (7) in (C.2) we obtain:

I =

[
Iss Irs
Isr Irr

]

(C.3)

Iss = L tr
[
Φ−1

y ddHΦ−1
y ddH

]
, (C.4)

Irr = L tr
[
Φ−1

y ΓrΦ
−1
y Γr

]
, (C.5)

Irs = Isr = L tr
[
Φ−1

y ΓrΦ
−1
y ddH

]
. (C.6)

Similarly to the proposed PSD estimators, the CRLBs do

not appear to be possible to be derived analytically in the

general case. For the special case when x(n) = 0, closed-

form expressions for the CRLBs can be derived (see e.g. [16]).

When x(n) 6= 0 the FIM can be inverted numerically and (by

definition) the CRLBs are obtained as:

CRLB(φs) = [I−1]1,1, (C.7)

CRLB(φr) = [I−1]2,2. (C.8)

The CRLBs included in Figures 2a and 2b were calculated

using (C.2)–(C.8) and normalized by the squared parameter

of interest (analogous to the normalization of MSEs in (25)).
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