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r- MAXIMUM LIKELIHOOD SYNDROME DECODING OF LINEAR BLOCK CODES. 

ABSTRACT 

We describe a method for maximum likelihood syndrome decoding of 1 inear 

block codes, with hard- as well as with soft decisions. Also upperbounds 

are presented concerning the complexity of a syndrome decoder. 

I 



1. I NTRODUCT I ON 

In [1], Wolf introduces an algorithm for decoding linear block codes 

using channel measurement information .. Wolf's decoder is based on the ~,.' 

Viterbi algorithm. Viterbi like syndrome decoding [2,3,4] is an <;tlternate 

to the classical Viterbi decoding algorithm for convolutional codes. 

It will be shown that Viterbi I ike syndrome decoding can also be used 

to decode block codes with hard- as well as soft decisions (i .e. using 

channel measurement information). Before giving more details, we first 

review some basic principles of linear block codes. 

Let G be a kxn-matrix with rank k. Then G can be used as a generator 

matrix for an (n,k) block code. Given the message k-vector !!!, the code-

word n-vector ~ is given by 

c = mG. ( 1 

Let H be the generator of the dual code, i.e. G HT ; 0 . Then an 

n-vector c is a codeword if 

The matrix HT is refered to as the parity check matrix. An equivalent 

generator matrix G' can be obtained from G by elementary row operati-ons 

and column permutations. We are interested in the systematic generator 

G' , 

,"1-'-;,.--
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V 
K- , 

and 

0 0 P I I PI 2 , , 
0 0 P2 I P2 2 , , 

G' = 

0 0 Pk I Pk 2 , , 

the associated parity check matrix, H,T , 

H,T = 

Pl,l PI ,2 

P2 , I P2 , 2 

o 
o 

o 0 

Pl,n-k 

P2 ,n-k 

o 
o 

Pl,n-k 

P2 ,n-k 

Pk,n-k 

Now, suppose we transmit a codevector ~. The received vector ~ = ~ + ~ , 

where e is an n-vector representing the noise by two-level quantization 

of the output. 

Now we form the (n-k)-syndromevector ~, where 

s = 
T 

(~ + ~)H = e 

The task of the decoder is to determine the most likely noisevector 

that caused the syndromevector s. This is the subject of the following 

section. 

hi '~"~·~L1-£.:-:";.·;~;j;<"_ 
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I I. SYNDROME FORMER AND DECODING ALGORITHM 

5 

To form the syndromes, mentioned in the previous section, we 

reorganize the incoming data stream by putting (n-k-l) all zero 

n-vectors between two successive received vectors. The syndromes can 

then be calculated with the circuit of Fig. 1. 

p p p 

Fig. 1. Adjoint obvious realization of HT 

p. 
1,n-ll 

p 

et 00 ... ~. l' " . 9. - .. 

t t+n-k e 00··· p' ..• 
nt" .-n, 

This realization is called the adjoint obvious real ization [3]. As the 

syndrome s only depends on the noise vectors, we can omit the code-

vector contribution. 

n-k-1 The syndrome former of Fig. 1 has 2 states. Before entering an 



~., .. 
•• - ¥ ., '~L:";'-:--:~:${,,;.. 

e-vector into the circuit it is in the all zero state. and after 

(n-k-l) shifts it has returned to the all zero state. It is possible 

that two or more noisevectors give rise to the same syndrome sequence. 

A maximum I ikelihood decoder is to determine the noise vector e of 

minimum Hamming weight that may be a cause of the observed syndrome 

sequence. As the operation of the decoder can be described in terms of 

the syndrome former state space. we now introduce some convenient [4] 

notations. States are denoted by lower case greek letters with a 

subscript. e.g. 

T 1 ~ [5 1.5 2 •...• sn-k-l] and its left shifts 

T2 ~ [5 2 .5 3 •...• sn_k_l· O] and so on. 

The states generated by the system are defined as 

"1 
~ 

[PI 2 .Pl 3·· ... Pl n-k-l] •• • 
/:; 

[P2.2· P2,3····· P2.n-k-l] "2 • ... • 
/:; 

[Pn.2· Pn.3···· .Pn.n-k-l] " n 

The syndrome digit s. and the new state T
1

• see Fig. 1. are completely 

determined by the present state T
1

• and the noise vector [e
l
.e

2 
•...• e

n
]. 

[e l .e2 ,··· .en] 

Tl Tl = T2 + e l"l + e2"2 + ... + e " n n 
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'-.... 5 = 51 + e l Pl • l + e2P2 • 1 + + e nPn 1 ... 
• 

Note that only on time t = to + i(n-k) • i=0.1.2 ..... there is a possible 

nonzero input vector e 



As an example take the 0,4) Hamming code with parity check 'matriX 

o o 

: 1 

o o 

o o o 

Fig. 2 gives the syndrome former, and Fig. 3 the correspondii:lg 'state 

r-____________________ --. e, 

,...... _______ e
2 

r-------~------------_el 

s 

'-----r....L_ .. e6 

L-______ ~ ________ _L __ ~e7 

Fig. 2. Syndrome former for binary (7,4) Hamming code. 

Fig. 3. State diagram of the syndrome former of Fig. 2. 

·L-·; 
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diagram. Solid lines correspond to a syndrome digit s=O, and dashed 

lines to a syndrome digit s=l. The decimal values indicated along the 

edges represent the noise vector, to be interpreted as a binary number. 

Note that noise vectors of weight greater than one have been omitted 

in the state diagram. These noise vectors correspond with incorrectable 

error patterns ! 

Edges emerging from any state except for the all zero state have 

Hamming weight zero. This is a consequence of the construction of 

our input sequence, i.e. any noise vector being followed by (n-k-l) 

all zero vectors. The decoder has to determine the state sequence 

that corresponds to a noise vector estimate of minimum Hamming weight 

that may be a possible cause of the syndrome sequence. Therefore, we 

associate with each state a metric- and a pathregister. With each edge 

pointing to a state, we associate an edge metric. For hard decisions, 

the edge metric is the Hamming weight of the noise vector indicated 

along the edge. Normally, for independent reception, one would take the 

loglikel ihood function of the noise vector. The metricregister contains 

the minimum weight of a path to this particular state. The pathregister 

contains the corresponding survivor noise vector. For each syndrome 

digit, calculate the survivor for each possible state, and update the 

metric- and pathregisters. This in done (n-k) times, starting in state 

zero and ending in state zero. States that have no paths leading to 

the all zero state within (n-k-l) steps and along zero noise vector 

edges can be deleted. Note that it is possible to only have one state 

remaining before completing (n-k-l) steps in the algorithm. In this 

case we are able to make an early decision. The algorithm above can 

also be used with real valued metrics, i.e. soft decisions, as wi 11 



be discussed in section V. 

Another way of imp,lementing the syndrome former is suggested by 

(4). If the parity check matrix is in the form given in (4), W~ can 

reorganize the incomming data stream as follows. The first (k+l) 

digits are offered to the syndrome former realized according' td the, 

matrix HT. The last (n-k-l) digits are buffered, and each step one 

digit of this buffer is offered to the syndrome former together with 

k zero's. Where the zero's enter the syndrome former on the top k 

entries. The state space again has dimension (n-k-l). The syndrome 

digit s, and the new state are now determined according to 

Tl = T2 + elCl I + e 2C1
2 

+ + ekClk 

" s = s 1 + e 1 h 1 f + e 2h2 1 + ... + , , 
+ e k\ 1 + e k+1 , 

in the first step, and according to 

each next step , 2 $ $ n-k-l . 

k Note that for this real ization there are only 2 possible states 

in the first step. The decoding algorithm is similar to the onei previo~s 

described. 

:- ~ : ':; 

!-.1: 

_ J " _-h":":"1,.~' Jo .,' ,:.>,;:-.#4Ar _fLliJ.ll~-.-ri~-i*< -. <'-"'i3: 
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I II. DECODING OF CYCLIC CODES 

The generator matrix of an (n,k) cyclic code consists of k rows that 

are right shifts of the top row, The parity matrix H is an (n-k)xn matrix 

with the same property. As with convolutional codes, we can use a shift 

register to form the codewords. Fig. 4 gives a possible implementation. 

Fig. 4. Implementation of a cyclic encoder. 

The k message digits are followed by (n-k) zero's. The connections 

correspond to the elements of the first row of G. To see how the 

syndrome forming procedure works, we proceed with a (7,3) cyclic code 

as an example. Let 

0 0 0 0 
0 0 0 

0 0 0 0 

H 
and G ; 0 0 0 

; 

0 0 0 0 
0 0 0 

0 0 0 0 



For this code, the syndrome former can be implemented as in Fig" 5. 
,_ II 

"'~ 
~,- -;.~ 

e 

Fig. 5. Syndrome former for a (7,3) cyclic code. 

For each received block of n digits, fill the stages of the shift-

register with the first (k-1) digits. Then, as k < n-k, the contribution 

to the syndrome output of the codeword is equal to zero, and. this is also 

t rue for the next (n-k-l) left sh i fts. Hence, the (n-k) synd,rome d i9 its 

corresponding with the received word are completely determined. by the 

noise contribution to the codeword. The codeword can thus be deleted in 

the decoding and syndrome forming procedure. The above syndrome forming 

method can always be used for k ~ (n-k). Like Wolf [1], we can construct 

a trellis to be used in the decoding procedure. 

Note that the syndrome sequence can also be calculated [6] by deviding 

the received data stream, considered as a polynomial, by the generator. 

This procedure leads to an alternative trellis decoder. 



IV. COMPLEXITY OF THE SYNDROME DECODER 

The major functions to be performed by the decoder are 

1) the computation of the new state metrics, and 

2) the determination of the survivor sequence. 

For each state in the trell is, or state diagram, one has to perform 

these functions. Hence, reducing the number of states is equivalent 

to reducing the complexity of the decoder. Suppose we have chosen for 

the implementation of Fig. 2. With 2n possible noise inputs. we can go 

n-k-l to atmost 2 different states. We will now show that this number 

of states can be reduced, depending on the error correcting capabilities 

of the code. 

Let d. be defined as the minimum Hamming distance between any two 
ml n 

codewords. Then, if we want to correct d . /2 or fewer channel errors, 
min 

the decoder must distinguish between no more then 

= 

n-k-l 
error patterns in the first step. However, we have 2 different 

states at our disposal. Hence, a decodable error pattern must be 

n-k-l included in the first transition to the 2 states. We can reduce 

our decoder if 

n-k-l 
< 2 

For large values of n, this means that reduction is possible if 

- 11 ' 

(6) 



H ( 
d . 

min 
2il 

k ) < 1 - -
n 

The Hamming bound however tells us that there are no codes for which 
d . k 

H ( _ min) I 2n > 1 - n . Hence, in a most all practical cases, we can 

reduce the complexity of the decoder. 

For values of k < n-k, we are able to derive a simuLar resul,t. Here 

the maximum number of different paths in the first step is equal to 2k. 

If we want to correct a maximum of d . /:2 channel errors, reduction is min 

possible if 

l> 

or equivalently, if 

or 

d . 
ml n 

2i< 
1 

<-
2 

dmi n 1 k 
-- <-

2n 2 n 

which is an analogue to the Plotkin upper bound. 

Note that the above decoders are no longer ML decoders. 

(~ 

( 1 



V. QUANTIZATION OF THE RECEIVED CODE SYMBOLS 

As pointed out in [7], 180 0 binary phase shift keying (BPSK) in 

combination with coding is an efficient way of communication, over Gaussian 

channels. Quantization of the demodulated received code symbols, 

facilitates digital processing at the decoder. When 8-level quantization 

is used, about 0.25 dB in received signal to noise ratio is lost, 

compared with infinitely fine quantization. Hence, further quantization 

is questionable. With 2-level (binary) quantization the loss in SNR 

is roughly 2 dB. Fig. 6 shows the quantization schemes for 2, 4 and 

8 levels, where +1 

, +)+ 0 
~l -1 

3 • 2 
~1 

D 
-1 

7 6 .5 4 3 2 1. 0 
-1 tl 

Fig. 6. Quantization scheme for 2, 4 and 8 levels. 

corresponds with a code symbol 1, and -1 with a code symbol O. The 

spacing in the above schemes can be shown to be almost optimum. The 

Gaussian channel with modulator and demodulator is then equivalent to 

a discrete channel with two inputs, and 2, 4 or 8 outputs, respectively. 

The channel transition probabilities are equal to the probabilities 

that a Gaussian random variable with variance ~ and mean ~ 1 1 ies 

in the intervals indicated in Fig. 6. The problem we are now faced 

with is the adjustment of the syndrome decoder, Take, for example, 

-13 



a 4-level quantizer as indicated in Fig. 7. 

1 
+----------,---~~~--~--~~~----~---

210 
--- .-... 

Fig. 7. Probabi lity density function of the received signal. 

Let a received signal lie in interval 2. The syndrome forming circuit 

only accepts the symbols 0 and 1. Hence, a binary quantizer is used to 

set the received signal equal to O. Now there are two possibilities, 

the relevant noise bit could either be zero or one with probability 

Pr(O) = Ql and Pr(l) = Q2' respectively. The same can be said about 

a received signal lying in interval 1. For the intervals 0 and 3, 

pdo) = k and pr(l) = Q3. In fact, we only need the absolute value of 

the received signal to determine Pr (0) and Pr(l) and thus the egde 

metric. From simulations, it follows that the decoder is quite 

insensitive to egde metric quantization. Hence, use of integers instead 

of exact logl ikel ihoods gives a very small performance degradation. 

Fig. 8 shows a possible set of metrics for the case of 4-level quan-

tization. 

-1 



Hard quantized 

noi se 

a 

Received quantized 

level 

a 

a 

3 2 

2 

2 

Fig. 8. Metric quantization scheme. 

3 

a 

3 

The decoder now looks for a path that minimizes the metric per state, 

and selects the path with minimum overall metric. 

-15-



VI. CONCLUSION 

A method, using the syndromes generated by the noise on the channel, 

is given to decode efficiently linear block codes. This method can be 

used with channel measurement information. Also, possibilities to . 

reduce the complexity of the decoder are indicated. It is our feeling 

that this technique can also be used in syndrome decoding of convolutional 

codes, leading to a reduced state syndrome decoder. For the Viterbi 

decoder, this was tried without success, at least up to now. However, 

considering the noise in the state diagram is a more natural way of 

looking at this problem. 

, •. l 
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