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ABSTRACT   

Speech dynamic features are routinely used in current
speech recognition systems in combination with short-
term (static) spectral features. Although many existing
speech recognition systems do not weight both kinds of
features, it seems convenient to use some weighting in
order to increase the recognition accuracy of the system.
In the cases that this weighting is performed, it is
manually tuned or it consists simply in compensating the
variances. The aim of this paper is to propose a method
to automatically estimate an optimum state-dependent
stream weighting in a CDHMM recognition system by
means of a maximum-likelihood based training algorithm.
Unlike other works, it is shown that simple constraints on
the new weighting parameters permit to apply the
maximum-likelihood criterion to this problem.
Experimental results in speaker independent digit
recognition show an important increase of recognition
accuracy.

1. INTRODUCTION

The so-called dynamic features [1] are able to somewhat
represent the time evolution of the spectrum of speech
signals by providing smoothed estimates of the
derivatives of the spectral parameter trajectories in the
current frame, and their use reduces noticeably the
recognition error rate.

Although many existing speech recognition systems
do not weight dynamic features with respect to static
features, it seems convenient to use some kind of
weighting in order to increase the recognition accuracy
of the system. When a weighting is performed, usually
the same set of weights is used for every frame and so
they can be estimated empirically. In most of cases, such
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a weighting is just manually tuned [2] or it consists
simply in compensating the variances [3].

When the recognition system is based on hidden
Markov modeling (HMM), there is no reason to believe
that there are features which are more important for some
states of the models that the others. Especially, one
would expect the beginning and ending segments of a
phoneme to be more context dependent than the middle
part, so in that case the probability estimator of the
speech recognizer should put more emphasis on dynamic
features [4] [5]. Experiments have shown that static
cepstra are more important than dynamic ones [6]. Thus,
the recognition performance must improve using
individual stream weights for every HMM state. In this
case, an automatic algorithm to learn these weights is
needed.

On the other hand, one main reason for the popularity
and the success of HMM in its application to speech
recognition has been the advent to an efficient maximum-
likelihood (ML) based estimation method, the forward-
backward algorithm [7]. However, in principle, ML
methods applied to the estimation of these stream
weights would invariably discard the stream with the
lowest probability [8]. This result, although provides an
obvious maximum in the objective function, does not
seem reasonable for recognition purposes. Because of
this fact, until now, only good results have been shown
by training state-dependent stream weights in a
discriminative way [5] [8] [9], including the author.

The aim of this paper is twofold: 1) to find a
meaningful interpretation of these stream weights to
provide more insight into their performance (section 2),
and 2) to propose a solution to automatically estimate the
optimum weighting of static and dynamic features based
on the ML principle (section 3). The considered
recognition system is based on continuous-density
hidden Markov modeling (CDHMM)

2. WEIGHTING SPEECH FEATURES IN CDHMM

When dynamic features are employed in continuous-



density hidden Markov modeling (CDHMM), usually the
feature vector O t  is composed by concatenating static
and dynamic features. In this case, good results have
been obtained if dynamic features are scaled in order to
equalize the variances of both kinds of features [3].

An alternative approach is to consider two separate
vectors for static and dynamic features, O1

t  and O2
t ,

respectively, and to assume that both streams are
statistically independent. In this case, for a given state j
of a model the probability that a feature vector is
observed can be written as

b j Ot( )= b js Os
t( )

s =1

2

∏ (1)

where s indexes both streams. If distributions are
modeled by mixtures of L multivariate Gaussian functions

b js Os
t( )= c jskN Os

t , m jsk, Vjsk( )
k=1

L

∑ (2)

where N is a Gaussian pdf of mean vector m jsk  and

covariance matrix Vjsk .

Many existing CDHMM-based speech recognition
systems restrict the covariance matrices to be diagonal in
order to increase the trainability of the models and reduce
the computational complexity of the system. In this case,
it is straightforward to show that both joint and separate
approaches are equivalent.

In any case, the separate formulation (1) can be
slightly modified to permit a very simple stream weighting
to reflect the relative importance of the various streams
for recognition, as

b j Ot( )= b js Os
t( )( )

s =1

2

∏
wj s

(3)

where w js  are the weighting coefficients.

It is worth noting that, in the case of one mixture and
diagonal covariance matrices, this stream weighting has a
meaningful interpretation. In fact, it amounts to modifying
the implicit variance-weighting of the Euclidean distance
of the Gaussian exponent. It can be seen if (3) is explicitly
rewritten in scalar notation as
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where Osn
t  is the n-th component of the stream Os

t , N s  is

the number of components of Os
t , and µ jsn  and σ jsn

2 are

the mean and variance of Osn
t , respectively.

3. MAXIMUM LIKELIHOOD ESTIMATION OF THE
WEIGHTS

An automatic algorithm for learning these state-
dependent stream-weights is needed. Considering that
one main reason for the popularity and the success of
HMM in its application to speech recognition has been
the advent to an efficient maximum likelihood based
estimation method, the forward-backward algorithm [7], it
would be desirable to apply ML criterion to this problem.

However, in principle, ML methods would invariably
discard the stream with the lowest probability [8]. The
application of the ML principle requires to impose some
constraint to the stream weights. If the constraint
consists in imposing that the sum of the stream weights
of a state is constant, ML methods would lead to this
constant for the stream which provides the highest value
probability and zero for the other stream [8] [9]. This
result, although provides an obvious maximum in the
objective function, does not seem reasonable for
recognition purposes. Because of this, only good results
have been obtained by training state-dependent stream
weights in a discriminative way [5] [8] [9], including the
author.

In this work, the author shows that a simple and
efficient forward-backward based algorithm to learn the
stream weights is possible using simple constraints to the
weights.

One possible constraint is

w js( )
s=1

2

∑
m

= K (5)

that is, to impose a constant Lm  norm, m?0,1, of the
stream weight vector wj1, wj2( ). Notice that for m=1 this

constraint would be the one mentioned above.
Let us now derive the reestimation formula of the new

parameters by maximizing the partial Baum's auxiliary
function [7] of the observation probabilities  of the model
λ Q b λ, b j

'( ) as a function of the weights constrained by

(5). So, we have to solve the equations
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= 0 (6)

for s=1,2, where θ is the so-called Lagrange multiplier



In terms of the well-known forward α j Ot( ) and

backward βj Ot( ) variables, the expression of Qb  is

Qb λ, b j
'( )= α j Ot( )β j O t( )logb j

' Ot( )
t =1

T

∑ (7)

where T is the utterance length; and, using the separate
formulation (1), it can be written explicitly in terms of the
stream weights as

Qb λ, b j
'( )= α j O t( )β j O t( ) w js

'

s=1

2

∑ log b js
' O s

t( )
t=1

T

∑  (8)

Including this expression in (6), the derivative with
respect to w js

'  leads to this set of equations

 
α j Ot( )βj O t( )log b js

' Os
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∑ − θm w js
'( )m−1

= 0
 (9)

for s=1,2.
As these equations are linear and uncoupled, from

(5) and (9) it is straightforward to obtain the following
reestimation formula for the weights

w js = K
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The numerator of this expression can be considered
related to the quantity of information provided by a
specific stream while the denominator normalizes this
information with the contribution of both streams. The
extension of this expression to multiple utterances is
straightforward as in the case of the conventional HMM
parameters.

Other possible constraint is

m
w j s

s=1

2

∑ = K (11)

that leads, in this case, to the following set of equations
and reestimation formula
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4. RECOGNITION RESULTS

The database used in the recognition experiments was
the isolated adult portion (112 speakers for training and
113 for testing) of the speaker independent digit TI [11]
database. The initial sampling frequency 20 kHz was
converted to 8 kHz.

The HTK recognition system, based on the
Continuous-Density Hidden Markov Models (CDHMM),
was appropriately modified to perform the maximum
likelihood weighting of the speech features and used for
the recognition experiments. In the parameterization
stage, the signal was preemphasized with 1 - z-1 and was
divided into frames of 30 ms at a rate of 10 ms, and each
frame was characterized by its energy and 12 cepstral
parameters obtained by linear prediction (LPC), with
prediction order equal to 10. Regression analysis over 70
ms was applied to the static energy sequence and the
static cesptrum sequence to obtain dynamic features,
delta-energy and delta-cepstrum, respectively. Each digit
was characterized by a first order, left-to-right, Markov
model of 10 states with one mixture of diagonal
covariance matrix and without skips. The same structure
was used for the silence model but only with 5 states. For
the conventional parameters, training was performed in
two stages using Segmental k-means and Baum-Welch
algorithms. Testing was performed using Viterbi
algorithm.

Using the reestimation formula (10), preliminary
experiments showed that the initial weighting coefficients
do not need to be tuned previously to optimize
recognition performance, and excellent results were
obtained for m=2. In this case, the algorithm is very
robust to the value of K. Figure 1 shows the number of
recognition errors obtained for several values of K and m.
Considering that the number of errors of the baseline
system -all stream weights equal to 1- is 27 (1,09 % error
rate), it can be seen that a big and consistent error
reduction can be obtained with the proposed approach.
For instance, for m=K=2 (Euclidean norm of the weight
vector as in the baseline system), the number of errors
was 14, that is, an error reduction of 48 %. And, in several
tests, only there were 12 errors, that is, a 0.48 % error rate
and a 56 % error reduction.
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Figure 1. Recognition errors for isolated digits
In general, it was observed that the algorithm weights

more the dynamic features than the static ones. As the
variances of dynamic features are lower than the
variances of the static features, this kind of weighting
emphasizes the implicit variance-weighting in the
exponent of the Gaussian distributions (4).

Furthermore, it was observed that the estimation of
the weights has a big influence on the estimation of the
variances of the observation distributions. In particular,
the algorithm tends to increase large variances and to
decrease low variances. This effect seems to be useful.
Training together stream weights and observation
distribution but setting at the end the weights to 1, there
were 21 errors for m=K=2, that is, half of the improvement
of the algorithm is due to this effect.

The reestimation formula (13) is more sensitive to the
value of K. However, also good results have been
obtained in the range of 12=K=20. Concretely, for m=2
and K=15 only there were 15 errors, i.e. a 0.62 % error rate
and a 44 % error reduction.

5. CONCLUSIONS

In this work a ML-based algorithm to automatically
estimate the optimum weighting of static and dynamic
features in each state of each model of a CDHMM-based
speech recognition system has been proposed.
Although, in principle, ML methods applied to his
problem would invariably discard the stream with the
lowest probability, the authors have shown that
appropriate constraints upon the stream weights lead to
simple and efficient algorithms, and to an important and
consistent improvement of speech recognizer
performance. The recognition results obtained by means
of this approach have been relevant in digit recognition: a
56 % error reduction from the baseline system. Further
experiments on different recognition tasks and systems
are under development to extend the results shown in
this paper.
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