
ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 6, june 2005 947

Maximum Likelihood Segmentation of
Ultrasound Images with Rayleigh Distribution

Alessandro Sarti, Cristiana Corsi, Elena Mazzini, and Claudio Lamberti

Abstract—This study presents a geometric model and
a computational algorithm for segmentation of ultrasound
images. A partial differential equation (PDE)-based flow is
designed in order to achieve a maximum likelihood segmen-
tation of the target in the scene. The flow is derived as the
steepest descent of an energy functional taking into account
the density probability distribution of the gray levels of the
image as well as smoothness constraints. To model gray
level behavior of ultrasound images, the classic Rayleigh
probability distribution is considered. The steady state of
the flow presents a maximum likelihood segmentation of the
target. A finite difference approximation of the flow is de-

rived, and numerical experiments are provided. Results are
presented on ultrasound medical images as fetal echography
and echocardiography.

I. Introduction

In the medical imaging research area, clinical parameters
quantification is a challenging goal because it represents

a strong clinical need due to the important diagnostic and
therapeutic implications in the management of patients.
Examples include parameters such as left ventricular cav-
ity volumes, cardiac output, ejection fraction, and mass
that are important indices for serial assessments of myocar-
dial function. For the extraction of these parameters, the
most difficult step to accomplish in a fast, accurate, and
proper way is represented by image segmentation. In clin-
ical practice the quantification of these indices is generally
performed by manual tracing, which is a time-consuming
and subjective procedure, and by the application of geo-
metrical assumptions that could introduce measurement
errors in presence of pathologies. Therefore, a rapid, accu-
rate, reproducible, and noninvasive method of calculating
these indices would be important.

Medical data can be acquired with a variety of imag-
ing modalities; in this study we refer to echography whose
primary advantage over other imaging modalities is the
ability to generate real-time images of anatomy without
the use of ionizing radiation. Moreover, echography is a
widely available, noninvasive, and low-cost clinical modal-
ity for imaging. However, ultrasound images are difficult
candidates for shape recovery because of low signal/noise
ratio which greatly reduces the observable details within
such images; main degradation mechanisms are due to
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Rayleigh and scattering diffraction of acoustical waves,
little contrast between soft tissue and blood, nonhomo-
geneous acoustical characteristics of muscles. Accordingly,
precision and accuracy of the derived measurements often
are compromised.

Several approaches have been reported in the litera-
ture for automated or semiautomated border detection
from ultrasound data, based on different methods: statisti-
cal Markov random fields [1]–[5], multidimensional space-
frequency methods [6], [7], fuzzy logic [8]–[10], neural net-
works [11], [12], active contours models (snakes) [13]. The
classical active contour models are based on the evolution
of a curve attracted by image boundaries in order to de-
tect objects. Malladi et al. [14] implemented segmentation
methods with robust numerical techniques based on level-
set models. Level-set methods, introduced first by Osher
and Sethian [15], have been extensively used to track the
evolution of fronts in a variety of applications, including
segmentation of echographic images [16]–[22].

These methods embed the desired interface as the zero
level set of an implicit function, then use finite differences
to approximate the solution of the partial differential equa-
tion. The aforementioned approaches for segmentation are
edge-based (i.e., they evolve a curve with a speed func-
tion, depending on a precomputed edge indicator). It is
very effective in case edges are true discontinuities in the
image, and the signal-to-noise ratio is not too low. Lately
a region-based level-set based method has been proposed
by Chan and Vese [23] to segment images with smooth or
vanishing boundaries. In this approach, the speed of curve
evolution involves integral quantities (like mean values of
the gray-level image pixels inside and outside the curve)
instead of differential quantities (like image gradient). This
approach is very effective in case of smooth edges or low
signal/noise ratio.

In the following we will briefly review the two ap-
proaches.

The Malladi-Sethian edge-based method is able to per-
form segmentation irrespective to shape topology. The al-
gorithm is built in two steps. First an edge indicator func-
tion:

g(x, y) =
1

1 + (|∇Gσ(x, y) ⋆ I(x, y)|)2

is used to detect local edges, where |Gσ ⋆ I| is a smoothed
version of the given image I : Ω ⊂ R2 → R with a Gaus-
sian kernel:

Gσ(x, y) =
exp(−(

√

x2 + y2)/σ2)

σ
√

π
.
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During the second stage, a curve evolution inside the ob-
ject is implemented, in which the curve speed is tuned by
the edge indicator to stop the evolving curve on the bound-
aries of the desired object. If the curve C is represented by
the zero level set of an implicit function φ : Ω → R such
that C = {(x, y) ∈ Ω : φ(x, y) = 0}, the evolution equa-
tion is:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂tφ = |∇φ|g(|∇I|)div
∇φ

|∇φ| + ν∇g(|∇I|) · ∇φ

in Ω×]0,∞[

φ(x, y, 0) = φ0(x, y) in Ω

φ(x, y, t) = min(φ0(x, y)) on ∂Ω

,
(1)

where φ is the level-set function. The first term on the
right side moves the curve in the normal direction with
a speed equal to the Euclidean curvature of level curves
div(∇φ/|∇φ|) weighted by the edge indicator g(|∇I|). The
second term corresponds to a pure passive advection of
the curve along the underlying velocity field −∇g, that is
a vector field pointing always toward the existing bound-
aries. The constant ν is added to increase the evolution
speed in order to attract the curve toward the boundary.
The equation has been approximated with finite differ-
ences [15].

Chan and Vese [23] proposed a different model, based
on a region-based approach: the model is well adapted to
situations in which images are noisy, and it is difficult to
extract the boundary of the desired object. Their method
considers the evolution of a curve C in order to minimize
the energy functional:

F (C, c1, c2) = µ · (length(C)) + ν · area(inside(C))

+λ1

∫

inside(C)

|I(x, y)−c1|2 +λ2

∫

outside(C)

|I(x, y)−c2|2,

where c1 and c2 are the averages of I, respectively, inside
and outside C, and µ ≥ 0, ν ≥ 0, λ1, λ2 are fixed param-
eters.

The associated level set flow is computed by considering
again C = {(x, y) ∈ Ω : φ(x, y) = 0} and keeping c1 and
c2 fixed as:

⎧
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⎪

⎪
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∂tφ= δ(φ)

[

µdiv

( ∇φ

|∇φ|

)

−ν−λ1(I −c1)
2 +λ2(I −c2)

2

]

in Ω×]0,∞[

φ(0, x, y) = φ0(x, y) in Ω
δ(φ)

|∇φ|
∂φ

∂n
= 0 on ∂Ω

,
(2)

where δ() is the Dirac function and n denotes the exterior
normal to the boundary ∂Ω.

In this paper we take a different view of the segmen-
tation problem by keeping the region-based approach of
Chan-Vese and embedding in the segmentation model the
a priori knowledge of statistical distribution of grey levels
in ultrasound data [24], [25]. In particular concerning ul-
trasound images, we note that image pixels are modeled as

Rayleigh distributed random variables. Then the proposed
method drives the curve evolution to achieve a maximum
likelihood segmentation of the target, with respect to the
statistical distribution law of image pixels. We apply our
method for segmentation of echography (Rayleigh distri-
bution), even if the level set maximum likelihood method
also can be applied in other areas of medical imaging as
computed tomography and magnetic resonance imaging
angiography, mammography (Poisson distribution), and
photographic images of melanoma (Gaussian distribution).

The outline of the paper is as follows. In Section II we
introduce the main energy functional and compute its first
variation to obtain the associated Euler-Lagrange equa-
tion. A level set formulation for the associated flow is de-
rived. In Section III we present a finite-difference approx-
imation of the flow based on propagation of surfaces by
curvature (PSC) numerical schemes introduced in [15]. In
Section IV we show results regarding the verification of the
Rayleigh distribution assumption, the validation we per-
formed comparing our results with manual tracings, the
application of the method to different kinds of ultrasound
medical images. We end the paper with a brief concluding
section.

II. Theory

A. The Main Functional

Let us consider an image I as a real positive function
defined in a rectangular domain Ω ⊂ R2. The gray lev-
els are assumed to be uncorrelated and independently dis-
tributed. Thus, they are characterized by their respective
probability density function (pdf) p(I).

Now we define a closed curve C partitioning the image
domain in an “inside” Ωi and an “outside” Ωe and denote
with Pi =

∏

Ωi(C) p(I) the probability of the random field

inside the curve and with Pe =
∏

Ωe(C) p(I) the probability
outside the curve. Without any a priori knowledge about
the shape of the object to be detected, we look for the
curve C that maximizes the likelihood function given by
the product of the inner and the outer probability [26]:

P [I|C] = Pi Pe. (3)

Because the log function is strictly increasing, the max-
imum value of P [I|C], if it exists, will occur at the same
points as the maximum value of l(I, C) = log(P [I|C]).
This latter function is the log likelihood, and in many
cases it is easier to work with it than with the likelihood
function. Indeed, the product structure of the probability
function is transformed in a summation or integral struc-
ture of the log likelihood. Passing to the continuous limit,
we replace the sum with the integral and obtain:

l(I, C) = log Pi + log Pe

=

∫

Ωi(C)

log p(I) dxdy +

∫

Ωe(C)

log p(I) dxdy. (4)
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Fig. 1. Behavior of the terms log Pi (dashed line), log Pe (solid line)
that appear in the expression of l, and of the log likelihood l (point
line) during the evolution of the curve C.

To perform a maximum likelihood segmentation of the
target, we need to maximize the functional l with re-
spect to variation of the curve C. Because p(I)rayleigh =
I(x, y)/σ2 exp

(

−I(x, y)2/2σ2
)

, the corresponding log-
likelihood is given by [25]:

log Pi + log Pe = Ai log

(

1

Ai

∫

Ωi(C)

I(x, y)2dxdy

)

+ Ae log

(

1

Ae

∫

Ωe(C)

I(x, y)2dxdy

)

, (5)

where Ai, e, Ae are, respectively, the number of pixels in
Ωi(C) and Ωe(C) and the parameters of the pdf have been
estimated in the Appendix [25]. The behavior of logPi,
log Pe, and l as the curve C is moving is visualized in Fig. 1.
The functional l shows a plateau (maximum) when the
curve has segmented the target, i.e., the curve introduces
a partition of the image in two maximally homogeneous
areas.

In order to obtain a well-posed and well-conditioned
problem, we need to introduce a regularization in the shape
of the curve. To address this, a length term has been in-
troduced as in [23], to give:

F = µ · (length(C)) − Ai log

(

1

Ai

∫

Ωi(C)

I(x, y)2dxdy

)

− Ae log

(

1

Ae

∫

Ωe(C)

I(x, y)2dxdy

)

. (6)

An example of the time evolution of the initial condition
considering the maximum likelihood algorithm applied to
a synthetic image affected by Rayleigh noise is shown in
Fig. 2.

B. The Associated Flow

To compute the first variation of (6), it is useful to intro-
duce an auxiliary function φ : Ω → R such that φ(x, y) < 0
in Ωi and φ(x, y) > 0 in Ωe, defining implicitly the curve
C as the zero level set of φ. Then the energy functional (6)
can be rewritten using the Heaviside function H(φ), as:

F = µ

∫

Ω

|∇H(φ)|dxdy

−
[

Ai log

(

1

Ai

∫

Ω

I(x, y)2H(φ)dxdy

)

+ Ae log

(

1

Ae

∫

Ω

I(x, y)2(1 − H(φ))dxdy

)

]

, (7)

where:

Ai =

∫

Ω

H(φ)dxdy,

Ae =

∫

Ω

(1 − H(φ))dxdy,

and [27]:

length{φ = 0} =

∫

Ω

|∇H(φ)|dxdy =

∫

Ω

δ(φ)|∇φ|dxdy.

The associated Euler-Lagrange equations are derived in
the Appendix and leads to:

0 = δ(φ)

[

µdiv

( ∇φ

|∇φ|

)

+ log

(

1

Ai

∫

Ωi

I2dxdy

)

+
AiI

2 −
∫

Ωi

I2dxdy
∫

Ωi

I2dxdy
− log

(

1

Ae

∫

Ωe

I2dxdy

)

−
AeI

2 −
∫

Ωe

I2dxdy
∫

Ωe

I2dxdy

]

. (8)

The first term of the right-hand side denotes the Eu-
clidean curvature of level curves. It represents the speed
of curve evolution in the normal direction.

In level-set methods, the Euler-Lagrange equation for φ
acts only locally, on a few level curves around φ = 0. To
extend the evolution to all level sets of φ, we replace δ(φ)
with |∇φ| [28]. Thus, (8) will act on all the level curves,
of course stronger on the zero level curve. From (8), we
simply get the associated flow as:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂tφ = |∇φ|
[

µdiv

( ∇φ

|∇φ|

)

+ log

(

1

Ai

∫

Ωi

I2dxdy

)

+
AiI

2 −
∫

Ωi

I2dxdy
∫

Ωi

I2dxdy
− log

(

1

Ae

∫

Ωe

I2dxdy

)

−
AeI

2 −
∫

Ωe

I2dxdy
∫

Ωe

I2dxdy

]

in Ω×]0,∞[

φ(x, y, 0) = φ0(x, y) in Ω
δ(φ)

|∇φ|
∂φ

∂n
= 0 on ∂Ω.

(9)
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Fig. 2. Example of the time evolution of the initial condition (white
circle in the upper right panel) considering the maximum likelihood
algorithm applied to a synthetic image effected by Rayleigh noise
(upper left panel). Images represents the solution of our model at dif-
ferent times, during which the curve moves to reach the final steady
state.

where φ(x, y, 0) is an initial function with the property
that its zero level set corresponds to the position of the
initial front. Typically it is defined by:

φ(x, y, 0) = ±d, (10)

where d is the signed distance function from each point
to the initial front [29]. (δ(φ)/|∇φ|)(∂φ/∂n) = 0 are the
boundary conditions. The evolution process will stop when
the region probability terms of the inside regions do equal
the terms of outside regions, up to regularization of bound-
aries. When working with level set and Dirac delta func-
tion, in order to prevent that the level set function becomes
too flat or too steep, a standard procedure is to reinitial-
ize φ to the signed distance function to its zero level curve
as in [28] and [23]. This can be seen as a rescaling and
regularization. Only for a few numerical results we have

Fig. 3. Graphical explanation of the reinitialization process: it pre-
vents any topological changes due to the arising of new regions that
can be generated only by splitting of an existing contour (upper fig-
ures) and not by arising of new maxima in the level set function
(bottom figures).

applied the re-initialization, solving the following evolution
equation [30]:

{

ψτ = sign(φ(t))(1 − |∇ψ|),
ψ(x, y, 0) = φ(x, y, t)

, (11)

where φ(x, y, t) is the solution of (9) at time t. Then the
new φ(x, y, t) will be ψ, such that ψ is obtained at the
steady state of (11). The solution ψ(x, y, t) will have the
same zero level set of the φ(x, y, t), and everywhere |∇φ|
will converge to 1. In this way, any topological changes
due to the arising of new regions are prevented. In other
words, new regions can be generated only by splitting of
an existing contour and not by arising of new maxima in
the level-set function as graphically explained in Fig. 3. To
discretize this term, we use the scheme proposed in [28].

III. Numerical Approximation

In this section, we show how to approximate (9) with
finite differences. For following fronts propagating with
curvature-dependent speed, we exploit propagation of sur-
face by curvature (PSC) algorithms introduced in [15].
These algorithms approximate the equations of motion,
which resemble Hamilton-Jacobi equations with parabolic
right-hand sides, by using techniques coming from hyper-
bolic conservation laws. In this way a correct entropy-
satisfying approximation of the difference operator is built.

Let us consider a rectangular uniform grid in space-time
(t, x, y); then the grid consists of the points (tn, xl, ym) =
(n∆t, l∆x,m∆y). Following standard notation, we denote
by φn

lm the value of the function φ at the grid point
(tn, xl, ym). The first term in (9) is a parabolic contribu-
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tion to the equation of motion, and it is approximated with
central differences as follows:

Kg = |∇φ|div

( ∇φ

|∇φ|

)

=
D0x2

lm D0yy
lm − 2D0x

lmD0y
lmD0xy

lm + D0y2

lm D0xx
lm

D0x2

lm + D0y2

lm

, (12)

where D is a finite-difference operator on φn
lm and the su-

perscript {0} indicates central difference. The term |∇φ|
can be approximated using the upwind schemes [15]:

G =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

(

max
(

D−x
lm , 0

))2
+
(

min
(

D+x
lm , 0

))2

+
(

max
(

D−y
lm , 0

))2
+
(

min
(

D+y
lm , 0

))2
]1/2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,
(13)

where the superscripts {−,+} indicate backward and for-
ward differences, respectively, and the superscripts {x, y}
indicate the direction of differentiation. This scheme is
used to avoid the front passing through itself during the
evolution when a corner develops.

We then can write the complete first order scheme to
approximate (9) as follows:

φn+1
lm = φn

lm

+∆t
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µKg (φn
lm) + G (φn

lm)
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⎢

⎣

log

(

1

Ai (φn
lm)

∑

Ωi

I2
ij

)

+
Ai (φn) I2

lm −∑Ωi
I2
ij

∑

Ωi
I2
ij

− log

(

1

Ae (φn
lm)

∑

Ωe

I2
ij

)

−
Ae (φn) I2
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Ωe
I2
ij
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Ωe
I2
ij
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⎭

.

(14)

The time step ∆t is upper bounded by the Courant-
Friedrich-Levy (CFL) condition that ensures the stability
of the evolution [31]. For further details on the derivation
of this condition, we refer to [15].

IV. Results

The method has been applied to a variety of ultrasound
images of clinical interest. Table I summarizes the exper-
imental details for all the data we used in the study. All
of them have been acquired as digital output of the ul-
trasound equipment containing the envelope of the radio-
frequency signal, and we did not have access to the radio-
frequency signal directly. In a subset of images, only
qualitative analysis has been performed and for most of
acquired data a quantitative analysis has been applied.
Quantitative analysis included: verification of the assump-
tion of Rayleigh distribution and comparison of the results
of our segmentation with the results derived from manual
tracing.

To verify the assumption of Rayleigh distribution on all
the images, we compared the theoretical Rayleigh distri-
bution with the histogram of the experimental ultrasound
images as suggested in [32], [33] and we performed the Kol-
mogorov Smirnov test following Georgiou and Cohen [34].
The estimation of the probability density function from the
samples was performed applying the maximum likelihood
algorithm and the root mean square error of the estimation
was calculated for each fitting. In Fig. 4 we present an ex-
ample of the Rayleigh probability density function and the
measured speckle pattern histogram of our image. For this
example the root mean square error (rmse) of the estima-
tion resulted in 0.019. For the entire data set we processed,
the mean rmse was 0.082. The Kolmogorov Smirnov test
was performed on uniform regions of myocardium. The
hypothesis of Rayleigh distribution was accepted on 13 of
15 images, by setting the test significance at a 5% level
(p < 0.05). In the worst case in which the hypothesis was
accepted, the observed Kolmogorov Smirnov statistic was
0.082 and the cutoff value for determining if this statistic
was significant resulted in 0.09.

A. Qualitative Results

The simulations were performed in Matlab 6.1 (The
MathWorks Inc., Natick, MA), on a Pentium IV per-
sonal computer, 3.06 Ghz, 480 Mb random access mem-
ory (RAM). The time needed for the analysis of one image
varied from a few seconds to a few minutes, depending on
the data size. The required operator interaction consists
of one point selection in the image, then the analysis is
completely automatic. Therefore, our method is less user
demanding than manual segmentation.

In our numerical experiments, we have used, for sim-
plicity, ∆x = ∆y = 1 and ∆t = 0.1, that is the classic
configuration parameters used in [15]. Only the length pa-
rameter µ, which has a scaling role, is not the same in all
experiments. If we have to detect many objects and of any
size, µ should be small. If we have to detect only larger
objects, and to not detect smaller objects (like points, due
to the noise), then µ has to be larger. We will give the ex-
act value of µ each time, together with the initial level set
function φ0. In Fig. 5 we present the result of the segmen-
tation with different values of the parameter µ to explain
its role. In order to find the relationship between µ and
the curvature, we consider some circles of different radius
(the radius of the circle is the inverse of curvature). The
first has a radius of 0.5 pixels, and the last of 6 pixels (the
step is of 0.5 pixels). The initial condition for this test was
a multiple distance function automatically generated and
independent from the image:

φmd(x, y) =
∑

i

∑

j

φ0(x0 + i∆x, y0 + j∆y).
(15)

The test required 500 iterations before the flow reached
the steady state. If µ = 0.001 then all the objects are
correctly detected, increasing µ it is possible to segment
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TABLE I

Experimental Details of the Images We Used in the Study.1

Data Transducer TCF1 (MHz) Acquisition1 Analysis1

1 fetal echography (Fig. 10) Phased Array 5 transth qual
1 right atrium (Fig. 7) Phased Array 3.5 transth qual
1 left atrium (Fig. 8) Phased Array 3.5 transth qual

11 left ventricles (Fig. 13 (up), 4) Matrix 2.5 transth quant
2 left ventricles (Fig. 9, 13 (down)) Phased Array 3.5 transth quant

2 left ventricles (Fig. 12) Phased Array 5 transes quant

1TCF, Transducer center frequency; transth, transthoracic acquisition; transes, transesophageal ac-
quisition; quant, quantitative analysis; qual, qualitative analysis.

Fig. 4. On the right panel, example of the fitting between the Rayleigh probability density function and the measured histogram of a
myocardial region of the B-scan image shown on the left.

only bigger objects. The relationship between µ and the
radius is monotonic and can be represented easily in a
logarithmic form (Fig. 6).

In the following images the observed pixels are mod-
eled as Rayleigh distributed random variables with means
depending on their position relative to the contours. We
consider as an initial function a distance function:

φd(x, y) =
√

(x − x0)2 + (y − y0)2 + R,

where (x0, y0) is a reference point chosen anywhere within
the object to be detected, and R is a constant term. The
function φ0(x, y) = φd(x, y) has to be introduced as the
initial condition of the flow.

In Figs. 7 and 8, we show anatomical structures seg-
mentation from an echocardiographic image. To segment
the right atrium chamber and the left atrium chamber, we
choose a point internal to the chamber to be segmented
(Figs. 7 and 8, upper left). We present some evolution
steps to explain how our method works and observe that,
due to the level set implementation, automatical change
of topology is allowed. It is necessary that µ assumes a
big value in order to conserve the stability of the solution:
in this case µ = 2. At the end of the evolution, the front
coincides with the boundary of the chamber (Fig. 7 and
Fig. 8, bottom right).

In Fig. 9 we consider a typical echocardiographic four
chamber view acquisition. We want to segment the left
ventricular chamber. The initial curve does not necessarily
surround the object. This computation is performed with
µ = 1.

In the next images we consider a different initial func-
tion: a multiple distance function as for Fig. 5. In this
case, we segment all the objects in the image. An example
of the use of such function is shown in Fig. 10, in which
we apply the segmentation method to a fetal echography.
The parameter µ must be big because we are interested to
segment a larger area (µ = 0.1). By considering a multiple
distance function as initial function, all the objects present
in the image are segmented. In this case, both uterus and
fetus have been detected. This can be an advantage (as in
Fig. 5) or not, depending on the segmentation task.

B. Validation Results

To determine the reliability of the automated measure-
ments versus the gold standard, represented by manual
tracings, a set of 15 ultrasound images acquired with dif-
ferent echographic systems, was analyzed by an expert ob-
server. The operator manually traced the contour of the
anatomical structure of interest, obtaining the correspond-
ing areas. Linear regression and Bland-Altman analyses
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Fig. 5. Graphical representation of the calibration of µ: original fig-
ure (upper left); segmentation with µ = 0.001 (upper right); seg-
mentation with µ = 0.1 (bottom left) and segmentation with µ = 2
(bottom right). As shown in the four panels, for a small value of µ,
small objects can be detected in the image; for greater values of µ,
bigger objects can be evaluated better.

were performed between the manually traced areas, consid-
ered as the gold standard, and the measurements obtained
applying our method. Moreover, the digitized manual con-
tours also were overimposed and compared point-to-point
to the corresponding level set contours by the computation
of the Hausdorff distance [35], [36]: it measures the degree
of mismatch between two sets of points, C1 and C2, by
evaluating the distance between the point a of C1 that is
farthest from any point b of C2 and vice versa:

H(C1, C2) = max(h(C1, C2), h(C2, C1)), (16)

with h(C1, C2) = maxa∈C1
minb∈C2

‖a − b‖.
The comparison between the automated versus the

manually traced contours resulted in a very good agree-
ment in the areas calculated with both techniques, with
an excellent correlation (r = 1), and an absolute mean er-
ror, expressed in percentage of the gold standard value, of
2.7% ± 2.4%. Bland-Altman analysis resulted in a negli-
gible negative bias of −0.17 cm2 for the automated ver-
sus the manual measures, with the 95% confidence equal
to 0.82 cm2. In Fig. 11 the linear regression and Bland-
Altman results are graphically reported. An example of the
automated versus the manually traced contours is shown
in Fig. 12 where the good correspondence can be appreci-
ated. This was confirmed by the global results relevant to
the Hausdorff distance in which a mean value of 1.1 pixel
(range: 0.4 ÷ 1.9 pixels) and a mean maximum value of
4.3 pixels (range: 2 ÷ 8 pixels) were found versus the gold
standard. The results of the analysis are summarized in
Table II.

Fig. 6. Loglog graph of the relation between µ and the radius. The
stars are the points obtained with the simulation; the straight line
fits these points.

On five images we compared our maximum likelihood
segmentation method with the original Chan and Vese for-
mulation. We overimposed the contour obtained applying
the methodology proposed by Chan and Vese [23] with the
manual tracing. Minimizing the difference between the two
contours we derived the best parameters’ values for the
Chan and Vese equation. Then we compared the contour
obtained applying this choice for the parameters’ values
and the result of the maximum likelihood segmentation
method. The two methodologies resulted in quite similar
results: in particular the Hausdorff distance resulted in a
mean value of 1.8 pixel (range: 1.2 ÷ 2.3 pixels) and in a
mean maximum value of 7.8 pixels (range: 5 ÷ 10 pixels)
versus the gold standard. The area values compared to
manually traced areas resulted in a mean percentage error
of −1.7% (range: −14.5 ÷ 2.6%). Directly comparing the
two methods with the gold standard on the same group of
images, our method showed an absolute mean percentage
error of 1.6% versus 4.2%, an improvement of the accuracy
of a factor 2.7. This is relevant for quantitative evaluation
of functionality parameters of the heart in clinical practice.
The results of the analysis are summarized in Table III.
Two examples are shown in Fig. 13. For the upper panel
we found an error of 2.6% versus the manually traced con-
tour’s area and 0.1% versus the area calculated applying
the maximum likelihood segmentation method. The maxi-
mum error and mean error for the Hausdorff distance were
8 pixels and 2.3 pixels, respectively, compared to the gold
standard; the contour obtained with our method resulted
in a maximum error and a mean error for the Hausdorff
distance of 5 pixels and 1.5 pixels, respectively, compared
to the gold standard. For the bottom panel, we found an
error of −0.3% versus the manually traced contour’s area
and 0.2% versus the area calculated applying the maxi-
mum likelihood segmentation method. The maximum er-
ror and mean error for the Hausdorff distance were 8 pixels



954 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 6, june 2005

Fig. 7. Initial condition (upper left) and some evolution steps of the segmentation of a cardiac chamber from an echocardiographic acquisition.
The final contour (bottom right) well represents the chamber boundary, even in the presented case of the right atrium. The convergence
was reached in 200 iterations.

Fig. 8. Segmentation of anatomical structure from an echocardiographic image: initial condition (upper left) and final detected contour
(bottom right) of the left atrium. The convergence was reached in 200 iterations.
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Fig. 9. Initial condition (upper left) and some evolution steps of the segmentation of left ventricle from a typical echocardiographic four
chamber view acquisition. The convergence was reached in 150 iterations.

and 2.30 pixels, respectively, compared to the gold stan-
dard; the contour obtained with our method resulted in a
maximum error and a mean error for the Hausdorff dis-
tance of 7 pixels and 1.9 pixels, respectively, compared to
the gold standard.

V. Conclusions

A mathematical model and computational algorithm to
segment ultrasound images has been presented. The tech-
nique is based on level-set methods and exploits the a pri-
ori knowledge about the statistical distribution of image
gray levels. Because ultrasound images show a low sig-
nal/noise ratio, it is often dangerous to compute differen-
tial quantities of the image signal. The method we propose
is good because it uses only integral quantities of the im-
age and it does not introduce high-frequency noise. Only

one parameter has to be set, and it allows one to choose
easily the maximum curvature admissible in the segmen-
tation. The initial condition can be either selected by the
user as a distance function or automatically set as a multi-
ple distance function. In the first case, used together with
reinitialization, the flow stops when a local minimum close
to the initial condition is reached. In the latter one, the
segmentation of all the objects in the image is reached, as
in [23].

Appendix A

PDF Optimal Parameters Estimation

In this section we present how to estimate the opti-
mal parameters of the pdf with a maximum likelihood ap-
proach, accordingly with [25]. The Rayleigh probability
function is defined by:
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p(I(x, y)) =
I(x, y)

σ2
exp

(

−I(x, y)2

2σ2

)

,

where σ is the parameter of the law and I(x, y) take dis-
crete values. Let σi and σe be the parameter values for the
target and for the background pixels. The log-likelihood is
thus:

l(I, C, σi, σe) = log

⎛

⎝

∏

(x,y)∈Ω

p(I(x, y))

⎞

⎠ =

∑

(x,y)∈Ωi

(

log(I(x, y)) − I2(x, y)/(2σ2
i ) − 2 log(σi)

)

+

∑

(x,y)∈Ωe

(

log(I(x, y)) − I2(x, y)/(2σ2
e) − 2 log(σe)

)

=

∑

(x,y)∈Ωi

log(I(x, y)) −
∑

(x,y)∈Ωi

I2(x, y)/(2σ2
i ) −

2Ai log(σi) +
∑

(x,y)∈Ωe

log(I(x, y)) −

∑

(x,y)∈Ωe

I2(x, y)/(2σ2
e) = 2Ae log(σe),

where Ai and Ae are, respectively, the number of pixels
of the target and of the background. The maximum likeli-
hood estimate of the parameters σi and σe are the values
that maximize l(I, C, σi, σe) and are obtained by equating
to zero the first derivative with respect to σi:

∂l/∂σi = 2
∑

(x,y)∈Ωi

I2(x, y)/(2σ3
i ) − 2Ai/σi = 0,

and to σe:

∂l/∂σe = 2
∑

(x,y)∈Ωe

I2(x, y)/(2σ3
e) − 2Ai/σe = 0.

Then the optimal values for the parameters can be com-
puted easily:

σ̂2
i =

∑

(x,y)∈Ωi

I2(x, y)/(2Ai),

and:

σ̂2
e =

∑

(x,y)∈Ωe

I2(x, y)/(2Ae).

By introducing these estimates back in the log-
likelihood, we obtain:

l(I, C, σ̂i, σ̂e) =
∑

(x,y)∈Ω

log I(x, y) − N

− Ai log

⎛

⎝

∑

(x,y)∈Ωi

I2(x, y)/(2Ai)

⎞

⎠

− Ae log

⎛

⎝

∑

(x,y)∈Ωe

I2(x, y)/(2Ae)

⎞

⎠ ,

Fig. 10. Segmentation of fetal echogram: the original image (upper
left), the distance function (upper right), some steps of the curve
evolution, and the segmented boundary (bottom right). The conver-
gence was reached in 300 iterations.

where N is the total number of pixels. All the terms of the
right-hand side not depending on the partition Ωi and Ωe
can be omitted. Then we find the criterion used in (5):

J(I, C) = −l(I, C, σ̂i, σ̂e) =

Ai log

⎛

⎝

∑

(x,y)∈Ωi

I2(x, y)/Ai

⎞

⎠+

Ae log

⎛

⎝

∑

(x,y)∈Ωe

I2(x, y)/Ae

⎞

⎠ ,

in agreement with [25].
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Fig. 11. Linear regression analysis (left panel) and Bland-Altman analysis (right panel) comparing manual tracing estimates and area values
obtained applying our maximum likelihood segmentation method.

TABLE II

Statistical Analysis Results Comparing the Maximum Likelihood Segmentation Results with the Manual Tracing Results.

Hausdorff distance (pixel)
mean distance

Linear regression equation r bias ± S.D. mean of maximum distances

1.1 (range, 0.4 ± 1.9)
Max likelihood model y = 0.98x + 0.07 1 −0.17 + 0.41

4.3 (range, 2 ± 8)

TABLE III
Results of the Comparison Between the Results Obtained with the Maximum Likelihood Segmentation Model

and the Chan Vese Model.

Maximum
likelihood

segmentation Chan-Vese model

Abs mean error vs. reference (mean ± SD, %) 1.6 ± 1.8 4.2 ± 5.8
Hausdorff distance (pixel)

mean distance 1.3 (range, 0.9 ± 1.9) 1.8 (range, 1.2 ± 2.3)
mean of maximum distances 4.4 (range, 2 ± 7) 7.8 (range, 5 ± 10)

Appendix B

Functional Minimization

In this section we explain how to minimize the func-
tional (7). We will derive the Euler-Lagrange equations
and the associated flow.

The problem can be expressed using the first variation
of the functional with respect to φ. Introducing a test func-
tion ψ of the same type of φ, it is necessary to solve the
following equation:

lim
t→0

1

t
(F (φ + tψ) − F (φ)) = 0.

In order to compute this variation, we consider a slightly
regularized version of the Heaviside function H, and of the
one-dimensional Dirac measure δ, denoted, respectively, by
Hε and δε, as follows:

Hε(x) =
1

2

(

1 +
2

π
arctan

(x

ε

)

)

,

δε(x) =
d

dx
Hε(x) =

1

π
· ε

ε2 + x2
.

Thus the minimization problem is so expressed:

lim
t→0

1

t
(F (φ + tψ) − F (φ))

=

∫

Ω

µ

(

δ′

ε(φ)|∇φ|ψ + δε(φ)
∇φ∇ψ

|∇ψ|

)

dxdy

−
∫

Ω

δε(φ)

[

log

(

1
∫

Ω
Hε(φ)dxdy

∫

Ω

I2Hε(φ)dxdy

)

+
I2
∫

Ω Hε(φ)dxdy −
∫

Ω I2Hε(φ)dxdy
∫

Ω I2Hε(φ)dxdy

− log

(

1
∫

Ω
(1 − Hε(φ))dxdy

∫

Ω

I2(1 − Hε(φ))dxdy

)

−I2
∫

Ω(1−Hε(φ))dxdy−
∫

Ω I2(1−Hε(φ))dxdy
∫

Ω
I2(1−Hε(φ))dxdy

]

ψdxdy =0.

Integrating by parts and using Green’s theorem, we
obtain:
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Fig. 12. Example of the extracted contour obtained by the maximum
likelihood segmentation method (white dashed line) compared to the
manual tracing contour (white solid line) both applied to a cross
sectional intracardiac acquisition with a catheter inserted through a
sheath.

∫

Ω

µδ′

ε(φ)|∇φ|ψdxdy +

∫

∂Ω

µ
δε(φ)

|∇φ|
∂φ

∂n
ψds

−
∫

Ω

µ∇
(

δε(φ)
∇φ

|∇φ|

)

ψdxdy

−
∫

Ω

δε(φ)

[

log

(

1
∫

Ω Hε(φ)dxdy

∫

Ω

I2Hε(φ)dxdy

)
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I2
∫

Ω Hε(φ)dxdy −
∫

Ω I2Hε(φ)dxdy
∫

Ω
I2Hε(φ)dxdy

− log

(

1
∫

Ω
(1 − Hε(φ))dxdy

∫

Ω

I2(1 − Hε(φ))dxdy

)

−I2
∫

Ω
(1−Hε(φ))dxdy−

∫

Ω
I2(1−H(φ))dxdy

∫

Ω I2(1−Hε(φ))dxdy

]

ψdxdy =0.

Formally developing the divergence operator, we finally
obtain:

−
∫

Ω

µδε(φ)∇
( ∇φ

|∇φ|

)

ψdxdy +

∫

∂Ω

µ
δε(φ)

|∇φ|
∂φ

∂n
ψds

−
∫

Ω
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[

log

(

1
∫
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∫
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Fig. 13. Two examples of the extracted contour obtained by the Chan
Vese original method (white solid line) and the maximum likelihood
segmentation method (white dashed line) compared to the manual
tracing contour (gray line).
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This expression must vanish for all test function ψ. Thus
we obtain:

0 = δε(φ))

[

µdiv

( ∇φ

|∇φ|

)

+ log

(

1
∫

Ω Hε(φ)dxdy

∫

Ω

I2Hε(φ)dxdy

)

+
I2
∫

Ω
Hε(φ)dxdy −

∫

Ω
I2Hε(φ)dxdy

∫

Ω I2Hε(φ)dxdy

− log

(

1
∫

Ω
(1 − Hε(φ)) dxdy

∫

Ω

I2 (1 − Hε(φ)dxdy)

)

− I2
∫

Ω(1 − Hε(φ))dxdy −
∫

Ω I2(1 − Hε(φ))dxdy
∫

Ω
I2(1 − Hε(φ))dxdy

]

.

If ε → 0, the approximation Hε e δε converge to H and
δ, and we finally obtain the Euler-Lagrange (8). From this
equation it is easy to determine the associated flow (9).
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