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Abstract

We describe a simple technique for fitting spectra that  is applicable to any problem of
adjusting a theoretical spectral form to fit observations.  All one needs is a functional form
for the theoretical spectrum, and an estimate for the instrumental noise spectrum.  The
method, based on direct application of the Maximum Likelihood approach, has several
advantages over other fitting techniques:

1.  It is unbiased in comparison with other least-squares or cost function-based approaches.

2.  It is insensitive to dips and wiggles in the spectrum.  This is because the range of
wavenumbers used in the fit does not vary, and the built-in noise model forces the routine
to ignore the spectrum as it gets down towards the noise level.

3.  Error bars.  There is a theoretical estimate for the variance of the fitted parameters,
based on how broad or narrow the likelihood function is in the vicinity of its peak.

4.  We calculate statistical quantities that indicate how well the observed spectrum fits the
theoretical form.  This is extremely useful in automating analysis software, to get the
computer to automatically flag "bad" fits.

The method is demonstrated using data from SCAMP (Self-Contained Autonomous
Microstructure Profiler), a free-falling temperature microstructure profiler.  Maximum
Likelihood fits to the Batchelor spectrum are compared to the SCAMP-generated fits and
other least-squares techniques, and also tested against pseudo-data generated by Monte-
Carlo techniques.

Pseudo-code outlines for the spectral fit routines are given.
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1.  Introduction: Turbulent Microstructure - what are cccc  and    eeee????

When a thermally-stratified fluid is stirred, fluid parcels are moved from warm to cold

regions (and vice-versa), where they become thermal anomalies.  As a result, the mean-

square thermal perturbations T©( )2  grow.   The budget equation for the variance of these

thermal anomalies is, neglecting a divergence term (Osborn and Cox, 1972):
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where primes denote turbulent quantities,  the thermal diffusivity,  and

(1.)

The first term on the right of (1), the product of turbulent heat flux and average thermal

gradient,  describes the production of thermal anomalies by stirring.

As soon as thermal anomalies are formed, they begin to blend into the background by

molecular heat diffusion.  The rate of decrease of thermal variance due to molecular
diffusion, is represented by  the second term on the right, - cq .  If the production and

dissipation terms balance on average, the turbulent heat flux can be estimated by measuring
cq  and the mean temperature gradient (Osborn and Cox, 1972).  Microstructure profiles of

a single component of temperature gradient (i.e., ¶T'/¶z) on cm or smaller scales are often
used to infer cq  and hence heat flux.

Similarly, stirring imparts kinetic energy ( TKE u v w= ¢ + ¢ + ¢( )r
2

2 2 2 ) to the turbulent

motions (first term on the right, below), and this energy is partially expended in increasing

the potential energy of the system (second term), with the rest being dissipated by

molecular viscosity (e, third term).  The TKE budget equation expressing this balance is,

approximately (c.f., Ruddick et al 1997)
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is the rate of viscous dissipation, and is proportional to the mean-square straining of the

turbulent eddies.  It is usually measured by direct observation of microscale shears.  The

rhs expresses, respectively, the increase of TKE by stirring, the conversion to mean

potential energy by turbulent buoyancy flux, and energy loss by viscous dissipation.

Observations of e, usually obtained directly via observations of microscale shear, can be

used to infer an upper bound for the turbulent buoyancy flux (Osborn, 1980).  When both

c and e are observed, then the combination can be used to infer mixing efficiency (Oakey,

1982, Moum, 1996), and have been used to test for unequal mixing of heat and salt

(Ruddick et al, 1997, St. Laurent et al, 1999)

Dillon and Caldwell (1980) and Oakey (1982) showed that it is possible to estimate cq

directly plus e indirectly by fitting observed temperature gradient spectra to the theoretical

"Batchelor" form, whose cutoff wavenumber depends on Epsilon and thermal diffusivity

(section 2).  An instrument used for this purpose is described in section 3.

The main content of this paper, section 4, is a description of a  relatively simple and useful

technique for fitting theoretical spectra to observations.  It was developed in the context of

Batchelor spectral fitting, but should be useful in the context of fitting any theoretical

spectrum to observations.  It is based on the direct application of the Maximum Likelihood

Estamation (MLE) principle, resulting in an efficient and unbiased estimator.  The

technique has three additional advantages over more conventional least-squares techniques:

¥ Least squares techniques assume Gaussian errors, while MLE does not.

¥ Error bars - a theoretical estimate for the standard error of the fit parameters (in this

case, the Batchelor wavenumber and e), and

   ¥ Rejection criteria - a statistical measure to indicate when the observed and theoretical

spectra are too poor a match to be accepted.

Examples of the application of the technique to Batchelor spectral fitting are given in section

5.  Monte-Carlo tests of the method, in comparison with least-squares and other cost-

function techniques, are shown in section 6.  Discussion is in section 7, and the MLE meta-

code is given in Appendix A.



Ruddick et al MLE Spectral Fitting Page  4

2.         Batchelor spectrum

Batchelor (1959) discussed the small-scale behaviour of passively convected, diffusive

scalars like temperature and salinity in the presence of turbulence.  He noted that for scales

smaller than the Komolgorov viscous cutoff scale, (n3/e)(1/4), the flow appears as a

randomly varying straining motion with root mean square strain rate (and corresponding

inverse timescale) t-1 = 0.5 (e/n)(1/2).  The strain concentrates the large-scale temperature

gradient to form a "micro-front", and molecular diffusion then acts to keep the front from

becoming infinitely sharp (see figure 1).  Strain and diffusion balance when the frontal
width is the diffusion scale,   l = k tT , and eliminating t  in favour of e  gives
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 the "Batchelor cutoff wavenumber".   Note that the units of kB are in radians per meter; the

conversion factor 2p radians per cycle must be applied to convert to cpm.

Thermal Micro-front,
width l

Figure 1 - Straining field in a mean

temperature gradient, and "micro-

front" produced by the convergence.

Batchelor (1959) was then able to solve the advection-diffusion equation for temperature,

driven by turbulent strain and a large-scale temperature gradient, to derive an analytic

expression for the high-wavenumber part of the temperature gradient spectrum:
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The universal constant q  is in the range 3.4-4.1 (Dillon and Caldwell, 1980, Oakey,

1982), and the value 3.4 is used here in order to match that used in the SCAMP software.

Dillon and Caldwell (1980) note that a percentage error in q leads to twice the percentage

error in e.

This spectrum is a self-similar form that scales with the Batchelor wavenumber, kB, rising
slowly to the Batchelor cutoff, and falling exponentially beyond it.  Changing cq  shifts the

spectrum vertically, and changing e with cq  fixed shifts the spectrum without change of

shape along a line of slope -1 (Figure 2).
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Figure 2:  Batchelor Spectrum for various kB, including estimated SCAMP instrumental
noise level (3¥10-7 (ûC/m)2/cpm), with cq  constrained according to eq. (9).  The kB value

corresponding to each curve is indicated with a plus, and the approximate  corresponding

dissipation level, e, is shown by the second logarithmic scale below the k-axis.  The effects

of changing cq  and e on the spectrum are indicated by arrows.   An observed spectrum is

shown.

Dillon and Caldwell (1980) made well-resolved observations of temperature gradient

spectra, and tested these against the hypothesized Batchelor scaling, forming ensemble-

averaged dimensionless spectra.  They found the observed gradient spectra matched the
Batchelor form exceptionally well for intense turbulent events (Cox numbers c kq 6

2
T zT( )

greater than 2500), and deviated at low wavenumbers for Cox numbers less than 500.  In

all cases the peak and cutoff agreed well with theory.
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Oakey (1982) made direct velocity-based observations of e simultaneously with

temperature gradient measurements, and compared the e found from Batchelor fits to

selected, well-resolved records with the velocity-based  e.  He found the agreement to be

excellent, proving that  e can be estimated from well-resolved temperature gradient spectra.
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3.         SCAMP

SCAMP (Self-Contained Autonomous Microstructure Profiler) is a small, hand-held

profiling instrument manufactured by Precision Measurement Engineering of Encinitas,

CA.  It free-falls slowly through the water column at a nominal rate of 0.1 m/s and

measures T  at 100 Hz in order to resolve the Batchelor spectral peak.  The instrument also

can be fitted with microscale conductivity, accurate T, conductivity, and dissolved oxygen

sensors, and has a pressure sensor for instrument depth.

Processing sofware  (HOST) provided with the system estimates cq  and e by fitting the

Batchelor form to the measured temperature gradient spectrum.  The HOST software uses a
weighted least squares algorithm, adjusting both cq  and e to minimize the cost function

C1 = 
ki

å ((Sobs - SB)/ SB)2 (5)

which  is the square of the difference between Batchelor spectrum ( SB) and observed

(Sobs), weighted by the squared Batchelor spectrum.  The wavenumber range used for the

fit is selected to avoid regions dominated by instrumental noise.
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Figure 3 - SCAMP fit example, using C1, equation 5.  MLE fit (section 4) is shown for

comparison.  Note the cutoff for the SCAMP fit (C1) to avoid the noise-dominated high-

wavenumber region.  Same observational spectrum is used in figures 2 and 3.

Poor convergence of the HOST fit algorithm (version 1.08 - since improved) led us to

develop improved fit techniques.  An additional goal was to develop fitting algorithms with

rejection criteria that could be completely automated, making it unnecessary to manually

edit the results for poor fits.  These should be useful in a variety of spectral fitting contexts,

and we describe them in section 4.

We began by constructing an instrumental noise model spectrum, and including that in the
theoretical fitted spectrum.  We also constrained cq to match the integrated temperature

gradient spectrum less modelled noise, leaving a single parameter to be varied, k.  Both

these improvements are described in more detail in section 4.1.  The remainder of the fitting

procedure involved generating a family of Batchelor spectra plus noise curves for all values
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of kB and selecting the one curve that provides the "best" match to the observed spectrum

(figure 2).

Cost Function approach

Prior to implementing the MLE algorithm (section 4.3), we experimented with a variety of

least-squares based cost functions, the first being weighted least squares, C1, described in

the previous section.  (A cost function is simply a measure of misfit.)  Another cost

function tried was:

C3 =  ln(S ) -  ln(S  )  obs th

2

k
å ( ) (6.)

with Sth= SB+ Sn denoting the theoretical spectrum, and Sn denoting instrumental noise.

This adjusts parameters to minimize the mean squared distance in log space between the

observed and theoretical spectra. Leuketina and Imberger (1999) minimize a similar

quantity, involving the mean squared distance in log space along a slope of +1.  This paper

also has an excellent discussion of the issues relating to instrument drop speed, fine

structure contamination, instrumental noise, and the range of wavenumbers to be used in

the fit.

We found that C3 works reasonably well, except that our Monte-Carlo tests found it to be

biased low.

We experimented with several other cost functions, some of which amounted to least-

squares with different kinds of weighting.  They are described in section 7, where they are

compared with each other and the MLE method using Monte-Carlo generated data sets.  We

eventually developed the MLE algorithm because we realized that experimenting with cost

functions was too ad-hoc, with little theoretical guidance.



Ruddick et al MLE Spectral Fitting Page  11

4.         Maximum Likelihood Spectral Fitting

Fitting a theoretical spectral form to observations is a common problem, and is usually

approached by a least-squares technique.  Most time series textbooks discuss the estimation

of Auto-Regressive-Moving Average (ARMA) models from time series of observations via

least-squares estimation; however, those (linear) techniques are difficult to adapt to the

fitting of a parametrically-defined spectrum such as the Batchelor form.  Leuketina and

Imberger (1999) discuss fitting the Batchelor spectrum to an observed spectrum, and

describe their experiences with a variety of least-squares-based cost functions.  They also

clearly discuss issues relating to instrument noise, finestructure contamination, and the

range of wavenumbers to be used in the fit.  The spectral fitting techniques we describe in

this section (allowing for instrument noise in the fitted spectrum, reduction to a single-

parameter fit, and direct application of the Maximum Likelihood method) yield a stable,

robust, and accurate algorithm that seems to be an improvement over least squares.

Although the techniques are not new, they have not been described in the context of the

common and important task of fitting a spectrum, and so are described below.  We describe

general improvements in section 4.1, then we give a "textbook-style" introduction to

estimating the mean by the method of maximum likelihood in section 4.2, and discuss

spectral fitting by direct application of MLE in section 4.3.  A significant advantage of MLE

is that, when the model is valid, the shape of the likelihood function yields an estimate for

error bars on the fitted parameters.  This is discussed in section 4.4.

Another aspect of fitting a spectrum to observations is that of deciding when a fit is too

poor to be accepted -- sometimes the theoretical spectrum cannot be made to fit the

observations acceptably well for any value of the parameters.  Priestley (1981, section

6.2.6) discusses several "goodness-of fit" tests designed to answer the question:  "Does the

spectrum computed from observations conform to the theoretical form hypothesized?"

However, most of the tests described require that the spectral form be fully specified a

priori, without being fit to the observations.  Since two parameters, the variance and the

Batchelor wavenumber, are constrained by the observations, the tests cannot be used.  An

exception is Bartlett's homogeneity of chi-squared test (Priestley, pp 486-488, Bartlett,

1954), which is, according to Priestley, "...asymptotically valid even when [the spectrum]

is not fully specified but involves parameters which must be estimated from the data".  This

test involves testing the ratio of the observed and theoretical spectrum to see if it is
consistent with a cd

2  probability distribution.  The approach is similar to the tests described
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in section 4.5, where we discuss various measures of spectral misfit and our experiences

with them.

4.1  General Improvements

1. Allow for instrumental noise spectrum Sn(k) as a component of the

theoretical spectrum.

It is important to recognize that instrumental noise will act as a lower limit to any measured

spectrum.  Leuketina and Imberger (1999), limit the range of their fit to wavenumbers not

dominated by noise.  If the fitted wavenumber range is varied with the trial kB, then the

cost function has local minima due to the statistical dips and wiggles in the observed

spectrum, making it more difficult to locate the global minimum, or to decide which

minimum to select.

If the instrumental noise spectrum Sn(k) can be estimated from bench tests, from quiet

sections of field records, or any other way, then it is simple to include it in the theoretical

spectrum that is fit to observations:

Sth(k)=SB(k)+ Sn(k) (7.)

The simple modification (7.) has the benefit that the fitted spectrum only changes in the

regions where the theoretical spectrum exceeds the noise level, and remains constant where

it lies below (figure 2).  Thus, any cost function does not change at locations where the

signal is less than the noise, and the fit "ignores" those regions.  For example, the

derivative of the cost function C3 with respect to kB can be easily calculated as:

¶
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¶
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The second factor on the right goes from 1 to 0 where the signal becomes less than the

noise, giving a smoothly varying weighting factor that depends on the expected

signal/noise ratio.

In our experience, it's better to slightly overestimate the noise than underestimate it.

Otherwise, most fit techniques will spend effort inappropriately trying to fit to noise.  The
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MLE fit in figure 3 was done using the simplest of noise models -white noise,  and in this

case the fit appears to work well and is not sensitive to the chosen noise level.  A more

detailed and accurate noise model, as is used in all later examples, allows successful fits in

situations with a much lower signal/noise ratio.  This noise model was made from a

parametric fit based on the SCAMP thermistor circuit and theoretical/electronics

considerations (M. Head, pers. comm. 1999).

2. Reduce the number of free parameters adjusted
Dillon and Caldwell (1980), and  Oakey (1982) showed how cq  is constrained by the

integrated temperature gradient spectrum, after allowance for instrument noise:

c kq = -( )
¥

ò6
0

T obs nS S dk (9.)

In the case of fitting the Batchelor spectrum, only a single parameter, kB, remains to be

adjusted.  This amounts graphically to sliding the Batchelor curve along a slope of -1, and

selecting the kB and corresponding e values that give the "best" fit (figure 2).

The advantages of reducing the dimension of the parameter space searched are many.

First, valuable observations are not "used" in adjusting parameters that can be determined

in other ways.  Second, the adjusted value of a parameter might be inconsistent with other

constraints, making it difficult to decide what to believe.  Third, searching in multiple

dimensions to minimize a computed quantity can be difficult and time-consuming,

especially if that quantity is not a quadratic.  The SCAMP software fit algorithm searched in

two dimensions using the Marquardt-Levy algorithm, and did not converge rapidly enough

in the kB direction, leading to significant inaccuracies in that parameter.

4.2  A Simple Example: MLE for Gaussian noise, and relationship

with least squares

The material in this section can be found in several statistics texts, and is included to remind

the reader how MLE leads to the familiar least squares minimization approach in the case of

Gaussian errors.  The MLE concepts are then applied to the specific case of spectral fitting

in section 4.3.

Suppose we measure the length of an object many times, each time with an error.  If the

error is distributed as a Gaussian, then the probability of obtaining  a measured length y is

given by:
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where Äa  is the true length, s is the standard deviation of the error (here assumed

constant), and C is a normalizing factor to make the integral of f  equal 1.  If we make a

histogram of a large number of measurements, it will look something like figure 4a.

What should we do if we don't know the true length, Äa , and wish to find the best

estimate of it from our observations?  The expected probability density function (pdf) of the

measured length is shown for a~1.7 in figure 4b.  The Maximum Likelihood Estimation

(MLE) procedure is analogous to considering the family of pdfs for all values of a, and

picking the one that agrees "best" with the observed histogram -- i.e., by sliding the

Gaussian curve (b) along the y-axis until it agrees best with the histogram (a).  For MLE,

"best" agreement is the value of a for which the particular set of observations is most

probable.

Consider a single measurement Ð the probability of finding it in the ith bin of fig. 4a,

centered on yi is the pdf times the bin width:
p f y yi i= ( )D (11.)

If we make N measurements,  yi = y1, y2, É.yN, the combined probability P of obtaining

that particular set of measurements is the product of the probability for each measurement:

P p

f y y

i
i

N

i
i

N

=

=

=

=

Õ

Õ
1

1

( )D
(12.)

Obviously, if the data set contains lots of measurements that are far from a, then it is a very

unlikely data set: f(y) is small for most points, and so P is small.
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Figure 4. (a) Histogram of observations of a quantity

with true value Äa  = 2, and Gaussian error.  (b)

Hypothesized Gaussian pdf with a ~1.7.  (c)  The

ln(probability) of our observations as a function of the

hypothesized value of a, showing how ln(P) is maximized

as a is changed.

Now we turn the question around - we know the y, but not Äa :

Given N observations of y, what is the value of a that

makes the observed y most likely?

To answer this, we guess a trial value of a, compute the likelihood P according to eq. 12,

and then repeat for all possible values of a.  We choose the a that gives the largest P Ð the

one with the Maximum Likelihood.  Maximising P is the same as maximizing ln(P), so it's

more convenient to maximize the sum of the log of individual probabilities:



Ruddick et al MLE Spectral Fitting Page  16

ln( ) ln

ln( )

ln ( ) ln( )

P p

p

f y N y

i
i

N

i
i

N

i
i

N

= æ
èç

ö
ø÷

=

= ( ) +

=

=

=

Õ

å

å

1

1

1

D

(13.)

and substituting the Gaussian pdf (10):
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Note that s, N, C, and Dy don't change when a is changed (C is important when the pdf is

non-Gaussian, or when estimating s).  So for Gaussian  error distribution, the a that makes

the observed data set "most likely" is the one that minimises the sum of squares

S
y ai

i

N

º
-( )

=
å

2

2
1 2s

.  If we compute S as a function of the trial a, we will in this case find S is

a parabola (figure 4c).  Minimizing S:
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Thus, the Maximum Likelihood estimate for a is the usual formula for the mean.

4.3  MLE model for Spectral fits

The exponential in the Gaussian pdf led in (14) to the sum of squares as the function to

minimize.  We don't need to assume a gaussian pdf for the observations, but can work

with any other form of pdf.  Going back to equation 13, we maximize ln( ) ln ( )P f yi
i

N

= ( )
=
å
1

,
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where f is the expected pdf of y. (Note that the NDy factor is a constant, and so can be

ignored.)

Our statistical model assumes the observed spectrum, Sobs, is equal to its theoretical value

(the Batchelor spectrum plus instrument noise), but is subject to statistical variability

(Jenkins and Watts, 1968) , and is distributed as a c2d pdf, with d degrees of freedom,

such that d depends on the spectral technique, window, and averaging methods used

(Jenkins and Watts, 1968):

Y
S

S di
obs

th

dº ~
c 2

(16.)

So the pdf for Sobs is:

f S
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with Sth given by (7).  The normalizing factor in front makes the integral of f  equal 1.

From equation 13, the MLE for kB is found by maximizing
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as a function of kB, with cq constrained by (9).  In our experience with fitting a Batchelor

spectrum, (18) has a single maximum, so that any simple search technique will suffice.

This may not be true for spectra badly contaminated with finestructure, or for other

theoretical spectral shapes, or for much noisier or more poorly resolved signals.  If a

spectral form with multiple adjustable parameters is fit, then more sophisticated search

techniques would need to be used.

There are two special cases of interest.  First, when the raw periodogram is used, so that

the degrees of freedom for the spectral estimator is d=2, then

c2
2 1

2 2( ) exp ( / )y y= - (19.)

(cf Jenkins and Watts, 1968), and C11 reduces to

C
S

S
S Nobs

thi

N

th
i

N

12 2
1 1

= - - +
= =
å å ln( ) ln( ) (20.)

in agreement with Brillinger (1985).  We verified that our computed C11 formula agreed

with C12 for d=2.
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Second, when d becomes asymptotically large (in practice, d must exceed about 60), then

the 
1 2

d dc  pdf becomes asymptotically normal with mean 1 and variance 2/d.  The MLE

estimate C11 becomes a weighted least squares estimate:

C
S S

S
S N

d
d

obs th

thi

N

th
i

N

11
1
4 41

2

1
®¥

= =

@ - -æ
èç

ö
ø÷

- + +
æ
èç

ö
ø÷å å ln( )

p
(21.)

which, aside from the second term, is equivalent to C1.

Figure 5, lower left panel, shows the likelihood function exp(C11) as a function of the trial

kB, computed for a SCAMP data segment with a large signal/noise ratio. The likelihood

function is remarkably close to a Gaussian shape, supporting the estimated error bars

(shown) that are described in section 4.4.  The lower right panel shows the SCAMP

temperature gradient spectrum, computed with 6 degrees of freedom using a Hanning

window, and the MLE fitted spectrum corresponding to the peak in the likelihood function.

We also show the parametric noise model adopted for the fits, and the alternative power

law fit (section 4.5).
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Figure 5.  MLE fit to observed spectrum. (c) Relative likelihood function exp(C11) (eq.

18) normalized to a maximum of 1 versus trial kB, and Gaussian function with same

second derivative at maximum.  Horizontal error bars indicate 1 standard deviation

according to eq. (22) by inner vertical bars, plus approx. 95% confidence limits by outer

vertical bars. Horizontal dash-dot line indicates the theoretical level of the variance (eq. 23),

and the concave upwards dash-dot curve is the total variance (23) as a function of trial kB.

(d)  Observed spectrum (thick curve) and MLE fit (upper thin curve).  Noise model is

shown as the lower thin curve.  Dash-dot line is least-squares fit to a power law plus noise

used for likelihood ratio computation (section 4.5).  See text for definitions of SNR, MAD,

var(Y), and LikelihoodRatio.  MAD(Y) and Var(Y)  in the legend are computed for the

range of wavenumbers for which signal exceeds noise. (a)  Histogram of the ratio of

observed and theoretical spectra, and theoretical pdf for comparison. (b)   Quantile-quantile

plot of observed spectral ratio and theoretical pdf.
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4.4  Error Bars on fitted parameters

For the case described in section 4.2, with measurements yi distributed about the true value

Äa  with a Gaussian pdf, the sum of squares  S
y ai

i

N

º
-( )

=
å

2

2
1 2s

 and the log-likelihood

function (14) are parabolic in a with curvature 
N

2 2s
.  So the likelihood function is a

Gaussian shape with variance s 2 N .

Consider, again for Gaussian observations yi, the MLE estimate of Äa .  By formula (15),

this is the average of the yi.  For Gaussian yi, the average is also distributed as a Gaussian,

with mean Äa  and variance , the same shape as the likelihood function above.  Thus, for

Gaussian observations, the likelihood function and the estimated mean have the same shape

pdf.  This analogy between the likelihood function and the pdf of the estimated parameter

allows us to use the curvature of the log-likelihood function to estimate the variance in any

MLE-estimated parameter.  This analogy is supported by the observation that the computed

likelihood function exp(C11) is usually found to be a good match to a Gaussian function

with the same curvature (see figure 5, lower left panel).

Priestley (1981, Section 5.2.2) derives from the Cramer-Rao inequality an expression for

the variance of the Maximum Likelihood estimator (18) for kB, in terms of the curvature of

the log-likelihood function at the maximum:

var( )
ln( ) ( )

k
E P k C kB

B B

³ - ( ) » - ( )
1 1

112 2 2 2¶ ¶ ¶ ¶
. (22.)

Thus the curvature of C11 at the peak gives a lower bound estimate for the standard error

of the fitted parameter kB, and corresponding error bounds on e.  This formula works for

any parameter estimated via MLE fitting, and can be extended to estimate a covariance

matrix for multiple parameter fits (Priestley, 1981).

4.5  Measures of misfit

There are many situations in which the observed spectrum simply has the wrong shape -

one that fails to match any of the family of theoretical spectra to the expected accuracy.

This may be because a data segment contains two or more mixing events with different e
(leading to multiple or indistinct cutoff), because the event is evolving and not in a

stationary balance, or for some other reason.  In such cases, the spectral fit to kB should be
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rejected, although integral variance measures such as cq  are probably valid.  We present

here two possible rejection criteria -- objective statistical measures that identify poorly

fitting spectra.  These should allow automated editing of processed data.  We also discuss

other goodness of fit measures that did not work very well.

PDF tests on Spectral ratio

When the theoretical and observed spectra match perfectly with the exception of statistical
sampling error, the quantity Y S k S ki obs i th iº ( ) ( )is distributed as d-1 times a cd

2  pdf, which

has an expected value of 1 and an expected variance of 2/d, where d is the equivalent

number of degrees of freedom for the spectral estimator used to compute Sobs.  A test of

the statistical model (16) is, therefore, to test for this pdf. Figure 5(a) shows the observed
histogram of Yi, along with the cd

2  pdf for d=6 ( the number of degrees of freedom

appropriate to the spectral window used).  The comparison is favorable, and certainly

makes the point that the spectral errors are far from Gaussian.  A more incisive test to see if
dYi, has a cd

2  pdf is the quantile-quantile (Q-Q) plot in the upper right panel (c) of figure 5.

A perfect match between theoretical pdf on the y-axis and the observed histogram on the x-

axis would result in a 1:1 straight line.  The Q-Q plot is quantified by the r2 value of the

straight-line fit, and/or the Komolgorov-Smirnov (K-S) test (Priestley, 1981, pp 480-481).

The spectral fit is good but not perfect (see the low observed values in the range of 50-90

cpm in figure 5d), yet the Q-Q plot is quite close to a straight line, with an r2 value of 0.97

and a K-S value of 0.08, indicating an acceptable fit.  Looking at the histogram or the Q-Q

plot requires manual editing, and the r2 value from the Q-Q plot tended to be high (well

above 0.9) even for rather poor fits, and so did not serve as a useful "rejection statistic".

We believe that this is because the Yi  statistic tends to be dominated by the large number of

spectral estimates from the noise-dominated wavenumbers.  The sensitivity of these

measures may be improved by restricting their calculation to wavenumbers for which the

signal exceeds the noise, but we did not experiment with that restricted calculation.

BecauseYi ¥d should have a cd
2  pdf,

E var( ) / .Y di{ } = 2 (23.)

Hence, when the spectrum fits perfectly we expect the variance of Yi  to equal 2/d and to

increase from that value as the spectrum deviates from the theoretical shape.  The "cost

function" (23), computed for all wavenumbers as a function of kB, is shown in figure 5,
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lower left panel, along with the expected value.  While the minimum occurs  fairly close to

the MLE-fit kB,and is close to (in this case slightly below) the theoretical value, the

minimum is very broad compared to the MLE maximum, suggesting that the error may be

larger than the MLE error.  This is found to be true using Monte Carlo tests in section 6.

We also computed the variance of Yi  over the range of wavenumbers for which the fitted

spectrum (SB) exceeds the noise (Sn) -- the value is shown in the legend of figure 5d.  This

seems to be a potentially useful indicator of spectral misfit (analogous to residual sum of

squares) - a rejection criterion would be a number significantly larger than that expected.

However, experience in using this measure on real data found it to not be as robust as a

similar measure, the Mean Absolute Deviation (MAD), also computed over the

wavenumber range where signal/noise exceeds 1.

MAD
n

S

S

S

S
obs

th

obs

thk k

k

i

n

2
1

1

º -
=
å , (24.)

In (24), kn indicates the wavenumber where signal matches noise.  Experience with both

(23) and (24) on real SCAMP data leads us to prefer (24) as being more robust, with

MAD2 values greater than 1.2 (for d=6) indicating unacceptable fits.  (Note: We call this

quantity MAD2 to distinguish it from a similar quantity MAD1, described in section 6.)

One advantage held by Var(Y) is the theoretical result that for a perfect fit Var(Y) should be

2/d.  We determined the equivalent "perfect fit" value for MAD2(Y) by computing the

expected value of 
c cd d

d d

2 2

-  in a Monte-Carlo fashion.  We found that an upper bound

for MAD2(Y) in the case of perfect fit is 2 d , the square root of E(Var(Y)). We take

twice this value as our rejection level.

Spectral smoothing Ð the selection of d

Although formula (18) is valid for general dof, there appears to be little advantage to doing

a lot of spectral smoothing.  The situation is analogous to the task of fitting a straight line

to, say, 20 points.  One could group them in clumps of 5 and fit a straight line to the four

averaged points.  The statistical fitting error is not reduced, but some bias is introduced,

due to lumping of different data points into single averaged values.  For the Batchelor

spectrum, with a sharp cutoff, spectral smoothing will smooth the cutoff, and therefore
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may introduce bias into the fit.  The advantage to smoothing is that more spectral

smoothing will reduce the scatter of the observed spectrum and hence reduce the expected

value of var(Yi)  and MAD(Y), making misfit spectra easier to detect.

Alternative Spectral Model and the Likelihood Ratio

The thin dash-dot line in figure 5d is a MLE fit of Sobs to a power law Sth= A¥k-b + Sn,

with A constrained to preserve the spectral variance.  The idea is to compare the Batchelor

spectrum fit (which has a sharp cutoff), to a simpler one with no cutoff - a simple power

law.  If the fit to the Batchelor spectrum does not provide a significantly better fit than the

power-law fit, then that segment should be rejected as not having a clear cutoff.  The two

spectral fits are compared by computing the log-likelihood (18) for the power law fit,

subtracting it from the log-likelihood for the Batchelor fit, and translating the difference to

base 10 for easier interpretation.  The likelihood ratio, shown in the legend of fig 5, is

log10(PBatch/Ppower).  Segments with the Batchelor fit being significantly more likely are

accepted.  Although the likelihood values from two different spectral models (each with one

free parameter) cannot be compared with formal statistical validity, both likelihoods are

computed with the same statistical model (eq. 18), using the same noise model, and a

theoretical spectrum with one free parameter. The likelihood ratio appears to be a useful

indicator of poor spectral fits.  It appears from experience that ratios greater than 102 (i.e.,

log10 values larger than 2) can be confidently accepted.

Comparison of rejection criteria

Of the rejection criteria that we tried, only Var(Y), MAD(Y) (both computed only over the

wavenumber range where signal exceeds noise), and the likelihood ratio seemed to reliably

indicate unacceptable spectral fits.  We investigated and compared the behaviour of each on

real SCAMP data sets, looking to see if one or the other measure seemed more reliable or

robust than the others.

Figure 6 shows in the top row histograms and cumulative distribution functions for each of

the measures, computed from a SCAMP data set.   It is comforting to see that the rejection

criteria we have settled on are not severe Ð only a relatively small fraction of the fits would

be rejected (about 22% in this data set).  The correspondence between the three measures is

shown in the second row.  It appears that Var(Y) and MAD(Y) are well-correlated (panel
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f), although Var(Y) is proportional to the cube of MAD(Y), rather than the expected second

power.  This is likely due to Var(Y) being more sensitive to outliers.  The other measure,

log10(likelihood ratio), is better correlated with MAD(Y) than Var(Y), although the

scatterplots (d) and (e) are similar.  We conclude that the most successful pair of rejection

measures is MAD(Y) and log10(likelihood ratio).

Figure 6.  (a.) Histogram and cumulative distribution function of Var(Y) from a data set

with 5498 segments and d=6.  Dotted vertical line shows theoretical "perfect fit" variance

(2/d = 1/3), and vertical thin line shows our suggested rejection criterion (5.7).  (b.)  As for

(a), but for MAD(Y).  Here the vertical dotted line is 2 / d , an approximate upper bound

for perfect fits verified by Monte-Carlo methods.  The thin vertical line indicates our

suggested rejection limit of 2 2 / d =1.2.  (c.)  As for (a), but for log10(likelihood ratio).

The thin vertical line indicates our suggested rejection limit of 2.  Note that values larger

than 2 should be accepted.  (d.)  Scatterplot of log10(likelihood ratio) vs Var(Y).  Solid

lines indicate suggested acceptance values for each measure in (d-f).  (e.)  Scatterplot of

log10(likelihood ratio) vs MAD(Y).  (f.) Scatterplot of Var(Y) vs MAD(Y).
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Summary of rejection criteria

For SCAMP Batchelor fits we suggest that a given data segment be rejected if any of the

following criteria are true:

1. Integrated signal/noise ratio is less than 1.3.

2. MAD2(Y) computed over the wavenumber range where signal exceeds noise, is larger
than 2 2 d .

3. Log10(likelihood ratio) is less than 2.

In the data set of figure 6, these criteria result in the rejection of 22.2% of the data

segments.
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5.         Further Examples of MLE fits.

Figure 7 shows a MLE fit to a data segment with a low signal level (S/N=1.3), but with a

clear Batchelor spectrum.  The fitted spectrum plus noise is a very good match to the

observed spectrum, the likelihood function is a reasonable match to a Gaussian, and the

estimated error in Batchelor wavenumber (about 9% ) is larger than in figure 5.  The

spectral ratio (Y) is a good match to the theoretical pdf, and the Q-Q plot and it's associated

statistics so indicate.  The "rejection  indicators" both indicate that the fit is acceptable: the

Batchelor fit is 1024 times more probable than a power law fit, and the MAD is 0.38, which

is small.  The variance of Y is also small, and close to the theoretical value.
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Figure 7.  Example of real data fit with very low signal level.  All indications point to a

good fit.  See figure 5 caption for detailed information on each panel.

Figure 8 shows a fit to a SCAMP data segment that is unacceptable, and is flagged as such

by the Likelihood ratio.  The deviation between the observed and theoretical spectra is

somewhat larger than expected from time series theory.  The variance of the spectral ratio

(0.6) is significantly larger than the theoretical value of 0.33, and even more so when
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computed over the range of wavenumbers where signal exceeds noise (1.88).  The MAD is

also moderately large, 0.78, and the Likelihood ratio computation states that a Batchelor

spectral fit is 10-0.95 times more likely (i.e., about 10 times less likely) than a simple power

law.  This matches what the eye says Ð the spectrum is the "wrong shape".  Yet the

histogram and the Q-Q plot in the upper quadrants of the plot seem to say that the fit is

acceptable.  This is because these plots are dominated by the large number of data points in

the wavenumber range for which noise exceeds signal.
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Figure 8.  Example of a "bad" fit Ð one for which the spectral shape is not an acceptable

match to the Batchelor form for any value of kB. .  See figure 5 caption for detailed

information  on each panel.
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6.        Monte-Carlo Tests  
For each of an array of kB and χθ  values covering a range suitable for SCAMP fitting,

we generated 300 random samples of Batchelor spectra plus noise conforming to the

statistical model (17.), with d=6 degrees of freedom.    These represent data sets for

which "good" fits should be possible, and for which we knew the answers.  These were

then analyzed by our fitting routines, using the MLE algorithm and a variety of least-

squares and cost-function algorithms, and the bias (estimated minus true value) and

standard deviation, both normalized by the true value of kB, were computed and

expressed in percent.  The purpose was to:

1. test the MLE method for bias, and to see if the predicted standard deviation of the

estimated kB agreed with the estimated fit error from eq. (22), and

2.  to compare the MLE fit bias and standard deviation with those from the other fit

algorithms.

In figure 9a, the gray-scale contours show the computed standard deviation of the kB

estimates.  These should be compared with the standard error of kB estimated from

formula (22) in figure 9b.  The agreement is excellent except in the lower right-hand

corner, where the fit becomes noisy due to the coincidence of the noise and Batchelor

peaks.

Figure 9a also shows the estimated bias in percent of the MLE estimate of kB (heavy

black contours).  It can be seen that the bias is, in practical terms, zero, with the exception

of the lower right corner, where all fitting methods had a difficult time.
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Figure 9.  (a)  Standard deviation in percent of the MLE estimated kB as a function of the

"true" kB and χθ , shown in grey-scale with white contours.  The MLE bias in percent is

shown as heavy black contours.  (b)  Estimated standard deviation of the MLE estimated
kB as a function of the "true" kB and χθ , computed from the average of 300 realizations

of eq. (22). (i.e., from the average curvature of the 300 log-likelihood functions.)  Both
panels show kB scaled by theSampling Nyquist wavenumber and χθ  (expressed as

signal/noise ratio) on the top and right-hand axes respectively.

The following least-squares and cost-function estimates for kB were made using the

Monte-Carlo data sets.  In each case, the improvements described in section 4.1 were
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implemented:  the theoretical spectrum included instrument noise, and χθ  was

constrained by the observed variance less noise, leaving a single-parameter fit.

1. C11 (MLE fit)

2. C3 (eq. 6.) Least squares minimization in log space.

3. LS. Weighted least squares minimization on Batchelor plus noise spectra. (As for C1,
eq. 5, with SB replaced by Sth)

4. MAD1:  Mean value of |Y-1| minimized This is a robust version of LS.

5. Var(Y) minimized.  (eq. 23.)

6. MAD2:  MAD(Y- <Y>) minimized.  Like MAD1, but use the computed mean of Y

rather than its expected value of 1(Eq. 24.).   This is a robust version of Var(Y).

The performance of these estimators is compared to that of the MLE in figure 10.  It can

be seen that:

• C11 (MLE) has the smallest bias (less than 1/4%), and the smallest standard deviation

overall. (Figure 10a)
• C3 has, in most of the kB- χθ  space, similar standard deviation to the MLE estimate.

However, in the high kB low χθ  region it has much larger standard deviations, up to

about 100%.  In the low kB high χθ  corner the standard deviation is also high.  In

addition, C3 has a fairly uniform bias of about –2%.  (Figure 10b)

• LS suffers from a 5% bias and rather large standard deviation at the low and high

ends of the kB scale. (Figure 10c)

• MAD1 minimization is only slightly inferior in performance to MLE in standard

deviation, but is biased about 2% high.  (Figure 10d)

• Var(Y) minimization has unacceptably high standard deviation and bias. (Figure 10e)

• MAD2 minimization is very noisy and biased, similar to Var(Y) minimization.

(Figure 10f)
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Figure 10 (a)  Standard deviation, in percent, of the MLE estimated kB as a function of

the "true" kB and χθ , shown in grey-scale with white contours.  The MLE bias in percent

is shown as heavy black contours.  (b)  As for (a), but for log-space least-squares fitting,

C3.  (c)  As for (a), but for weighted least squares.  (d)  As for (a), but for MAD1

minimization.  (e)  As for (a), but for Variance(Y) minimization.  (f)  As for (a), but for

MAD2 minimization.  All panels show kB scaled by the sampling Nyquist wavenumber

and  (expressed as signal/noise ratio) on the top and right-hand axes respectively.

The conclusion is that, while some estimators work nearly as well as MLE (MAD1 in

particular), none perform quite as well or are as unbiased as MLE, and the MLE error
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estimate (22) is supported by the Monte-Carlo tests.  MAD1 deserves further study, as it’s

robustness properties could make it less sensitive to "poorly shaped" spectra.
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7.    Discussion

A method to parametrically fit theoretical spectra to observations was developed, and

demonstrated with fits to the Batchelor spectrum.  The useful techniques include:

1.  Explicit incorporation of an instrumental noise spectrum in the fitted model.  This helps

the fit routines to automatically ignore regions dominated by instrument noise.

2.  Use of available constraints to reduce the dimension of the fitted parameter space.

3.  Direct application of the Maximum Likelihood technique to yield efficient, unbiased

spectral fits.  This is important because the statistical error in spectral estimation is not

Gaussian, and so least squares is not the most appropriate technique.

4.  The curvature of the log-likelihood function near its peak gives an estimate of the error

in the fitted parameters.

5.  We develop and discuss several measures of spectral misfit, useful for rejecting data

segments for which the best fit spectrum is unacceptable.  These allow automated

processing of large numbers of spectra, for which manual editing is tedious.

The MLE technique was compared with other least-squared and cost-function techniques

using Monte-Carlo generated data sets that satisfy the expected statistical distribution.  The

standard deviation  and the bias of fitted Batchelor wavenumber are estimated by repeated

fits for each of several values of true Batchelor wavenumber and signal level.  The MLE

technique is found to be the best one, with bias typically less than 1/4%, the smallest

standard deviation overall, and estimated fit error in agreement with the standard deviation.
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Appendix A           MLE Spectral fit Pseudo-Code Outline
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MATLAB versions of the m-files used in this paper for MLE spectral fitting, and also for

computing Batchelor spectra, may be requested directly from the authors.

1. Compute noise spectrum vs frequency (call instrument noise subroutine); change to

wavenumbers using drop speed of instrument.
2. Compute cq  using observed spectral variance less noise variance (eq. 9).

3. Loop for trial kB:

4. Compute trial Batchelor spectrum, eq. 4 (call Batch_Spec subroutine).

5. Add computed noise spectrum from line 1.

6. Calculate log likelihood function C11 at each wavenumber (eq. 18). (Call Chi2pdf

transformation function). Sum C11 over all wavenumbers.

7. Compute Var(Y= Sobs/Sth summed over all wavenumbers (eq. 23).

8. End of Loop.

9. Compute location of maximum in C11. This is the best-fit kB.

10. Compute curvature in C11 function at maximum.

11.  Use eq. 22 to compute standard error in kB.

12. Plot exp(C11) as likelihood function.  Plot Gaussian curve (eq. 10) with same

standard deviation and peak.  Plot error bars corresponding to line 11.  Plot line 7

(Var(Y) versus trial kB and theoretical minimum value 2/d.

13. Compute e and upper/lower bounds on e from kB results in lines 9, 11 (eq. 3).

14. Compute integrated S/N ratio from lines 1 and 2.

15. Compute Y= Sobs/Sth at each k, for kB of best fit.

16. Compute Var(Y) (eq. 23) over wavenumbers for which SB exceeds Sn.

17. Compute MAD(Y-1)  (eq. 24) over wavenumbers for which SB exceeds Sn.

18. Loop for power law fit:

19. Repeat steps 5-7 using power law instead of Batchelor spectrum. Constrain

the variance of power law plus noise spectrum to match the observed variance.

20. End of power law loop.

21. Compute location of C11 maximum to find best power law.

22. Take difference of log(likelihood) from lines 9 and 21.  Convert to log10 to get

likelihood ratio.

23. Plot best fit spectrum, noise spectrum, and observed spectrum.  Superpose best-fit

power law spectrum.  Annotate this plot with results from lines 2,13,9,11,14, 16, 17.
24. Plot histogram of d*Y, and cd

2  pdf for comparison.

25. Plot Q-Q plot of d*Y compared with cd
2  cdf.  Compute r2 value and K-S test value.
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Subroutines:

Instrument noise routine Ð computes Sn as a function of frequency
Batch_Spec subroutine Ð computes Batchelor spectrum as function of k given cq  and kB.

Chi2pdf subroutine Ð computes the cd
2  pdf.  Since this is simply an exponential function

and a power, with a normalization constant that involves a Gamma function of d, it may

save time to compute the Gamma function once and store the result, leaving only the power

and exponential functions to be evaluated.
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Figure Captions

Figure 1 - Straining field in a mean temperature gradient, and "micro-front" produced by

the convergence.

Figure 2:  Batchelor Spectrum for various kB, including estimated SCAMP instrumental
noise level (3¥10-7), with cq  constrained according to eq. (9).  The kB  value

corresponding to each curve is indicated with a plus, and the approximate  corresponding

dissipation level, e, is shown by the second logarithmic scale below the k-axis.  The effects

of changing cq  and e on the spectrum are indicated by arrows.   An observed spectrum is

shown.

Figure 3 - SCAMP fit example, using C1, equation 4.  MLE fit (section 4) is shown for

comparison.  Note the cutoff for the SCAMP fit (C1) to avoid the noise-dominated high-

wavenumber region.  Same observational spectrum is used in figures 2 and 3.

Figure 4. (a) Histogram of observations of a quantity with true value Äa  = 2, and

Gaussian error.  (b) Hypothesized Gaussian pdf with a ~1.7.  (c)  The ln(probability) of

our observations as a function of the hypothesized value of a, showing how ln(P) is

maximized as a is changed.

Figure 5.  MLE fit to observed spectrum. (c) Relative likelihood function exp(C11) (eq.

18) normalized to a maximum of 1 versus trial kB, and Gaussian function with same

second derivative at maximum.  Horizontal error bars indicate 1 standard deviation

according to eq. (22) by inner vertical bars, plus approx. 95% confidence limits by outer

vertical bars. Horizontal dash-dot line indicates the theoretical level of the variance (eq. 23),

and the concave upwards dash-dot curve is the total variance (23) as a function of trial kB.

(d)  Observed spectrum (thick curve) and MLE fit (upper thin curve).  Noise model is

shown as the lower thin curve.  Dash-dot line is least-squares fit to a power law plus noise

used for likelihood ratio computation (section 4.5).  See text for definitions of SNR, MAD,

var(Y), and LikelihoodRatio.  MAD(Y) and Var(Y)  in the legend are computed for the

range of wavenumbers for which signal exceeds noise. (a)  Histogram of the ratio of
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observed and theoretical spectra, and theoretical pdf for comparison. (b)   Quantile-quantile

plot of observed spectral ratio and theoretical pdf.

Figure 6.  (a.) Histogram and cumulative distribution function of Var(Y) from a data set

with 5498 segments and d=6.  Dotted vertical line shows theoretical "perfect fit" variance

(2/d = 1/3), and vertical thin line shows our suggested rejection criterion (5.7).  (b.)  As for

(a), but for MAD(Y).  Here the vertical dotted line is 2 / d , an approximate upper bound

for perfect fits verified by Monte-Carlo methods.  The thin vertical line indicates our

suggested rejection limit of 2 2 / d =1.2.  (c.)  As for (a), but for log10(likelihood ratio).

The thin vertical line indicates our suggested rejection limit of 2.  Note that values larger

than 2 should be accepted.  (d.)  Scatterplot of log10(likelihood ratio) vs Var(Y).  Solid

lines indicate suggested acceptance values for each measure in (d-f).  (e.)  Scatterplot of

log10(likelihood ratio) vs MAD(Y).  (f.) Scatterplot of Var(Y) vs MAD(Y).

Figure 7.  Example of real data fit with very low signal level.  All indications point to a

good fit.  See figure 5 caption for detailed information on each panel.

Figure 8.  Example of a "bad" fit Ð one for which the spectral shape is not an acceptable

match to the Batchelor form for any value of kB. .  See figure 5 caption for detailed

information  on each panel.

Figure 9.  (a)  Standard deviation in percent of the MLE estimated kB as a function of the
"true" kB and cq , shown in grey-scale with white contours.  The MLE bias in percent is

shown as heavy black contours.  (b)  Estimated standard deviation of the MLE estimated kB

as a function of the "true" kB and cq , computed from the average of 300 realizations of eq.

(22). (i.e., from the average curvature of the 300 log-likelihood functions.)  Both panels
show kB scaled by theSampling Nyquist wavenumber and cq  (expressed as signal/noise

ratio) on the top and right-hand axes respectively.

Figure 9.  (a)  Standard deviation in percent of the MLE estimated kB as a function of the
"true" kB and cq , shown in grey-scale with white contours.  The MLE bias in percent is

shown as heavy black contours.  (b)  Estimated standard deviation of the MLE estimated kB

as a function of the "true" kB and cq , computed from the average of 300 realizations of eq.

(22). (i.e., from the average curvature of the 300 log-likelihood functions.)  Both panels
show kB scaled by theSampling Nyquist wavenumber and cq  (expressed as signal/noise

ratio) on the top and right-hand axes respectively.
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