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1. INTRODUCTION 

Models for continuous data which incorporate both fixed and random effects (mixed models) are 

commonly used in a variety of disciplines, from ecology and medicine to the physical sciences. 

However, the same is not true for binary data (Stram, Wei and Ware, 1988). Usage has been limited 

to a large extent by the intractability of the computations involved in fitting many of the models. In 

this paper, we consider a class of probit-normal models. We describe maximum likelihood (ML) and 

restricted maximum likelihood (REML) estimation of the parameters in the model by use of the EM 

algorithm (Dempster, Laird and Rubin, 1977). Our version of the EM algorithm is very similar to 

that for the continuous, normal linear model and offers a framework for computation of the ML and 

REML estimates. We demonstrate through two examples that the computations are feasible for any 

number and structure of random effects and an arbitrary number of fixed effects. This has not 

previously been possible; ML estimation has only been described in models with nested random 

effects. 

Our focus will be on variance components estimation in mixed models and the analogs of best 

linear unbiased prediction (BLUP) of the observed values of the random effects. Thus our 

concentration differs somewhat from the usual one of repeated measures models, which is to treat the 

fixed effects as the primary quantities of interest, with the random effects introducing a "nuisance" 

correlation. We do not consider covariance components models. 

A number of models for correlated binary data have been proposed. The beta-binomial 

distribution is a natural model to use (Williams 1975, Crowder 1978) that hypothesizes a mixing 

distribution directly on the probability of success. However, it does not generalize easily to multiple 

random effects. Zeger and Liang (1986) and Liang and Zeger (1986) have proposed generalizations of 

quasi-likelihood methods but their methods focus on the fixed effects and only estimate the variances 

and covariances as nuisance parameters. Prentice (1988) has considered extensions of the Zeger and 

Liang (1986) estimating equation approach, explicitly estimating the covariances also. However, like 

the beta-binomial models, his models are also difficult to generalize to multiple random effects. For 
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these reasons we consider in this paper correlated probit models which are generalizations of those of 

Ochi and Prentice (1984). These are similar to the logit normal models of Pierce and Sands (1975), 

Wong and Mason (1984) and Stiratelli, Laird and Ware (1984), though Stiratelli, Laird and Ware's 

models are intended only for the longitudinal data setting. Our model is essentially a simplified 

version of the threshold model considered in Harville and Mee (1984), but for their general model the 

computations were deemed "insurmountable" (p.397) and they were forced to resort to ad hoc 

estimation methods. Zeger, Liang, and Albert (1988), Liang, Zeger, and Qaqish (1992), and 

Anderson, Gilmour and Rae (1985) consider a generalized estimating equation approach and 

Anderson and Aitken (1985) considered an iterative, weighted logit analysis approach with models 

similar to ours. Other papers which consider related models are Preisler (1989), Im and Gianola 

(1988), Gianola (1980), Quaas and Van Vleck (1980), and Manski and McFadden (1981). 

2. THE MODEL 

Our model is a threshold model where Y represents an unobserved, continuous variable and we 

observe only Wi = I{Yi > O}' i.e., whether Wi exceeds a threshold of zero. A flexible class of binary 

data models can be generated by assuming 

Y = xp + Zu+ t:, (2.1) 

i = 1,2,···,n' 

where X and Z are known matrices, u ....., .N'(O, D) and £ "' .N'(O, I), independently of u. It is 

unimportant whether we actually believe in the threshold model and the unobserved variable Y or if 

we merely use it as a device to obtain estimates for the model. We will be primarily interested in 

estimating the elements of D, the variances of the random effects. 

By taking u = 0 the model simplifies to the usual probit analysis model. If we set X = 

diag{ 1m} i = 1,2,· · ·,G, Z = diag{ 1niJ' j = 1,2,· · ·,m;, P = J.L, this reduces to the Ochi and Prentice 

(1984) model, with the restriction that negative correlations cannot be modeled. Model (2.1) has the 

advantage over the Ochi and Prentice model that it does not require the mean to be constant within 

levels of the random effect. 
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This model is closely related to those of Pierce and Sands (1975) and Stiratelli, Laird and Ware 

(1984). If t is assumed to have a logistic distribution instead of a normal distribution, then 

generalizations of their models are obtained. 

Advantages of the probit-normal model (2.1) over the logit-normal models of Pierce and Sands 

and Stiratelli, Laird and Ware are threefold: 

1. With a single random effect and only one observation per level of the random 
effect it reduces to the usual probit model, except with a different error term 
for £. The logit-normal models do not reduce to the usual logit models. It is 
conceptually distasteful for a generalization of a simple model (the logit) not 
to reduce to the simple model when analyzing a dataset appropriate for that 
model. 

2. The marginal mean of Wi has a simple representation (Zeger, Liang and 
Albert, 1988): 

3. The EM algorithm (Section 3) takes a form nearly identical to the continuous, 
normal linear model. 

(2.2) 

Point 3. is perhaps the most important because we exploit it using a Gibbs sampling approach (see 

Section 4) to find ML and REML estimates for arbitrarily complicated models of the form (2.3) 

below. 

In what follows, we will assume the standard ANOV A model for vanance components 

estimation, i.e., 

r 
Y=X{J+ L,:z.u. +£, 

i=l l l 

These, along with Wi = I{Yi>O}' define our basic model. 

3. MAXIMUM LIKELIHOOD ESTIMATION 

(2.3) 

In this section, we describe estimation of the fixed effects parameters and variance components 

via the EM algorithm and prediction of the realized values of the random effects. The EM algorithm 

is used for four reasons: it offers a framework for estimation which is similar to the normal theory 
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case, it automatically constrains iterates to be in the parameter space, it offers a natural extension for 

REML estimation, and we have found in practice that for simple problems it tends to converge from 

a wider range of starting values than a quasi-Newton algorithm (see Section 4). To use the EM 

algorithm we regard the complete data as Y and ui (i=1,2, ... r) as is typically done for the 

continuous, normal linear model (Laird, 1982). The advantage of the threshold model approach is 

that we can now appeal to standard results for normally distributed data. 

The maximization step is quite simple as shown by Laird (1982). The maximum likelihood 

estimates for the oi are oi = uiu/qi and, given estimates of the oi, the maximum likelihood estimate 

of pis (X'\r1xr1xr~.-1Y, where \r1 is Var(Y) with Oi replaced by Oi and 

c 
Var(Y) =I+ 2::: O.Z.Z! . 

i= 1 I I I 

The expectation step is also conceptually simple. We need to calculate E[YIW] and E[ uiui!W]. 

This latter expectation can be calculated in two steps, as done by Pettit (1986) for censored data: 

To calculate the inner expectation, we can use the usual multivariate normal results: 

Using (3.1) we therefore have, 

= o[trE[V1ZiZiV1(Y- XP)(Y- XP)' 1 W] + tr(Oii -o[ziV1Zi) 

= o[trV1ZiZiv1(vYIW+ (J'y1w-XP)(J'y1w-XPY)+ tr(Oii-o[ ZiV1Zi) 

= O[trV1ZiZiV1VYIW+Bf(J'ylw-XP)'V1ZiZiV\J'ylw-XP) 

+tr(Oii-O[ZiV1Zi), 

where VYIW = Var(YIW) and J'yiW = E[YIW]. 

(3.1) 

(3.2) 

This shows that the only extra computations needed for maximum likelihood estimation for discrete 

data are the computation of VYIW and J'yiW" By demonstrating that only the conditional mean 
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and vanance of Y are needed, the EM algorithm offers a framework for relatively unrestricted 

computation of complicated mixed models for binary data. In Section 4, using both numerical 

integration and a Gibbs sampling approaches, we show that the computations are feasible in practice. 

We are now prepared to make a formal statement of the EM algorithm for maximum likelihood 

estimation. In the statement of the algorithm, superscripts in parentheses on V, VYIW' and Pyjw 

indicate that the current values of the parameters have been substituted. 

EM Algorithm for ML Estimation 

0. Obtain starting values p(o) and o(o)_ Set m = 0. 

1. (E-Step) Calculate 

= efm)2trv(mflziziy(mflv~{v 

+ efm)2<~{v-xp(m)yy(mflziziy(mfl(~{v-xp(m)) 

+ tr(IJ~m)I-B~m)2z!y(mflz.). 
I I I I 

2. (M-step) Set 

o~m+l) = t~m)/q· 
I I I 

3. If convergence is reached, set iJ = o(m+I) and {J = p(m+I), otherwise increase m by one 

and return to step 1. 

This implementation of the EM algorithm is identical to the continuous case, except that 

(Y - XP )( Y - XP )' and Y are replaced by their expected values given W. Most of the 

computational effort is expended in the calculation of VYIW and PyiW" This will be discussed in 

more detail in Section 4. 

Vve are now in a position to give a version of restricted maximum likelihood estimation 
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(REML). The basic idea behind REML is to maximize a portion of the likelihood which depends only 

on the variance components and not on the fixed effects. See Searle, Casella and McCulloch (1992, 

Sections 6.6 and 9.2b) for further details. We use the approach of Laird (1982) and obtain REML 

estimators by treating the fixed effects as random effects whose variance tends to infinity. This 

approach is motivated by adopting a Bayesian viewpoint and letting the prior information about the 

fixed effects tend to zero (variance tends to infinity); see Harville (1974). Using the same device, 

equation (3.1), as for ML estimation, we calculate 

E[uiuiiW] = E{E[uiuiiY] I w] . 

= B~E[Y'PZ-Z!PY I W] + tr(O.I- B~Z!PZ.) 
l ll l ll I 

where P = V 1-V1X(X'V1Xr1X'V1• An analog of REML can be defined for discrete data, using 

an EM algorithm as follows: 

EM Algorithm for REML Estimation 

0. Obtain starting values (J(o). Set m = 0. 

1. (E-Step) Calculate 

= 8~m)2 trP(m)zizip(m)y\1~+ 8~m)2 ~~·p(m)zizip(m) P\1~ 

+ tr(u(m)I-O(m)2z!p(m)z.). 
I l I I 

2. (M-step) Set 

o(m+l) = f(m) /q· . 
l l l 

3. If convergence is reached, set iJ = o(m+l) otherwise increase m by one and return to step 1. 

A major difference between ML and REML estimation is that for REML the limiting values of VYIW 
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and l'yJW as the variance of the fixed effects tends to infinity must be used. 

The prediction of the observed values of the random effects, ui, is often of interest in applied 

work (Mabry et a!., 1987). For continuous data, the Best Linear Unbiased Prediction (BLUP) 

methodology is often used, giving rise to ui = orzrv-1(Y-XP) = OfZfPY, which is an estimate of 

E[uiJY]. The corresponding calculation for discrete data is ui = orzrv-1(Py-Jw-XP) = BfZiPPvJW' 

which is an estimate of E[uiJW]. The form of the estimator is the same whether we use ML or REML 

estimation though the estimates will, in general, be different due to different values for the variance 

components and PvJW" 

As pointed out by Wu (1983), EM is not guaranteed to converge to a global maximum. Our 

experience has shown that multimodal likelihoods are possible for models such as these; so the best we 

can hope for in this setting is that EM will converge to a local maximum. Unfortunately the 

regularity conditions of Wu (1983) do not apply; a realistic compactification of the parameter space 

by including infinite variance components leads to identifiability problems. Truncation of the 

parameter space to exclude extremely large values would allow the regularity conditions to be met. 

Then, since Q (<o*, p*)I(O, P)) = E [eogf(YJ(O*, /I*))IW, (0, P)] is continuous in both (0*, p*) 

and (0, {J), Theorem 2 of Wu (1983) applies and EM is guaranteed to converge to a stationary point. 

For any particular dataset a local maximum would need to be verified by numerically calculating the 

second derivative matrix (via numerical integration or techniques like Meng and Rubin, 1991). 

4. EXAMPLES 

We applied the methods derived in Section 3 to the data analyzed by Ochi and Prentice (1984), 

from Weil (1970), and to the salamander data from McCullagh and Neider (1989, Section 14.5). 

4.1 The Weil data 

The Weil dataset has a treatment and control group and a single, nested random effect. The 

response is survival of rats and the random effect is litter. The model would be 

y.. = f-l• + U·· + (••k IJ I IJ IJ 

Wij = 1{Y-->0} ' 
IJ 
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where i indexes treatment/control, j indexes litter and k indexes rat within litter, so ~'i is the 

treatment mean on the latent scale and the uij are the random, litter effects. To find ML estimates 

for the Weil data set it is most efficient to numerically evaluate integrals of the form 

00 

J a~( a;n,s,Jl,O" )¢(a )da , 
-oo 

where 

and <I>(·) and ¢( ·) are the standard normal c.d.f. and p.d.f. As pointed out by Pettit (1986), 

integrals such as these have been well studied and are relatively easy to evaluate numerically. We 

used Hermite quadrature with 20 evaluation points (Abramowitz and Stegun, 1964, Table 25.10, 

n=10). We noticed none of the accuracy problems reported in Ochi and Prentice (1984) and, in fact, 

were able to reproduce the true values in their Table 1 exactly. 

We used the matrix language GAUSS (Aptech Systems, 1990) on an IBM PC and fit each group 

separately (previous analyses have shown unequal values of the variance in the two groups). For the 

treated group (i=2), the algorithm converged in 28 iterations and under 1 minute. For the control 

group (i=1), the EM algorithm required 207 iterations about 1 1/2 minutes. The maximum 

likelihood estimates and their standard errors (calculated from the observed information matrix) were 

[1,1 = 1.306 (standard error .169), stddev(u1j) = &1 = .240 (standard error .301), [1,2 = 0.946 (standard 

error .319) and stddev(u2j) = &2 = 1.023 (standard error .291). These estimates agree substantially 

with those of Ochi and Prentice; slight differences are to be expected because they used the 

approximation due to Mendell and Elston (1974). For example in group 2, Ochi and Prentice obtain 

.Y2 = ~ = .651, whereas our estimates give i'2 = .661. The large number of iterations required 
1 +a-~ 

by the EM algorithm for the control group is typical of problems for which the estimates lie near the 

boundary of the parameter space. When the likelihood can be evaluated numerically, as in this 

example, it is straightforward to conduct likelihood ratio tests and to evaluate derivatives of the 

likelihood function for calculating standard errors. 
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We also fitted this data set using a quasi-Newton algorithm (Aptech Systems, 1990, 

Applications Manual, p. 207). Convergence was achieved to essentially the same parameter values 

and each group was fitted in less than a minute. A small amount of experimentation with the 

starting values showed that the EM algorithm converged from a wider range of starting values than 

the quasi-Newton algorithm. 

4.2 The Gibbs Sampler and the salamander data 

In a design with a more complicated random effects structure, for example crossed effects, the 

computations become too burdensome for direct numerical calculation (e.g., the algorithm of Leppard 

and Tallis (1989) only works for small dimensions). To illustrate the flexibility of the framework of 

Section 3 we employ a Gibbs sampling approach (Gelfand and Smith, 1990) to calculate E[YIW] and 

Var(YIW). Tanner (1991) suggests a similar Monte Carlo EM algorithm. By using the Gibbs 

sampler, arbitrarily complicated designs can be easily accommodated. We apply this approach to the 

salamander data of McCullagh and Neider (1989, Section 14.5) which has two crossed random effects 

and four fixed effects. 

We now outline the use of the Gibbs sampler. It rests on a result of Robert (1992) for sampling 

from a truncated multivariate normal and is similar to the treatment of Gelfand, Smith and Lee 

(1992). The basic idea is that fast acceptance-rejection methods exist (e.g. Marsaglia, 1964) for 

sampling from a truncated univariate normal. By cycling through the conditional distributions of 

YiiYj, j :f. i we only ever need to simulate truncated univariate normals. Here is an outline of how 

the Gibbs sampler is used to generate a sample of Y's from the conditional distribution of Y I W. 

1. For each i calculate 

u~l(") = Var (Y·IY· j :f. i) and 
1 1 1 J piJ(i) = Cov(Yi, y (i)) ' 

2. For each i calculate 

where X(i) = X with row i deleted, and xi is the i1" row of X. 
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3. Simulate Yi from a truncated normal distribution with mean ~-'i I (i) and standard deviation 

O"il(i)' If Wi = 1, simulate Yi truncated above 0. If Wi = 0 simulate Yi to be truncated 

below 0. 

Repeat steps 2 and 3 a large number of times, k, to obtain y{1), y{2) · • ·, y(k). Discard a suitable 

number of the yO) from the beginning of the sequence (the burn in period), after that use every mth 

one to estimate E[YIW] and Var (YIW). Because of the iterative nature of the EM algorithm and the 

desire to take as few Gibbs samples as possible (especially at the beginning of EM) we settled on a 

burn in period of i, skipped integer (i/10) + 1 samples and used i + 1 replications, where i is the 

iteration in the EM algorithm. These numbers are small in relation to those recommended in the 

literature, but we noticed no problems. We tried larger values with no improvement. For simpler 

cases where quasi-Newton estimation was possible we compared EM-Gibbs and quasi-Newton for a 

number of simulated data sets and had success with the smaller number of Gibbs samples iu. each 

case. 

In the Gibbs sampler, most of the computational effort is expended in repeating steps 2 and 3 a 

sufficiently large number of times. Thus, complicated random effects structures have little impact on 

the computational time since they only affect step 1. 

The salamander data consists of three experiments, each with n = 120 matings. Wi = 1 if the 

ith mating is successful and zero otherwise. There were 20 males and 20 females, ten of each of two 

species. There were four types of crosses in the matings: species R female - species R male, species R 

female - species W male, species W female - species R male, species W female - species W male. For 

each experiment the model is 

Wi = I{Y. > 0}' 
l 

Uf N 20(0, Or I), the female effects, 

Urn N 20(0, Om 1), the male effects, 

{ ,..... N 120(0, I), 

X = indicator matrix for the type of cross, 

Zf = indicator matrix for tile females, 
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Zm = indicator matrix for the males, 

f3 = (PR/R' f3R/W' f3w /R' f3w ;w)' effect for type of cross. 

Uf and Urn represent the consistent effect individual males and females have across matings on the 

latent variable Y, which governs mating success. They are the random effects which are assumed to 

be i.i.d. with variances given by, respectively, Or and Om. Figure 1 shows the convergence of the 

parameter estimates for experiment 1. The final estimates were (JR/R = 0.819, (JR/W = 0.538, 

Pw /R = -0.978, Pw /W = 0.707, Of= 0.600 and Om = 0.067. These are relatively similar to the 

estimates Karim and Zeger (1992) obtained in a Bayesian analysis using the Gibbs sampler and a 

logit-normal model. Table 1 shows the Bayesian and ML estimates of the variance components for 

the three experiments. When the likelihood is not directly evaluated, as in this example, it is much 

more complicated to calculate standard errors. Techniques based directly on EM, e.g., Meng and 

Rubin (1991) are necessary. 

The estimates of the marginal probabilities (see 2.2) are almost exactly equal to the observed 

proportions: 

Cross 

R/R 

R/W 

W/R 

W/W 

Estimated marginal proportion 

~'/3/(Br + Bm + 1)1/2) 

~.819/(.6 + .067 + 1)112) = 0.737 

0.661 

0.224 

0.708 

Observed proportion 

22/30 = 0.733 

20/30 = 0.667 

7/30 = 0.233 

21/30 = 0.7 

While this approach is computationally intensive, it is not prohibitive. On a fast (33 MH, 486) 

IBM PC compatible using the language GAUSS (Aptech Systems, 1990), 50 iterations were completed 

in 90 minutes and 80 iterations were completed in 250 minutes. (Later iterations do more Gibbs 

sampling -see Appendix). And these times could undoubtedly be improved by more efficient 

programming and computational techniques. 

This application of the Gibbs sampler IS unusual in that it is used to solve directly for 

maximum likelihood estimates rather than utilizing a Bayesian framework. It would seem to be of 

broad utility for models which contain a latent, multivariate normal component. 
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5. CONCLUSIONS 

We have developed a framework for ML and REML estimation of variance components from 

binary data using the EM algorithm. This is very similar to the EM algorithm for the continuous, 

normal linear model. For simple settings the ML computations can be performed by numerical 

integration. For more complicated problems this framework can be used with Gibbs sampling 

approach to calculate ML and REML estimates. This has not been previously possible in designs 

with complicated (e.g. crossed) random effects. 
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Figure 1. EM iterations using a Gibbs sampler for the salamander data set 1. 
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Table 1. Comparison of ML and Bayes estimates of the female (Bf) and 

male (Bm) variance components from the three salamander data sets 

(McCullagh and Neider, 1989). The Bayesian estimates are taken from 

Karim and Zeger (1992, Table 4.) and are divided by ( ..f:i ~~ Y for 

comparability (Johnson and Kotz, 1970, p. 6). 

Data Set 

1 

Estimate Variance Br Bm 

ML .60 .06 

Bayes .81 .05 

2 

of 

.49 

1.03 

em 

.45 

.49 

3 

.10 .44 

.11 1.00 


