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Abstract— Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial 

labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores.  

This results in a multi-spectral image, where each class of chromosomes has distinct spectral components. In this paper we develop 

new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images 

and by jointly performing chromosome segmentation and classification. We (1) develop a maximum likelihood hypothesis test that uses 

multi-spectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood 

function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that 

the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and 

chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that 

the proposed multi-spectral joint segmentation-classification method outperforms past grayscale segmentation methods when 

decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use 

segmentation information. 

 
Index Terms— Object recognition, image segmentation, partial occlusion, chromosomes, karyotyping 

I. INTRODUCTION 

hromosomes are the structures in cells that contain genetic information.  When chromosomes are photographed 

during cell division, the images of these chromosomes contain much information about the health of an 

individual. In the past it was necessary for laboratory technicians to examine these images visually by lengthy and 

tedious manual processes of locating, classifying, and evaluating the chromosomes. Since many images often have to 

be inspected, many attempts have been made to automate these processes; however, automated image chromosome 

analysis is still an open topic. 

In the mid-1990’s, a new technique for staining chromosomes was introduced. It produced an image in which each 

chromosome type appeared as a distinct color [1]. This multi-spectral staining technique made analysis of 

chromosome images easier, not only for visual inspection of the images by humans, but also for computer analysis of 

the images. This multispectral staining technique is called multiplex fluorescence in-situ hybridization, or MFISH. M-

FISH uses five color dyes that attach to various chromosomes differently to produce a multi-spectral image, and a 
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sixth dye that attaches to all chromosomes to produce a grayscale image. Thus it is possible to envision new and 

improved methods for the location, segmentation and classification of chromosome images by exploiting the color 

information in M-FISH images. 

This paper addresses the topics of segmentation and classification of MFISH chromosome images. It introduces a 

probabilistic model of M-FISH chromosomes that allows for simultaneous segmentation and classification. The 

additional information provided by multiple spectra in chromosome images makes it feasible to distinguish 

chromosomes that overlap and touch within clusters. Thus, we develop a joint segmentation-classification algorithm 

that optimizes probabilistic information obtained from the multi-spectral chromosome pixels, and enables the 

decomposition of overlapping and touching chromosomes, and moreover, provides estimates of confidence in the 

chromosome segmentation-classification. 

Specifically, the contributions of this work are as follows: 

1) A maximum likelihood (ML) hypothesis test is proposed as a method for selecting the best way to decompose 

groups of chromosomes that touch and overlap each other. An algorithm is described that efficiently uses this 

criterion in the multi-dimensional color-space that M-FISH images use. Finally, results of this algorithm are 

summarized and compared with those of previous methods for chromosome image analysis. 

2) This ML test is used to propose a method that combines the task of locating and classifying chromosomes for 

improved performance in both tasks. 

3) The first two contributions in the work are then used to achieve aberration scoring, that is, giving a score to each 

segment to indicate the likelihood of abnormalities in that image. 

II. BACKGROUND 

A. Chromosomes 

Chromosomes are the body’s information carriers. They are the structures that contain genes, which store in strings 

of DNA all of the data necessary for an organism’s development and maintenance - an intricate schematic for cells 

and organisms. They contain vast amounts of information; in fact, every cell in a normal human being contains 46 

chromosomes, which among them have 6 × 109 bits of information [2]. 

By examining images of sets of chromosomes in a person, one can collect information about the genetic health of 

that individual and diagnose certain diseases in that individual. Chromosomes can only be examined visually, 

however, when they replicate in a process known as mitosis. Under normal circumstances, chromosomes are 

extremely long and thin and are essentially invisible. However, during the metaphase stage of mitosis, they contract 

and become much shorter (around 2-10 µm) and wider (around 1-2 µm diameter). At this stage, they can be stained 

to become visible and can be imaged by a microscope. 

B. Karyotyping 

Karyotyping is the process of classifying each chromosome in a cell according to a standard nomenclature. In 

humans, the 46 chromosomes consist of 23 pairs of chromosomes, one of each pair coming from the father and the 
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other from the mother. Of the 46 chromosomes, there are 22 homologous pairs and two sex chromosomes denoted X 

and Y (see Figs. 1 and 2). A normal human female has two X chromosomes, while a normal male has an X and a Y 

chromosome. By convention, the 22 pairs, the X chromosome, and Y chromosome are assigned to 24 distinct classes, 

where the first 22 classes are numbered in order of decreasing length (that is, class number one is the longest 

homologous pair of chromosomes), and the last two classes are for the X and Y chromosomes. 

There are several features of chromosomes that have traditionally been used for classification. The first and most 

obvious of these features is size. The second feature traditionally used in karyotyping is the relative centromere 

position. The centromere is the narrow “neck”-like region in each chromosome. However, by using only the 

chromosome length and relative position of the centromere, each chromosome cannot be reliably classified into the 

complete 24 classes of chromosomes, but only one of seven groups known as the Denver classifications [3]. 

To identify correctly all 24 chromosome types from grayscale images, a banding technique can be used. With 

proper staining techniques, such as Giemsa banding techniques [4, 5], a unique banding pattern appears on each 

chromosome type so that all 22 pairs of chromosomes and the X and Y chromosomes could be uniquely identified 

(Fig. 1). Once all the chromosomes in a cell have been classified, they can be placed into a graphical representation 

in which they appear in increasing order of their type number. This representation is known as a karyotype (see Fig. 

2). 

C. Chromosome Abnormalities 

Once the chromosomes have been segmented, one can look for abnormalities in them. The most obvious 

abnormality is an unusual number of chromosomes. Having only one of a type of chromosome is a monosomy, such 

as Turner’s syndrome, in which there is only one X chromosome and no Y.  Having three of a type is a trisomy, such 

as Down’s syndrome, in which there are three Type 21 chromosomes. 

Other possible abnormalities include deletions. In a deletion, part of a chromosome is lost. An example is 

William’s syndrome, a disorder of the circulatory system. In William’s syndrome, the gene that produces a protein 

that affects elasticity in blood vessels is deleted from a Type 7 chromosome. 

 

  
Fig. 1.  Giemsa banded chromosomes 

 

 

 
Fig. 2.  Karyotype of Giemsa-banded chromosomes in Fig. 1 
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There can also be duplications of genetic material within a chromosome and translocations where two 

chromosomes exchange genetic information. The Philadelphia chromosome results from a translocation in the 9th 

and 22nd chromosomes.  This is often associated with chronic myelogenous leukemia. [6] 

There are many other disorders including ring chromosomes, inversions, broken chromosomes, and combinations 

and variations of the above abnormalities [7]. Detecting these abnormalities is vital because they are reliable 

indicators of genetic disease and damage and because studying them can lead to new insight about the diseases with 

which they are correlated. Chromosome abnormalities are particularly useful in cancer diagnosis and research [8]. 

D. Analysis of Grayscale Chromosome Images 

Researchers have been studying how best to use computers to aid in chromosome imaging and analysis for over 30 

years [9, 10]. These studies, and object recognition problems in general, have traditionally fallen into one of two 

categories - segmentation or classification. Although there are a few studies that combine the two categories [11, 12, 

13, 14], most fall into one or the other. 

1) Segmentation - Segmentation is the process of dividing the image into segments, each of which has some meaning 

to a human observer. In chromosome analysis, it is desired to segment the image into background and chromosome 

pixels, and to divide further the chromosome pixels into individual chromosome type pixels. Segmenting a 

chromosome image into background and chromosome is a fairly straightforward task usually accomplished by 

thresholding. However, dividing the chromosome pixels into individual chromosomes is quite difficult since 

chromosomes often touch or overlap. At the point of overlap, pixels may belong to multiple chromosomes. 

Stated more formally, the problem of chromosome segmentation is a problem of partitioning the image into 

minsets [15, 16].  A minset can be defined as 
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where Li is the set of required minsets. For the case of chromosomes, M0,…,0 is defined to be the background; every 

other minset is defined to be a part unique to one chromosome or common to several chromosomes. In the case of 

touching chromosomes, each chromosome consists of one minset. In overlapping chromosomes, each chromosome 

may be composed of several minsets. 

Given an image A containing r objects { }r
iiO 1= , an ideal thresholding operation produces a binary image of objects: 

U
r
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'OOAB =−=  (4) 

No segmentation is ideal; the initial segmentation yields a set of q objects { }qiiO 1
*

=  and an estimated background *B .  

For each subset *O , if it can be partitioned into minsets of { }
iKjjO

∈
, where iK  is given by 

{ }rjOOjK iji ≤≤⊂= 1,*  (5) 
then each object (chromosome) can be written as a union of these minsets. 

Agam and Dinstein [16] used minsets to decompose touching and overlapping grayscale chromosomes. In their 

work, they determined minsets using (rectangular) shape-based hypothesis testing to choose cut points for dividing 

clusters of chromosomes. Their method was successful in many cases but limited to grayscale chromosome images. 

A wide variety of other approaches have also been proposed. A split-and-merge technique [17] uses a “watershed” 

[18] method to oversegment the image. This is similar to region-growing [19, 20] methods, which grow seed 

segments until they meet, combining segments only if they satisfy a certain criteria, such as convexity. However, 

these methods are only useful for decomposing touching chromosomes and do not handle overlaps. 

Fuzzy set theory [21] has also been applied to chromosome segmentation. Fuzzy binary relations are defined on the 

boundary points of high curvature, and fuzzy subsets are defined over the points that make up the boundaries.  This 

method works for simple cases but fails when the chromosomes are bent or clustered [16]. 

“Valley searching” attempts to find “valleys” of gray values representing separations of chromosomes. Vossepoel 

[2] defines a set of rules by which to find candidate cut points and then to link points with a minimum-cost algorithm. 

This method often works well at finding accurate boundaries, but it also does not handle overlaps. 

A model-based method was described in [22] that characterized different types of boundary features highly 

correlated with touches and overlaps. This method showed success in recognizing clusters but had a relatively high 

failure rate for finding plausible separation paths. 

Ji [23] used the concepts of skeletons [24] and convex hulls to decompose overlaps. This work has shown some of 

the most successful results in the literature, but still is limited since it only uses grayscale and geometric information. 

2) Classification - Classification usually follows segmentation in chromosome image analysis. Once segmented and 

classified, it is simple to arrange the chromosomes into a karyotype (see Fig. 2) for examination. After segmentation, 

chromosomes have a number of features, including length, centromere index, and banding pattern, that can be used to 

classify them. Length is simple to measure for properly segmented chromosomes, but centromeres are subtle and 

sometimes difficult to locate. Length and centromere index by themselves cannot be used to classify chromosomes 

reliably into their 24 classes. Hence the banding pattern has been a popular feature for manual and automated 

chromosome classification. However, banding patterns are often difficult to extract automatically. Often a medial 

axis transform [25] is performed to measure a density profile by integrating the intensities along sections 

perpendicular to the medial axis. However, bent chromosomes can be difficult to straighten in cases with sharp 

bends. Further, the banding patterns of overlapped chromosomes are often obscured. 
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Several transforms have been proposed for representing chromosome banding patterns. Fourier descriptors have 

been used as global descriptors of the chromosome’s density profile, and the first eight components of the Fourier 

transform were found to be most useful for discrimination [26]. Another transform proposed in [27] describes a set of 

weighted density distribution functions which serve as a set of basis functions. Each chromosomes’s density profile 

was correlated with these functions, and the correlations served as a representation of that chromosome, rather than 

the profile itself.  This is one of the most commonly used technique for banding pattern classification. 

Laplace local band descriptors [28] have been used to extract only the most dominant bands, since these bands 

were believed to be the most significant for classification. A 2-D Laplacian filter and a set of thresholds were used to 

determine the size and position of the larger, darker bands on the chromosome. Features from these bands, such as 

width, position, and average density, are then fed to a classifier. 

Markov chains [29] have also been used to represent the banding patterns of chromosomes. In this approach the 

density profile is quantized and represented as a chain of symbols. A set of density profiles from the same class are 

used by an inference technique to build a constrained-first order Markov chain representation. When a chromosome 

is classified, its profile is assigned to the class represented by the Markov chain most likely to produce that profile. 

A number of different classifiers have been used as well. These include neural networks [30, 31]. In one neural 

network implementation [32], a multi-layer perceptron neural network was used. Chromosome length, centromere 

index, and 15 points from a 64-element density profile were used as features. 

Homologue matching [33, 34] uses two criteria for classifying chromosomes. For a chromosome to be classified as 

a certain class, it first must be similar to a typical chromosome of that class. Second, it must be similar to the other 

chromosomes of that class in the same image. This is useful for detecting chromosome abnormalities. 

Other approaches include fuzzy classifiers [35] whose output is a numerical measure of similarity to a known class 

and several other statistical methods. A good review of these methods is given in [36]. While notable success has 

been achieved with these methods, they all suffer from the same drawback, that they rely on features, such as 

centromere position and banding pattern, which can be difficult to measure and depend on segmentation accuracy. 

3) Joint Segmentation-Classification Methods - Traditional image analysis methods have viewed segmentation and 

classification as separate processes. However, the two processes are closely related. Each can be improved with 

information that the other provides. In the case of chromosome segmentation, this has been realized and suggested 

before. Ji [37, pp. 188-189] realized that classification would benefit from correct segmentation information, and that 

segmentation often needs data from classification as well; he suggested a system of feedback. Agam and Dinstein 

[16] also realized this and suggested combining the steps for more accurate identification. Both recognized the 

potential usefulness of combining segmentation and classification, but provided no method to accomplish it. 

Martin [13] combined segmentation and classification for a different problem: optical character recognition.  More 

recently credibility networks were proposed as a framework for joint segmentation and classification [14]. Both of 

these attempts show promise, but neither is easily extensible to objects without definite shapes, such as 

chromosomes. An attempt at combining classification and segmentation for chromosome images was made in [12], 

which used classification-driven segmentation to handle chromosome cluster decomposition.  Positive results were 
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achieved.  However, it was limited to grayscale chromosome images and did not consider overlaps. In addition, it 

made no provisions for images of multiple clusters or clusters of more than two chromosomes.  

4) Comparison - Table I shows a comparison of several different segmentation and classification algorithms. This 

table must be viewed with a bit of caution.  It is difficult to compare methods directly since published methods rarely 

use rates directly comparable with other work.  In segmentation, some proposed methods measure touch and 

decomposition and overlap decomposition separately; others do not distinguish between the two. Some use full real-

world images of chromosomes, while others were only tested on pairs of overlapping or touching chromosomes. 

Also, many published segmentation rates are run on different sets of data. There are at least five grayscale 

chromosome datasets used in the literature: Copenhagen [28, 36], Edinburgh [32, 36], Philadelphia [36], Delft [28], 

and Soroka5 [32].  Because of difficulties in comparing methods directly, we have quantized the published 

segmentation accuracy rates of the methods to low (<70%), medium (70-80%), and high (>80%). 

Classification rates are also difficult to compare directly. Some classify only within a set of chromosome types 

rather than all 24 types. Some assume perfect segmentation; others do not. In addition, some classification methods 

propose new feature representations, while others propose new classifiers; it is difficult to directly compare the merit 

of two features if they are not used with the same classifier. In spite of these difficulties, we include Table I as a 

rough comparison of methods that have published some segmentation and/or classification accuracy rates. 

E. M-FISH Images 

A new way to acquire chromosome images derives from the invention of chromosome painting [38] and 

combinatorial [39] and ratio labeling [40]. These techniques make use of fluorophores (dyes) that attach to a single 

type of chromosome, parts of chromosomes, or specific sequences of DNA. Using these techniques, it is possible to 

create a combination of fluorophores such that each class of chromosomes absorbs a different combination of these 

fluorophores [1, 41, 42]. Since each fluorophore has a different emission spectrum, each chromosome class appears 

 

Fig. 3. M-FISH Image 

 

TABLE  I 

SEGMENTATION AND CLASSIFICATION METHOD COMPARISON 

Segmentation 

Accuracy Method 

Touch Occlusion 

Classification 

Rate 

Joint 

Segmentatio-

Classifcation 

Vossepoel [2] Medium n/a n/a no 

Lerner [12, 32] High n/a 84% yes 

Agam [16] High High n/a no 

Wu [22] Low Low n/a no 

Li [23, 37] High High n/a no 

Granum [27] n/a n/a 90% no 

Groen [28] n/a n/a 89% no 

Stanley [34] n/a n/a 80% no 
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as a different color visually distinguishable from all other 

classes without the aid of banding patterns. An image of 

each fluorophore can be obtained by employing appropriate 

optical filters. With 5 fluorophores, a multi-spectral image 

is obtained where each pixel is represented as a 5-D vector, 

with each element in the vector representing the magnitude 

of one fluorophore at that point. Instead of the grayscale 

image that was obtained in traditional chromosome 

imaging techniques, a multi-spectral image is now 

available in which the spectral composition at each point 

reveals the combination of fluorophores and, thus, the chromosomal origin of the matter at that point. Using this 

combinatorial labeling, known as M-FISH, it is possible to determine the most likely chromosomal origin at every 

point in the image [43]. An example of an M-FISH image is shown in Fig. 3. 

Such an imaging technique has a few obvious advantages. First, the task of chromosome classification is greatly 

simplified. Instead of having to estimate features such as centromere positions and banding patterns, which may be 

difficult to measure, one only has to look at the spectral information within that chromosome. The second advantage 

is that it is possible to detect smaller translocations and rearrangements than were discernible with banding patterns 

only [44]. Small translocations are easily noticed as a single chromosome with two different colors in it. 

With M-FISH images, an entirely new source of information is available for segmentation as well. If one observes 

the example in Fig. 4, it is not immediately clear, by looking only at the boundary of the cluster, what the proper 

segmentation of the cluster is. It is not apparent, even to many human observers, whether there is an overlap involved 

or even how many chromosomes are included in this cluster. However, by looking at the M-FISH multi-spectral 

information, a human observer would very easily be able to determine what the proper segmentation should be since 

each chromosome has its own color. 

Several sets of fluorophores are commonly used for M-FISH imaging. In all these sets, one fluorophore, DAPI 

(4',6-Diamidino-2-phenylindole), which attaches to DNA and thus labels all chromosomes, is typically used to 

generate a traditional grayscale image of the chromosomes. Five additional fluorophores are used to distinguish 

chromosome class. A Bayesian classifier was proposed in [43] that can be trained on each set of images to 

compensate for different fluorophore characteristics that may occur in each set. The method calculates the maximum 

a posteriori probability (MAP) of a pixel belonging to each class, and the most likely class is selected. This classifier 

has proven to be very successful, and the pixel classifier used here is based on this work (see Section III.B). 

During pixel classification, special care must be taken with areas of overlap. With M-FISH, the chromosomes are 

illuminated from above and viewed from above, so the major contribution for a pixel in an area of overlap will come 

from the top chromosome. However, in practice, the chromosomes are somewhat transparent, so that pixel will 

include information from both chromosomes. This could lead to a pixel being classified as the same type as the top 

chromosome, the same type as the bottom chromosome, or neither. 

  

(a) Boundary of cluster (b) Multi-spectral 

information in cluster 

Fig. 4. Comparison of two types of cluster information 
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F. Analysis of M-FISH Images 

To date there is little work on image analysis of M-FISH chromosomes images. An entropy criterion for 

segmenting class maps of chromosome cluster was explored in [45]. This was an early, primitive attempt at using 

multi-spectral information to segment chromosome images. Some success was shown, but the success of the method 

was very sensitive to its parameters, and it was not robust over a wide variety of images. Furthermore, this method 

only performed chromosome segmentation. No chromosome classification method was proposed, and thus 

classification information could not be used to aid in segmentation. The entropy approach was extended to use 

entropy estimation for application directly to M-FISH data [46], but it achieved little success. 

The next step in the evolution of chromosome imaging is the application of image analysis and pattern recognition 

techniques to multi-spectral M-FISH images. These images provide significantly more information than grayscale 

chromosome images and promise significant improvements in the accuracy of chromosome identification, 

classification, and anomaly detection. While 24-color chromosome labeling [1] has greatly simplified the 

classification of chromosomes, it is not immediately clear what is the best way to use multi-spectral methods to 

segment the image and decompose touching and overlapping chromosomes. 

Recall that in grayscale images, binary segmentation usually results in as many or fewer objects than  

chromosomes. However, in the multi-spectral images, an initial segmentation may break the image into at least as 

many objects as there are chromosomes in the image. That is, rq ≤ in the minset notation. For example, it is likely 

that two overlapping chromosomes would segment into three parts. While chromosome segmentation in the grayscale 

case was a “splitting” problem, it becomes a “merging” problem in the multi-spectral case. 

Any useful multi-spectral segmentation technique must also resolve touching and overlapping chromosomes 

without losing the ability to detect translocations and rearrangements. A useful criterion must be found for 

distinguishing between translocations, in which a chromosome may be made up of two colors, and touching (or 

overlapping) chromosomes, in which two separate chromosomes of different colors appear to be connected. 

M-FISH eliminates many of the prior difficulties encountered in chromosome classification. No longer are 

centromere location, banding pattern, and other complicated, difficult to measure, features necessary to determine a 

chromosome’s class since color alone is theoretically sufficient to determine the class. Since each pixel can be 

classified individually, each chromosome is assigned to the class to which most of its pixels have been classified. 

Yet another benefit for M-FISH is that classification can be performed independently of segmentation. Grayscale 

methods were often forced to perform segmentation followed by classification, since the grayscale classification 

features could only be measured on a segmented chromosome. With M-FISH images, it is possible to reliably 

estimate what class a pixel belongs to before it is known what segment it belongs to. This is very useful, as seen in 

Section III, since this classification information can be used to attain more accurate segmentation; this more accurate 

segmentation will, in turn, yield more accurate classification. 



 

 
10 

III. MAXIMUM LIKELIHOOD ALGORITHM FOR JOINT SEGMENTATION-CLASSIFICATION 

We now formulate the chromosome segmentation-classification problem as an ML hypothesis test.  We will then 

use the formulation to segment and classify multi-spectral chromosome images efficiently. 

A. Problem Formulation 

We define iC  as the set of all pixels belonging to class i . Since there are 24 classes of chromosomes, each non-

background pixel may be classified as one of 24 classes. We do not explicitly handle background pixels since we 

assume that background/foreground segmentation is performed as a preprocessing step before any other segmentation 

is carried out. 

n
iA denotes the set of pixels belonging to the nth chromosome of class i  in a single image, or in a set of images.  

Within any set of images, several chromosomes may belong to the same class: i
n
i CA ⊆ . n

iA  denotes the 

cardinality of the set, which is the number of pixels in the chromosome. 

We want to find the sets n
iA  that represent the chromosomes that need to be segmented and classified. In general, 

given a likelihood function, or a measure of the probability that an arbitrary segmented object is a chromosome n
iA , 

the segmentation-classification problem reduces to choosing the segmented objects and corresponding classes to 

maximize the likelihood function. We also need a mechanism for generating candidate chromosomes for evaluation 

using the ML hypothesis test. This is the subject of Section IV. 

Thus the joint chromosome segmentation-classification problem is composed of three steps: 

1) Design a likelihood function to evaluate the likelihood that a candidate chromosome is of a certain class 

2) Generate sets of candidate chromosome segmentations, and 

3) Use the ML test to select both the best set of candidate chromosomes and their classes. 

The joint segmentation and classification method developed herein for multi-spectral images also employs a form 

of classification-driven segmentation [12]. A set of likelihood functions is used to accomplish segmentation and 

classification simultaneously. It does not employ segmentation-classification feedback and hence does not suffer 

from error propagation due to outliers in segmentation or classification. Further, the probabilistic modeling results in 

an intuitive and extensible framework for the segmentation and classification of chromosomes. 

B. Proposed Likelihood Function 

The proposed likelihood function ( )⋅L  is a product of three components: two likelihood functions ( )⋅multiL  and 

( )⋅sizeL  and a weighting function ( )⋅w  that accounts for overlaps and improves segmentation accuracy, where 

( ) 10 ≤⋅< w . The likelihood function ( )⋅multiL  uses multi-spectral information, while ( )⋅sizeL  uses information on the 

relative chromosome size. ( )⋅L  is a function of a possible chromosome segmentation and a possible class. Thus ( )⋅L  



 

 
11 

incorporates information central to both segmentation and classification. Clearly, 0 < ( )⋅L  < 1. In the following, a 

possible segmentation of a single chromosome is referred to as a candidate chromosome. 

Definition 1. Given a candidate chromosome A′ , the likelihood that A′  belongs to the class i , due to the multi-

spectral data in its pixels, is given by ( ) ( )( )[ ]ACpiAL imulti ′∈∈=′ mmxmE, , where m  denotes a pixel, ( )mx  

is the multi-spectral data at that pixel, and E is the expectation operator. 

The likelihood function ( )⋅multiL  averages the probabilities that each pixel in A′  belongs to class i . By Bayes’ 

theorem: 

( ) ( ) ( )
( )x

x
x

P
CPCP

CP ii
i =  (6) 

In (6), the terms ( )iCP x , ( )xP , and ( )iCP  were estimated from training data by fitting a Gaussian Mixture Model 

to determine the conditional distributions [43].  These terms can be calculated as follows 

( ) ( )iii GCP ,1,1 ,, Σµxx =  (7) 

( ) ( )∑=
i

iCPP xx  
(8) 

( )
∑∑

∑
=

j n

n
j

n

n
i

i
A

A
CP  (9) 

where ( )⋅⋅⋅ ,,G  is a Gaussian probability density function. The means and covariance matrices ( ii ,1,1  and Σµ , 

respectively) are computed using ML parameter estimation [47] on the training set. The subscript 1 in ii ,1,1  and Σµ  

is used to distinguish these means and variances from those in Definition 2, and the subscript i  denotes class. In the 

case of M-FISH images, training should be applied to each batch, or group of images of similar characteristics, since 

each batch has its own set of dye characteristics. Training can be accomplished by using a few images that have been 

hand segmented. The prior class probabilities, ( )iCP , also must be computed by training on a set of data.  Then 

( )iCP  is calculated as the percentage of all chromosome pixels in the training data that belong to class iC .  

However, since relative chromosome size does not vary from image to image, this does not require retraining for 

each new data set. 

As a complement to multi-spectral information, we also define another likelihood measure to avoid the erroneous 

segmentation of chromosomes into small segments of locally similar pixels. 

Definition 2. Given a candidate chromosome A′ , the likelihood that A′  belongs to the class i , due to its size, is  

( ) 








 ′
=′ iisize y

A
GiAL ,2,2 ,,, σµ  where ∑∑=

n j

n
jAy . 
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This second likelihood function is a function of object size. 

When the size of the candidate chromosome A′  is equal to 

i,2µ , the mean size of class i , then the likelihood sizeL  

value will be greatest. The size variance of each class i  is 

denoted by i,2σ . 

The size of a chromosome is its relative size, or the 

percentage of total chromosome area in the image that a chromosome covers. This makes the likelihood function 

scale invariant. Hence, while a change in microscope magnification might produce larger chromosomes, it would 

result in the same value for the likelihood function due to the normalization of the chromosome size by y , which is 

the total chromosome area within the image. 

Using this second likelihood function accomplishes several things. First it adds a second, completely different 

source of information for classifying chromosomes. As mentioned in Section II.B, size is insufficient to classify a 

chromosome reliably into one of the 24 classes. However, it complements the first likelihood function. 

The likelihood function sizeL  also distinguishes fragments from whole chromosomes. Without it, an oversegmented 

chromosome would be no less likely than a correctly segmented chromosome, since both would have the same multi-

spectral information, and thus the same value for multiL . Moreover, a broken chromosome or a section of a 

translocation would be indistinguishable from a normal chromosome. In addition, a likelihood function based on size 

is very useful for detecting clusters of chromosomes, since a cluster of chromosomes will generally be larger than 

any of the mean sizes of the classes given high likelihood values by multiL . 

In addition to these two likelihood functions, one final component is defined to model overlaps. 

Definition 3. Given a candidate chromosome A’, the certainty, w(A’) of the likelihood functions in Definitions 1 

and 2 is defined to be the percentage of visible, or non-overlapped, pixels in the candidate chromosome A’. 

Chromosomes that are overlapped by other chromosomes are less certain than chromosomes that are completely 

visible, since the function has less information about them. Thus, w acts as a weighting function of the overall 

likelihood function. This may be viewed as an adjustment to take into account overlapping chromosomes, since the 

weighting function returns a value of unity when there is no possible overlap.  

Incorporating w also improves segmentation accuracy by preventing segments from being omitted from the middle 

of chromosomes. Fig. 5 illustrates this possibility. Since A’ in Fig. 5 (a) consists of two connected components, the 

middle (white) portion of the chromosome is assumed to be an area of overlap; the size of both segmentations, and 

thus, sizeL  is calculated to be the same. Without weighting, if multiL  were the same for both segmentations, then L  

would be as well, although the correct segmentation, Fig. 5 (b), should receive a higher likelihood value. 

Here A’ is the non-overlapped area of the candidate chromosome. The overlapped area is estimated as the area 

between the connected components of A′  (see Fig. 6). If A’ contains only one connected component, then it is 

assumed that the candidate chromosome is not overlapped, and hence w(A’) = 1. 

 

 

 

 

(a) Incorrectly segmented b) Correctly segmented 

Fig. 5. Shaded areas represent two possible segmentations, A’ of a single 

chromosome.  The function w(A’) gives more weight to case b). 
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The area of overlap is estimated as follows: First the 

set of all pixels in the two segments under evaluation, 

that border the rest of the connected component, or 

chromosome cluster, are found. Then a line is drawn 

from each pixel in the first set of border pixels to every 

pixel in the second set of border pixels. This does not 

guarantee a continuous area without gaps, so the process 

is finished by filling holes in the new segment created 

from the lines drawn. The new segment then estimates 

the overlapped area of the chromosome. This estimate is 

needed to calculate the chromosome size in sizeL  and the 

percentage of visible pixels in w. 

Fig. 6 depicts estimation of the overlapped area with 

an actual chromosome. Here a type 15 chromosome is 

overlapping an X chromosome. Fig. 6(b) shows the ends 

of the X chromosome to be evaluated. To calculate the area of overlap, the pixels that border the rest of the cluster 

(Fig. 6(c)) are found and connected. This gives the estimate of the overlapped area in Fig. 6(d) - 136 pixels. The 

visible ends of the X chromosome have an area of 377 pixels, so if A′  is the area shown in Fig. 6(b), the weighting 

function is calculated as follows: 

( ) 74.0
136377

377
area  totalestimated

area visible
=

+
==′Aw . 

Definition 4. Given a candidate chromosome A′ , the overall likelihood that A′  belongs to the class i  is  

( ) ( ) ( ) ( )AwiALiALiAL sizemulti ′′′=′ ,,, . 

Classification is accomplished by using the ML hypothesis on the candidate chromosome A’. The most likely class 

is given by the value of i  maximizing ( )iAL ,′  for a given A′ . Segmentation is accomplished using the ML 

hypothesis on a set of possible segmentations. Classification maximizes ( )iAL ,′  over i , and segmentation 

maximizes ( )iAL ,′  over A′ . By maximizing both A′  and i  over ( )iAL ,′ , segmentation and classification are 

simultaneously accomplished: 

( )iAL
iA

,maxarg
,

′
′

 
(10) 

 

Here ML classification is essentially equivalent to maximum a posteriori (MAP) classification, since the prior 

probabilities for each class are mostly equal. For any candidate chromosome, all classes are equiprobable since each 

class of chromosome occurs with the same frequency (2) in most images. The exception is the X and Y chromosomes 

- a normal image will have a pair of X’s and no Y’s (female), or one of each (male). However, since this exception 

 

15 X 
X 

 

 

 

(a) Cluster of overlapping 

chromosomes 

(b) Chromosome ends under 

evaluation 

 

 

 

X 
X 

 

(c) Border pixels (in black) (d) Overlapped area estimated (in 

black) 

Fig. 6. Calculating the area of overlap. 
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concerns only 2 of the 24 classes, we have chosen to ignore it and to approximate the MAP classifier via ML. The 

other possibility would be to assume that male and female karyotypes were equally as likely so that there would be 1 

Y chromosome and 3 X chromosomes per 2 images, or 92 chromosomes. This would give priors of 1/92 for the Y 

class, and 3/92 for the X class. 

IV. M-FISH CLASSIFICATION-SEGMENTATION IMPLEMENTATION 

It is important to contrast our work with traditional chromosome segmentation methods. Traditional methods begin 

with clusters of chromosomes and attempt to divide them into individual chromosomes by choosing cut points on the 

boundary of the cluster, which are the points at which the boundaries of the two different chromosomes meet.  Given 

two touching chromosomes, two points must be found that define a line separating the chromosomes. Given two 

overlapping chromosomes, four cut points must be found that create a polygon representing the area of overlap.  

Once the proper cut points are discovered, the touching or overlapping chromosomes are decomposed by straight cut 

lines between the points [16] or best fit cubic curves [23] (See Fig. 7). Whereas traditional approaches often begin 

with undersegmented objects, we begin by oversegmenting chromosomes, and then merge the segments. These 

segments are derived from multi-spectral information and pixel classification. The segments, or combinations of 

them, are often able to represent the intricate boundaries between chromosomes more accurately than a single cutline 

(Fig. 8). 

Traditional chromosome segmentation methods use shape information from the boundary of the chromosomes as a 

criterion for selecting possible segmentations and for detecting clusters. Methods that search for branches in 

skeletons [23] have been used to detect clusters. Many algorithms have examined cluster boundary shape to select cut 

points [16, 22, 23]. Occasionally, grayscale information from inside the chromosome clusters has been used, e.g., 

“valley searching” [2] whereby low gray-value valleys running through the cluster are used to locate separation 

between the chromosomes. We instead use the multi-spectral information available in M-FISH as a criterion for 

selecting from a set of segmentation possibilities, by incorporating it into a likelihood function to evaluate these 

possibilities. We select the most likely via an ML hypothesis test. 

 
×
×

××
××  

(a) Color representation of M-FISH 

cluster 

(b) Segmented cluster 

Fig. 7. Typical chromosome cluster in M-FISH image segmented with 

cutlines.  Yellow crosses mark cut points.  In this case, lines closely 

approximate the boundaries between chromosomes. 

 

 

Fig. 8. Cluster that cannot be split with a cutline. 
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A. Determination of Candidate Chromosomes 

Section III-B poses the segmentation-classification problem as maximizing the likelihood function ( )iAL ,′ . Since 

there are only 24 possible classes for a chromosome, it is simple to do an exhaustive search over all possible values 

of i  for any particular candidate chromosome A′ . However, there is an extremely large number of possible 

segmentations for A′ , so this formulation is only useful if one could somehow first develop a reasonably limited set 

of candidate chromosomes from which to choose. We now describe how these candidate chromosomes are generated. 

Many previous chromosome segmentation methods [37] begin with a background/foreground separation step, such 

as thresholding.  This segments all the single chromosomes with no touches or overlaps.  By contrast, we focus only 

on decomposing clusters of overlapping and touching chromosomes.  Of course, erroneous background/foreground 

segmentation may lead to erroneous cluster decomposition; however, there has already been a great amount of work 

on this problem, so we refer the reader to [48] for a review of some of the many techniques available.  In this work, 

we assume that background/foreground segmentation has been performed ideally or at least close to ideally. 

We perform connected component analysis to parse the image into single chromosomes and clusters of touching 

and overlapping chromosomes. The result of this processing is a set of r connected components, or objects, 

**
1 rOO K .  At this stage, each object *

iO  is probed using the likelihood function developed in Section III.B. If *
iO  

were a complete chromosome, evaluation of the likelihood function for the correct class will result in a large value; if 

*
iO  were composed of several touching and/or overlapping chromosomes, a small likelihood value will result. If *

iO  

were a single abnormal chromosome, then it would also result in a small likelihood value. An empirically determined 

likelihood threshold, T1, is used to determine whether the connected component *
iO  is a single, normal chromosome. 

If the ML function evaluated on *
iO  exceeds T1 for any class, then processing is terminated because the component 

has been both segmented and classified with a high likelihood value. 

If the likelihood function falls below T1, then the connected component could either be a cluster of touching and 

overlapping chromosomes or an abnormal chromosome, such as a broken chromosome or translocation, or a 

combination of these. All of these cases are handled in a unified manner using pixel classification and post-

processing of the classification map. The post-processing step reduces noise in the pixel classification, improves 

computational efficiency, and increases the segmentation-classification accuracy. The objective is to partition the 

connected component *
bO  into mutually disjoint sets *

,
*

1, qbb OO K , where b  indexes a connected component with 

likelihood function below T1 for all classes. Since the sets completely make up *
bO , 

U
q

j
jbb OO

1

*
,

*

=
=  (11) 

and since the sets are mutually disjoint 
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bO
q

j
jb ∀∅=

=
 

1

*
,I  (12) 

We now describe the details of this partitioning process, and then explain how the sections are re-merged. 

1) Pixel Classification and Post-processing - Each connected component bO  is first processed by a pixel classifier 

using the MAP ( )xiCp  discussed in Section III-B. Since pixel classification is a noisy process, some isolated pixels 

and small segments are misclassified in this step. To reduce noise, we filter the class map using a non-linear majority 

filter. The majority filter is used since it removes small segments, but maintains the shape and position of large-scale 

edges. A majority filter uses a moving window H. The image is scanned in raster order, and the class at the center 

pixel location is replaced by the majority class within the spatial extent of the window:  

( )
( ) { }

( ){ }kmm
kmk

−=
∈−∈

xy
iOH *,

maj  
(13) 

Here, x  is the input class map, y  is the output class map, and maj denotes the majority operation. Notice that only 

object pixels are used for calculating the majority, not background pixels. We use a fairly large window 

( ) ( ) ( ){ }8,8,,7,8,8,8 K−−−−=H  - a 17 × 17 square applied to 517 × 645 images - large enough to remove most of 

the noise; but not be so large that it removes small chromosomes. This window is about the same size as the smallest 

chromosome in an average image – in fact, not large enough to filter out even the smallest chromosome in the ADIR 

M-FISH chromosome image database (Section V.A). Another possibility is to vary the window size by adaptively 

selecting a window smaller than the expected size of the smallest chromosome in a given image. It should be noted 

that a large majority filter might also remove small translocations. This is acceptable though, since it is not necessary 

to split translocations into two segments; instead, objects are identified as translocations by low likelihood value. 

We follow majority filtering by reclassifying small segments to the most likely class of one of their neighboring 

segments.  This eliminates any remaining small segments.  If jS  is the set of pixels in the segment under 

examination, define jS  to be a small segment if jS  < 2T .  For each small segment, the set of classes of the 

adjacent segments is denoted 
jSD . Two segments, 

1jS  and 
2jS , are adjacent if 

( ) ( )
12

such that  jj SS ∈∇−∈∃ mxmx  (14) 

where ∇  is the four-connected set ( ) ( ) ( ) ( ){ }0,1,1,0,0,1,1,0 −− . The most likely class, î , is determined by selecting 

the most likely class for jS  from among only the classes of its neighboring segments, 
jSD  

( )iSLi j
Di is

,maxˆ 1
∈

= . 
(15) 

Figure 9 depicts small segment reclassification; Fig. 9(a) shows a class map of classified pixels, where color 

denotes class. It includes two large segments, labeled 1 and 2. One small segment of only two pixels, labeled 3, 

remains even after majority filtering. To remove this small segment, it is reclassified to the most likely class of one of 
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its neighbors, so that it becomes the same class as one of these segments (Fig. 9(b)). In the example, the small 

segment is reclassified to the same class as segment 1, so both segments are denoted in blue. 

The steps of pixel classification, majority filtering, and reclassification generally yield oversegmented 

chromosomes - more segments result than there are chromosomes. In the next section, it is shown how these 

segments are rejoined to create candidate chromosomes. The resulting segments {Sj}, after majority filtering and 

reclassification, are equivalent to the partition used in Agam and Dinstein’s minset representation of the chromosome 

segmentation problem [16]. The chromosomes can be then formed as minsets of this partition. Next, we describe how 

to choose which set of segments to represent each chromosome. 

2) Rejoining of Segments into Candidate Chromosomes - The above steps typically result in oversegmented 

chromosomes; that is, there is often more than one segment for each chromosome.  This is because there are often 

misclassified segments. In addition, even if pixel classification were performed perfectly, one would need some 

mechanism to distinguish between which pairs of similarly classified segments represent the ends of one overlapped 

chromosome and which represent two whole chromosomes within a single cluster. Figure 10 illustrates these two 

possibilities. It shows two clusters of classified segments: Fig. 10(a) shows a cluster with two segments classified as 

class 5; they are two ends of an overlapped chromosome and should be joined together since they are part of the same 

chromosome. Fig. 10(b) shows two segments classified as class 6. In this case, the two segments are two complete 

chromosomes and should be recognized as separate. 

In the rejoining process all possible pairs of segments are considered as candidate chromosomes; the likelihood 

function L is computed for each pair. The pair that results in the largest likelihood value is combined into a single 

segment, if the conjoint likelihood value exceeds the geometric mean of their individual likelihood values. After the 

pair is rejoined to make a new segment, all possible pairs of the new set of segments are evaluated to find the 

combination which results in the greatest likelihood value. This process is repeated until no more pairs can be found 

whose combination results in a greater likelihood value that the geometric mean of the two original likelihood values 

in the pair. 

The first two pairs are selected as follows: 

( )U 11

,,
maxarg)~,~( kj

kjkj
SSLkj

≠
=  

(16) 
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(a) Small segment is #3 (b) Reclassified as neighbor class 

Fig. 9. Small segment reclassification 
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(a) Overlapped chromosome: 

two class 5 segments 

(b) Two whole chromosomes: 

two class 6 segments 

Fig. 10. Ambiguity of similarly classified segments 
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The rejoining of two segments is given as 

U l
k

l
j

l
f SSS ˆ~1 =+  (17) 

where f  is an index into a reordered sequence of segments.  We repeat this rejoining as long as 

( ) ( ) ( )1~~ maxmax +< l
f

i
l
k

l
ji

SLSLSL
 (18) 

Since we want to encourage recombining tiny segments which result in a near zero likelihood value, the geometric 

mean is preferred to the arithmetic mean. 

When no more pairs can be found to be suitable for recombination, the segmentation-classification is complete, 

and the chromosome segmentation-classification estimates are labeled. Note that abnormal and incorrectly segmented 

chromosomes result in low likelihood values and thus can be identified and flagged. 

Figure 11 shows an example of segment rejoining; Fig. 11(a) shows the segments left after pixel classification, 

majority filtering, and small segment reclassification. Two segments in the Class 6 chromosome have been 

misclassified as Class 14. The two Class 6 segments were joined first, then the lower Class 14 segment; and finally, 

the upper Class 14 was joined with the new segment made of the original two Class 6 segments and the lower Class 

14. The new large segment was classified as a Class 6 chromosome. Joining the Class 6 and the Class 11 

chromosomes did not result in an increase in the likelihood value, so rejoining was stopped. The final result is shown 

in Fig. 11(b). A flowchart of the algorithm is given in Fig. 12. 

V. RESULTS 

A. M-FISH Chromosome Image Database 

The algorithm was tested on the ADIR M-FISH chromosome image database [49] of 200 multi-spectral images of 

dimension 517 × 645. Each pixel contains a 6-element vector: 5 multi-spectral channels plus the grayscale DAPI 

channel, as discussed in Section II-E. This database is a representative set of M-FISH images with a wide variety of 

image types and from a variety of dye sets. It includes very simple images with no touches and overlaps between 

chromosomes as well as difficult-to-segment images with many touches and overlaps. It includes crisp, clear images 

as well as somewhat blurry ones. It includes well-spread chromosomes and tightly packed chromosomes. It includes 

chromosomes at different stages of mitosis. It includes normal male and female karyotypes, sets with simple 

translocations, and “extreme” cases (labeled karyotype code ‘EX’) with many abnormal chromosomes. 

A nomenclature is used on the images to easily identify karyotype and set. The first character represents the probe 

set. The next two characters represent slide number. The next two characters are the number of the image on the 

slide. The final two characters represent the karyotype code. Therefore, if image number 12 from slide 98 (using ASI 

probes) were from a normal female, its file name would be A9812XX. The dataset is publicly available and can be 

used by anyone for comparing M-FISH segmentation results. The dataset also includes an ISCN designation of the 

karyotype and a hand-segmented “ground truth” image for each M-FISH image (marked with a ‘K’), so that 

segmentation results can be easily checked for accuracy. 
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We ran the algorithm on every image other than the 

“extreme” cases. Each image, together with segmentation 

results compared to the ground truth (‘K’) images were 

manually analyzed and recorded. Since few segmentations will 

be pixel-for-pixel identical with the stored K image, this task is 

somewhat subjective. In all comparisons, we were somewhat 

lenient with both algorithms and accepted any segmentation 

that varies only slightly from the K image in the database. The 

results are presented in the following sections. 

B. Examples 

Figure 13 depicts the ML joint segmentation-classification method applied to a single cluster of chromosomes.  

The cluster includes one touch and one overlap. Fig. 13(a) shows the original M-FISH image with hand-drawn 

segmentation, while Fig. 13(b) shows pixel classification using the classifier in Section III-B. The effect of the 

majority filter is shown in Fig. 13(c).  Two small segments were reclassified: the green cluster in the upper left and a 

single pixel of red in the class 22 chromosome. Fig. 13(d) shows the segments after reclassification and the 

likelihood values of their most likely class.  Fig. 13(e) shows the final segmentation likelihoods, and Fig. 13(f) shows 

the final classifications. The ends of the class 15 chromosome have been rejoined, as have the two segments of the 

class 22 chromosomes. Notice that the likelihood value of the class 12 chromosome is still low since it covers part of 

the class 15 chromosome. 

Figure 14 shows an example of a simple image (A0105XY) segmented with the ML joint segmentation-

classification method. Again pixel classification, majority filtering, and the final segmentation are shown. Here there 

were no segments small enough for reclassification. Small segments, in fact, are rather rare given the large size of the 

majority filter, but they are still possible, as witnessed in Fig. 13. In this example, two touches and the overlap were 

decomposed correctly. 
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(a) Segments after pixel classification 

and post-processing 

(b) Final segments after rejoining 

Fig. 11. Rejoining of segments to make chromosomes 
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Fig. 12. Flowchart of proposed segmentation-classification algorithm. 
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In Figures 15 and 16, the strengths of each method 

are contrasted. Figure 15 shows an example where the 

ML M-FISH method succeeds but grayscale methods 

fail. In this example, two chromosomes touch closely 

and are in line with each other. Using grayscale and 

geometric information alone, this appears to be a single 

chromosome, where the M-FISH multi-spectral data 

makes the touch clear. Fig. 16, however, is an example 

where multi-spectral methods fail: two chromosomes of 

the same class overlap. The geometric information 

succeeds here, but multi-spectral information does not 

distinguish between the two chromosomes. 

While most of the examples in this section were 

straightforward and successfully decomposed, the 

ADIR M-FISH dataset includes a wide variety of 

images, including a number of difficult real-world 

images such as Fig. 16. In the next section, we discuss 

the algorithm performance on the whole database and 

examine several types of clusters which the algorithm 

does not segment correctly. 

C. Segmentation 

We compared our results with those of the popular 

Cytovision chromosome segmentation software [50], a 

commercially available chromosome imaging software 

package that performs grayscale image segmentation. 

We applied the software to the DAPI channel of each 

image in the ADIR chromosome image dataset. The 

Cytovision software is semi-automatic. It first decomposes what it believes are certain touches, then marks what it 

believes to be more possible clusters, and the user manually selects the touches and overlaps. It then attempts to 

decompose the touches and overlaps that the user selects. For comparison, we manually selected all touches and 

overlaps, to see what percentage are correctly decomposed. If a touch or overlap is segmented incorrectly, we left it 

unsegmented, rather than let it be segmented incorrectly. For this reason, the Cytovision grayscale software has many 

more clusters unsegmented than segmented incorrectly. If a cluster contained both touches and overlaps, we 

manually selected the order of decomposition that resulted in the best segmentation. 

  

(a) M-FISH cluster n (b) Pixel classification 
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(e) Final likelihood values (f) Final classification 

Fig. 13. Example of cluster decomposition 
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The ML method runs completely automatically. It attempts to recognize all clusters and decompose them, treating 

touches no differently than overlaps, since they are both decomposed in the same way in the algorithm. 

Since we have not concerned ourselves with background/foreground separation in this work, we assume ideal 

separation. For the Cytovision grayscale software, we manually selected the threshold giving the best segmentation 

accuracy. Cell nuclei and debris were removed manually. For the ML algorithm, we used the background/foreground 

separation included in the hand-segmented K file of the M-FISH image dataset. If these two different methods 

resulted in different clusters, those clusters were discarded, and only matching clusters were compared. 

Since the Cytovison grayscale software requires human assistance, a comparison between it and the ML method 

might not be completely fair. For instance, very few clusters are oversegmented or missegmented in the grayscale 

software since the user only selects decompositions that are performed correctly. The only oversegmented and 

  

(a) M-FISH image (c) Majority filter 

  

(b) Pixel classification (d) Final segmentation-classification 

Fig. 14. Example of M-FISH image segmentation 
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incorrectly segmented clusters result from the software 

automatically segmenting clusters it believes to be 

obvious.  To account for some of this, we have 

calculated the percentage of clusters and single 

chromosomes that both methods have identified as 

clusters. 

The segmentation results are shown in Table II. The 

ML method correctly decomposed a much higher 

percentage of touches compared to the grayscale 

segmentation. The grayscale segmentation particularly 

has a difficult time with “hard” touches, or partial 

overlaps (Fig. 17), and with large clusters of many 

tightly packed chromosomes.  Neither does very well 

with overlaps, although the grayscale method seems 

more reliable than the ML classification-segmentation. 

This is partly because the probabilistic modeling resists 

overlaps since it is uncertain about the part being 

overlapped. It often mistakes overlaps for a touches. 

Most chromosomes incorrectly segmented by our 

algorithm fall into one of 5 classes: 

1) The most obvious class is the example shown in Fig. 

16. If two chromosomes of the same class touch or 

overlap, there is no way to determine their boundary with 

multi-spectral information alone. Grayscale or geometric 

information must be used in this case. 

2) In certain instances a chromosome or cluster of 

chromosomes was incorrectly segmented because of poor 

background/foreground segmentation. As mentioned, we 

did not perform our own background/foreground 

segmentation, but instead use the 

background/foreground segmentation that was contained 

in the K files of the M-FISH image dataset.  While the 

segmentation in the K files always contains the 

chromosomes, it does not necessarily guarantee that the 

masks will exactly match the border of the 
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(a) M-FISH image (b) ML segmentation-classification 

Fig. 15. Multi-spectral methods work, but grayscale methods do not. 

 

 
 

(a) M-FISH image (b) Grayscale segmentation 

Fig. 16. Grayscale methods work, but multi-spectral methods do not. 

 

 
Fig. 17. “Hard” touch.  Only the tip of a chromosome is overlapped, so unlike 

the typical overlap case, both ends of the chromosome are not visible. 

 

TABLE  II 

PERCENTAGE OF CORRECT SEGMENTATION FOR VARIOUS CLUSTER TYPES 

 Count ML Method Grayscale 

Touches 720 77% 58% 

Overlaps 189 34% 44% 

Singles Oversegmented 3102 0.8% 0.2% 

The proposed ML method is completely automatic and works on the color 

image, whereas the grayscale method requires human intervention 
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chromosomes. The masks can be larger than the 

chromosomes, sometimes twice as large as the 

chromosomes they contain. Because the likelihood value 

is a function of size, incorrect size information derived 

from the background/foreground segmentation can lead to 

erroneous results. Figure 18 shows the border of the K 

files background/foreground segmentation in white. The 

border hugs tightly to the edge of the chromosomes in 

most instances, but the bottom half of the green 

chromosome was manually enlarged by the dataset’s 

creators to include the telemere. 

3) Segmentation-classification accuracy is inherently 

dependent on pixel classification accuracy. Pixel 

classification rates vary widely throughout the M-FISH 

image dataset.  Average pixel classification accuracy for 

our classifier was 68% with a standard deviation of 

17.5%. Accuracies above 90% were not uncommon for 

some images, and some images only had pixel 

classification accuracies of 20-30%, or even less in a 

few rare cases. Fig. 20 illustrates the relationship 

between segmentation-classification accuracy vs. pixel 

classification accuracy. The “10-20” bar is statistically 

insignificant because there are only a few images in this 

group. 

4) Finally, a common cause of errors in segmentation-

classification was the “greedy” approach to the 

algorithm.  The algorithm does not guarantee an optimal 

combination of segments in the sense of likelihood 

values. Instead it is a greedy algorithm, in that it only 

rejoins the pair that results in the highest likelihood 

value for a single combination. It is possible that 

rejoining two segments with a lower rejoined likelihood 

value may lead to a series of rejoinings having a higher 

likelihood value. In Fig. 19, the pair of segments that 

 

 
Fig. 18. Background/foreground inaccuracies in K files 

 

TABLE  III 

OBJECTS RECOGNIZED AS CLUSTERS 

 Count ML Method Grayscale 

Clusters 496 95% 69% 

Singles 3102 6% 0.4% 

ML method recognizes more clusters, but also incorrectly recognizes more 

single chromosomes as clusters.  However, the ML method only actually 

oversegments 0.8% of single chromosomes compared to 0.2% for the 

Cytovision method. 

 

TABLE  V 

ABNORMALITY DETECTION CHARACTERISTICS ON V29 IMAGE SET IN THE 

ADIR M-FISH DATASET 

 
Normal 

Chromosomes 
Translocations Fragments 

Likelihood average 0.44 0.12 0.02 

Likelihood standard 

deviation 

0.24 0.10 0.02 

< 0.1 likelihood 4.9% 50% 100% 

< 0.3 likelihood 34% 96% 100% 

On average the likelihood value for a translocation is significantly lower 

than the value for normal chromosomes. 

 

TABLE  IV 

CHROMOSOME MISCLASSIFICATION RATES 

 Joint Segmentation-Classification Only Pixel Classification 

Singles 8.1% 15% 

Using the proposed likelihood function for classification reduces 

misclassifications by nearly 50% compared to classification using only multi-

spectral data. 
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results in the highest likelihood value is segments 2 and 3. Segment 3 produces a higher likelihood value than 1 and 6 

since it is larger and makes the chromosome closer to its expected size for a class 3 chromosome. Also it includes 

some of the class 3 chromosome, so its multi-spectral information might also partially match. However, while one 

segment of high probability is found, there is no combination for segments 4 and 5 that results in a high probability, 

so the average likelihood value is low.  One possible area of future improvement might be to implement a stochastic 

approach to combine segments. 

In addition to decomposition accuracy, another important factor to consider is an algorithm’s accuracy in detecting 

clusters, so that it will know which objects it should keep as single chromosomes and which ones it should attempt to 

decompose into parts. One can see in Table III that the probabilistic model recognizes a much higher percentage of 

clusters, but as a result also recognizes more single chromosomes as clusters. However, even though the probabilistic 

model recognizes 6% of singles as possible clusters, less than 1% of them are actually oversegmented when they 

should not have been (Table II). Very rarely will any segments within a single chromosome result in a higher 

probability than the chromosome as a whole. In this test, we used a threshold of a 0.1 likelihood value for 

determining whether a connected component or not; if a segment has less than a 0.1 likelihood value of belonging to 

its most likely class, we assumed that that object was a cluster or an abnormality. 

D. Classification 

Classification accuracy was also run on the entire 200-image ADIR M-FISH database. All chromosomes correctly 

segmented by the ML method were examined, both in clusters of touching and overlapping chromosomes and by 

themselves. Incorrect segmentations, translocations, and other abnormalities were not considered. The K files were 

used to determine classification accuracy. Table IV shows the misclassification rate using pixel classification. Pixel 

classification was done by assigning each chromosome to the class occuring most often in the classified pixels within 

that chromosome. The misclassification rate is nearly twice that of the proposed likelihood function ( )⋅L  and the 

joint segmentation-classification algorithm. 
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Fig. 19. Greedy vs. optimal 
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Fig. 20. Impact of pixel classification on segmentation 
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E. Chromosome Flagging 

One advantage of the ML joint segmentation-classification algorithm is that the final result is a likelihood value for 

each chromosome segment. This value is a measure of the certainty of the classification of that segment, which is 

useful since it allows segments of low likelihood values to be flagged as segments requiring manual inspection. 

There are four possibilities that would result in a segment of low probability: 

1)  The segment is a translocation, broken chromosome, or other abnormal chromosome. There is no “correct” 

segmentation, since the chromosome will have a low likelihood of being a chromosome, and the sections of a 

translocation will be too small to receive a high likelihood value. 

2) The segment is incorrectly segmented. If the ML method errs and cannot find the correct segment, the resulting 

segments often will have low likelihood values. 

3) The segment is misclassified. Even if segmented correctly, noise, weak dyes, or other factors could cause the 

segment to be misclassified. In this case, the likelihood value will also be low since likelihood function ( )⋅1L , which 

measures pixel classification certainty, will be low. 

4) It is possible that the segment is segmented and classified correctly, but the segment still has low likelihood 

value.  This may also be due to noise, weak dyes, image distortion, misregistration of spectral images, etc. 

In the first 3 of these 4 cases, it is useful to flag these segments so that the user can either repair the segmentation-

classification error or further inspect the abnormal chromosome. In practice, all karyotypes are reviewed manually, 

but flagging of segments by likelihood values would certainly save time, since the user is automatically directed to 

the questionable segments, rather than having to examine every segment for correctness without any prior 

knowledge. We briefly consider each case in turn. 

1) Aberration Scoring - The most important aspect of karyotyping is anomaly detection. Extra chromosomes, 

missing chromosomes, and translocations indicate radiation damage, cancer, and various genetic disorders. The 

multi-spectral data in M-FISH images make anomalies readily apparent [44]. Figure 21 is an example of a t(20:5) 

 

 

 

 

a) Grayscale b) M-FISH 

Fig. 21. t(20;5) translocation.  An exchange of material between a type 20 and 

type 5 chromosome. 

 

 

Fig. 22. Small translocation; t(7;8). 
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(designating translocations between type 20 and type 5 

chromosomes [7]). The translocation is highly visible 

owing to the color differential between the two sections; 

the grayscale version appears as a normal chromosome. 

The proposed probabilistic model for segmentation-

classification also aids in locating and measuring the 

severity of translocations, abnormalities and broken 

chromosomes, since their segments have low 

probabilities. The karyotype of such segments can then be marked as abnormal for later examination by an expert. 

Discovering an abnormal number of chromosomes would require incorporating chromosome count into the 

likelihood function; however, it is a simple matter to flag a class if it has more (or less) than its normal number of 

chromosomes assigned to it. 

Some translocations are difficult to detect, even for an expert, since they are very small. A tiny change in color at a 

chromosome tip may be due to noise, staining, or an actual translocation. Several images may be needed to verify 

that a chromosome contains a translocation. Figure 22 shows a translocation that is quite similar to a class 8 

chromosome. It is much less noticeable than the translocation in Fig. 21 since it only has a very small section of class 

7 chromosome, and is similar in size to a class 8 chromosome. 

The proposed likelihood function also can have difficulty in detecting these small translocations since they change 

the size of the chromosome by only a small amount, and because there is still high confidence of the class throughout 

most of the chromosome. The proposed likelihood function is quite reliable, though, in detecting larger translocations 

and smaller than normal chromosomes that might result from a break. 

Table V shows the results of running the algorithm on image set V29 from the ADIR dataset.  This dataset has 15 

images with 5 translocations in each, as well as some short chromosome fragments. In this test the likelihood values 

of the normal, correctly segmented chromosomes were compared to the likelihood values of abnormal chromosome 

material, the translocations and the fragmented chromosomes. Clearly, the likelihood is effective as a feature for 

distinguishing between normal and abnormal chromosomes. The average likelihood values of the translocations and 

the partial chromosomes are much lower than the average probabilities of whole chromosomes. This table also shows 

what percentage of normal and abnormal chromosomes were flagged with a likelihood value threshold of 0.1 - an 

arbitrary number used only to illustrate the disparity between the percentages of normal and abnormal chromosomes 

flagged. Since the average likelihood value for a translocation is 0.12, a higher threshold of 0.3 was also included, 

which flagged nearly all the abnormal chromosomes, but also caught more normal chromosomes. Table VI shows the 

results of abnormality detection on the entire database. With a likelihood value threshold of 0.1, 49.1% of the 

abnormal chromosomes were flagged. 

TABLE  VI 

LIKELIHOOD FUNCTION < 0.1 

 Count Flagged 

Abnormals 114 49.1% 

Incorrect Segmentation 409 52.6% 

Incorrect Classification 315 48.6% 

Correct Segments 3866 6.4% 

The proposed likelihood function is much more likely to flag abnormals 

and errors in segmentation and classification than normal, correctly identified 

chromosomes. 
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2) Incorrect Segments - When it were not possible for 

an algorithm to find a correct segmentation, it is 

desirable that the questionable segments be flagged for 

human inspection. The ML algorithm makes this 

possible: if the ML function cannot find a likely 

segmentation, it results in a low likelihood value and the 

segments involved are easily located. 

Table VI shows the percentage of incorrect segments 

that were flagged using a threshold of 0.1. While only 

52.6% of incorrect segments are flagged, the algorithm is 

more effective than this number indicates, since many of 

the cases are part of an incorrectly segmented, multiple 

chromosome cluster. So while only one segment in that 

cluster might be flagged, this is effectively the same as 

flagging the cluster, since fixing that segment will likely fix other segments in that cluster that might not have been 

flagged. Figure 23 exemplifies this: Fig. 23(b) shows an incorrectly segmented and classified cluster.  If segment 14 

or 21 were the only segment flagged, they would result in the whole cluster being corrected; one cannot be fixed 

without the other since they are part of the same chromosome. Since the correct chromosome, 12, would then be 

correctly segmented, the remaining part of the cluster, the class 14 chromosome, would also be corrected. 

3) Misclassifications - Misclassifications also result in low likelihood values, because they result from uncertainty 

caused by noise or weak labeling. Very rarely is a chromosome misclassified with a high probability. Table VI shows 

that likelihood is, in fact, a good indicator of misclassified chromosomes, with 48.6% of misclassified chromosomes 

having a likelihood value of less than 0.1. As in the case of abnormal chromosomes, the algorithm will flag a higher 

percentage of chromosomes if the likelihood value threshold were raised, but it would also flag a higher percentage 

of correct chromosomes. This might be desirable if one were willing to sort through more correct segments in order 

to catch more incorrect or abnormal ones. However, the arbitrary threshold of 0.1 used here amply illustrates the 

disparity of flagging between abnormal chromosomes and incorrect segments as compared to correct segments. 

4) Correct Segments - We also include the rates for correct segments for comparison. As Table VI shows, only 

6.4% of correctly segmented and classified chromosomes are flagged; correct segments only constitute 38% of the 

flagged chromosomes, even though there are almost 5 times as many correct segments than abnormal chromosomes, 

incorrectly segmented chromosomes, and misclassified chromosomes put together. 

F. Complexity 

The lengthiest part of the algorithm is, by far, the pixel classification, requiring, at each pixel, evaluation of a 

multi-dimensional Gaussian for each class and the probability that it belongs to each class. There are 5 dyes, so a 5-

element mean vector multiplies a 5×5 covariance matrix and this by another 5-element mean vector, followed by a 

 

14 

22 

21 
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12 

 

(a) M-FISH cluster (b) Incorrect 

segmentation and 

classification 

(c) Correct segmentation 

and classification 

Fig. 23. Single flagged segment can correct a whole cluster.  Cluster is 

incorrectly segmented and classified.  However, flagging only one segment 

can direct a user to correct the whole cluster. 
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scalar exponential: a total of 30 multiplications and 24 additions for each pixel and class. Since there are 24 classes, 

and the image size used is 517×645, there are nearly 240 million multiplications/additions for each image. For a 

typical 517×645 image, the code takes around 2.5 minutes on a 167 MHz Sun workstation to accomplish both 

segmentation and classification. Most of that time is used for pixel classification and probability calculation. A 

portion of that time is used for calculating side information not strictly necessary for the operation of the algorithm. 

All the code presented here is available at: 

http://signal.ece.utexas.edu/~wade/mfish.  

VI. CONCLUSION 

A maximum likelihood method to segment and classify M-FISH chromosomes images using multi-spectral data 

was introduced. It uses pixel classification and a probabilistic model of chromosome features to select from among a 

set of segmentation possibilities. Segmentation and classification can be achieved simultaneously, since the model is 

a function of both. The method decomposes both overlaps and clusters composed of more than two chromosomes. 

Since the method is not specific to the characteristics of chromosomes, it could be used for other multi-spectral 

segmentation problems. 
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