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MAXIMUM LIKELIHOOD ESTIMATION OF DISCRETELY SAMPLED
DIFFUSIONS: A CLOSED-FORM APPROXIMATION APPROACH

By Yacine Aït-Sahalia1

When a continuous-time diffusion is observed only at discrete dates, in most cases

the transition distribution and hence the likelihood function of the observations is not

explicitly computable. Using Hermite polynomials, I construct an explicit sequence of

closed-form functions and show that it converges to the true (but unknown) likelihood

function. I document that the approximation is very accurate and prove that maximizing

the sequence results in an estimator that converges to the true maximum likelihood esti-

mator and shares its asymptotic properties. Monte Carlo evidence reveals that this method

outperforms other approximation schemes in situations relevant for financial models.

Keywords: Maximum-likelihood estimation, continuous-time diffusion, discrete sam-

pling, transition density, Hermite expansion.

1� introduction

Consider a continuous-time parametric diffusion

dXt = ��Xt� �	dt+
�Xt� �	dWt(1.1)

where Xt is the state variable, Wt a standard Brownian motion, ��·�·	 and 
�·�·	
are known functions, and � an unknown parameter vector in an open bounded
set � ⊂RK . Diffusion processes are widely used in financial models, for instance
to represent the stochastic dynamics of asset returns, exchange rates, interest
rates, macroeconomic factors, etc.
While the model is written in continuous time, the available data are always

sampled discretely in time. Ignoring the difference can result in inconsistent esti-
mators (see, e.g., Merton (1980) and Melino (1994)). A number of econometric
methods have been recently developed to estimate the parameters of (1.1), with-
out requiring that a continuous record of observations be available. Some of these
methods are based on simulations (Gouriéroux, Monfort, and Renault (1993),
Gallant and Tauchen (1996)), others on the generalized method of moments
(Hansen and Scheinkman (1995), Duffie and Glynn (1997), Kessler and Sorensen

1 I am grateful to David Bates, René Carmona, Freddy Delbaen, Ron Gallant, Lars Hansen, Bjarke

Jensen, Per Mykland, Peter C. B. Phillips, Rolf Poulsen, Peter Robinson, Chris Rogers, Angel Ser-

rat, Chris Sims, George Tauchen, and in particular a co-editor and three anonymous referees for

very helpful comments and suggestions. Robert Kimmel and Ernst Schaumburg provided excellent
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the NSF under Grant SBR-9996023. Mathematica code to calculate the closed-form density sequence
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(1999)), nonparametric density-matching (Aït-Sahalia (1996a, 1996b)), nonpara-
metric regression for approximate moments (Stanton (1997)), or are Bayesian
(Eraker (1997) and Jones (1997)).
As in most contexts, provided one trusts the parametric specification (1.1),

maximum-likelihood is the method of choice. The major caveat in the present
context is that the likelihood function for discrete observations generated by (1.1)
cannot be determined explicitly for most models. Let pX���x�x0� �	 denote the
conditional density of Xt+� = x given Xt = x0 induced by the model (1.1), also
called the transition function. Assume that we observe the process at dates �t =
i��i= 0� � � � � n�, where �> 0 is fixed.2 Bayes’ rule combined with the Markovian
nature of (1.1), which the discrete data inherit, imply that the log-likelihood
function has the simple form

ℓn��	≡
n∑
i=1
ln
{
pX���Xi� �X�i−1	�� �	

}
�(1.2)

For some of the rare exceptions where pX is available in closed-form, see Wong
(1964); in finance, the models of Black and Scholes (1973), Vasicek (1977), Cox,
Ingersoll, and Ross (1985), and Cox (1975) all rely on the known closed-form
expressions.
If sampling of the process were continuous, the situation would be simpler.

First, the likelihood function for a continuous record can be obtained by means
of a classical absolutely continuous change of measure (see, e.g., Basawa and
Prakasa Rao (1980)).3 Second, when the sampling interval goes to zero, expan-
sions for the transition function “in small time” are available in the statisti-
cal literature (see, e.g., Azencott (1981)). Dacunha-Castelle and Florens-Zmirou
(1986) calculate expressions for the transition function in terms of functionals
of a Brownian Bridge. With discrete-time sampling, the available methods to
compute the likelihood function involve either solving numerically the Fokker-
Planck-Kolmogorov partial differential equation (see, e.g., Lo (1988)) or simu-
lating a large number of sample paths along which the process is sampled very
finely (see Pedersen (1995) and Santa-Clara (1995)). Neither method produces
a closed-form expression to be maximized over �: the criterion function takes
either the form of an implicit solution to a partial differential equation, or a sum
over the outcome of the simulations.
By contrast, I construct a closed-form sequence p

�J 	
X of approximations to the

transition density, hence from (1.2) a sequence ℓ
�J 	
n of approximations to the log-

likelihood function ℓn. I also provide empirical evidence that J = 2 or 3 is
amply adequate for models that are relevant in finance.4 Since the expression

2 See Section 3.1 for extensions to the cases where the sampling interval � is time-varying and even

possibly random.
3 Note that the continuous-observation likelihood is only defined if the diffusion function 
 is

known.
4 In addition, Jensen and Poulsen (1999) have recently completed a comparison of the method of

this paper against four alternatives: a discrete Euler approximation of the continuous-time model
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Notes: This figure reports the average uniform absolute error of various density approximation techniques applied to the Vasicek,

Cox-Ingersoll-Ross and Black-Scholes models. “Euler” refers to the discrete-time, continuous-state, first-order Gaussian approxi-

mation scheme for the transition density given in equation (5.4); “Binomial Tree” refers to the discrete-time, discrete-state (two)

approximation; “Simulations” refers to an implementation of Pedersen (1995)’s simulated-likelihood method; “PDE” refers to the

numerical solution of the Fokker-Planck-Kolmogorov partial differential equation satisfied by the transition density, using the Crank-

Nicolson algorithm. For implementation details on the different methods considered, see Jensen and Poulsen (1999).

Figure 1.—Accuracy and speed of different approximation methods for pX .

ℓ
�J 	
n to be maximized is explicit, the effort involved is minimal, identical to a
standard maximum-likelihood problem with a known likelihood function. Exam-
ples are contained in a companion paper (Aït-Sahalia (1999)), which provides,

for different models, the corresponding expression of p
�J 	
X . Besides making

maximum-likelihood estimation feasible, these closed-form approximations have
other applications in financial econometrics. For instance, they could be used for
derivative pricing, for indirect inference (see Gouriéroux, Monfort, and Renault
(1993)), which in its simplest version uses an Euler approximation as instrumen-
tal model, or for Bayesian inference—basically whenever an expression for the
transition density is required.
The paper is organized as follows. Section 2 describes the sequence of den-

sity approximations and proves its convergence. Section 3 studies the properties
of the resulting maximum-likelihood estimator. In Section 4, I show how to cal-
culate in closed-form the coefficients of the approximation and readers primar-
ily interested in applying these results to a specific model can go there directly.

(1.1), a binomial tree approximation, the numerical solution of the PDE, and simulation-based meth-

ods, all in the context of various specifications and parameter values that are relevant for interest

rate and stock return models. To give an idea of the relative accuracy and speed of these approxima-

tions, Figure 1 summarizes their main results. As is clear from the figure, the approximation of the

transition function derived here provides a degree of accuracy and speed that is unmatched by any

of the other methods.
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Section 5 gives the results of Monte Carlo simulations. Section 6 concludes. All
proofs are in the Appendix.

2� a sequence of expansions of the transition function

To understand the construction of the sequence of approximations to pX , the
following analogy may be helpful. Consider a standardized sum of random vari-
ables to which the Central Limit Theorem (CLT) apply. Often, one is willing to
approximate the actual sample size n by infinity and use the N�0�1	 limiting dis-
tribution for the properly standardized transformation of the data. If not, higher
order terms of the limiting distribution (for example the classical Edgeworth
expansion based on Hermite polynomials) can be calculated to improve the small
sample performance of the approximation. The basic idea of this paper is to cre-
ate an analogy between this situation and that of approximating the transition
density of a diffusion. Think of the sampling interval � as playing the role of the
sample size n in the CLT. If we properly standardize the data, then we can find
out the limiting distribution of the standardized data as � tends to 0 (by analogy
with what happens in the CLT when n tends to infinity). Properly standardiz-
ing the data in the CLT means summing them and dividing by n1/2; here it will
involve transforming the original diffusion X into another one, which I call Z
below. In both cases, the appropriate standardization makes N�0�1	 the leading
term. I will then refine this N�0�1	 approximation by “correcting” for the fact
that � is not 0 (just as in practical applications of the CLT n is not infinity), i.e.,
by computing the higher order terms. As in the CLT case, it is natural to con-
sider higher order terms based on Hermite polynomials, which are orthogonal
with respect to the leading N�0�1	 term.
But in what sense does such an expansion converge? In the CLT case, the

convergence is understood to mean that the series with a fixed number of cor-
rective terms (i.e., fixed J ) converges when the sample size n goes to infinity. In
fact, for a fixed n, the Edgeworth expansion will typically diverge as more and
more corrective terms are added, unless the density of each of these random
variables was “close to” a Normal density to start with. I will make this state-
ment precise later, using the criterion of Cramér (1925): the density p�z	 to be
expanded around a N�0�1	 must have tails sufficiently thin for exp�z2/2	p′�z	2

to be integrable.
The point however is that the density pX cannot in general be approximated

for fixed � around a Normal density, because the distribution of the diffusion X
is in general too far from that of a Normal. For instance, if X follows a geomet-
ric Brownian motion, the right tail of the corresponding log-normal density pX
is too large for its Hermite expansion to converge. Indeed, that tail is of order
x−1 exp�− ln2�x		 as x tends to +
. Similarly, the expansion of any N�0� v	 den-
sity around a N�0�1	 diverges if v > 2, and hence the class of transition densities
pX for which straight Hermite expansions converge in the sense of adding more
terms (J increases with � fixed) is quite limited.
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To obtain nevertheless an expansion that converges as more correction terms
are added while � remains fixed, I will show that the transformation of the
diffusion process X into Z in fact guarantees (unlike the CLT situation) that
the resulting variable Z has a density pZ that belongs to the class of densities
for which the Hermite series converges as more polynomial terms are added.
I will then construct a convergent Hermite series for pZ. Since Z is a known
transformation of X, I will be able to revert the transformation from X to Z and
by the Jacobian formula obtain an expansion for the density of X. As a result
of transforming Z back into X, which in general is a nonlinear transformation
(unless 
�x��	 is independent of the state variable x), the leading term of the
expansion for the density pX will be a deformed, or stretched, Normal density
rather than the N�0�1	 leading term of the expansion for pZ. The rest of this
section makes this basic intuition rigorous. In particular, Theorem 1 will prove
that such an expansion converges uniformly to the unknown pX .

2�1� Assumptions and First Transformation X→ Y

I start by making fairly general assumptions on the functions � and 
 . In par-
ticular, I do not assume that � and 
 satisfy the typical growth conditions at
infinity, nor do I restrict attention to stationary diffusions only. Let DX = �x� x̄	
denote the domain of the diffusion X. I will consider the two cases where
DX = �−
�+
	 and DX = �0�+
	. The latter case is often relevant in finance,
when considering models for asset prices or nominal interest rates. In addi-
tion, the function 
 is often specified in financial models in such a way that
limx→0+ 
�x��	= 0 and � and/or 
 violate the linear growth conditions near the
boundaries. For these reasons, I will devise a set of assumptions where growth
conditions (without constraint on the sign of the drift function near the bound-
aries) are replaced by assumptions on the sign of the drift near the boundaries
(without restriction on the growth of the coefficients). The assumptions are:

Assumption 1 (Smoothness of the Coefficients): The functions ��x��	 and

�x��	 are infinitely differentiable in x, and three times continuously differentiable
in �, for all x ∈DX and � ∈�.

Assumption 2 (Non-Degeneracy of the Diffusion):
1. If DX = �−
�+
	, there exists a constant c such that 
�x��	 > c > 0 for

all x ∈DX and � ∈�.
2. If DX = �0�+
	� limx→0+ 
�x��	 = 0 is possible, but then there exist con-

stants #0 > 0� $ > 0� % ≥ 0 such that 
�x��	 ≥ $x% for all 0 < x ≤ #0 and � ∈ �.
Whether or not limx→0+ 
�x��	= 0, 
 is a nondegenerate on �0�+
	, that is: for
each # > 0, there exists a constant c# such that 
�x��	≥ c# > 0 for all x ∈ '#�+
(
and � ∈�.

The first step I employ towards constructing the sequence of approximations
to pX consists in standardizing the diffusion function of X, i.e., transforming X



228 yacine aït-sahalia

into Y defined as5

Y ≡ )�X��	=
∫ X

du/
�u��	(2.1)

where any primitive of the function 1/
 may be selected, i.e., the constant of
integration is irrelevant. Because 
 > 0 on DX , the function ) is increasing and
invertible for all � ∈ �. It maps DX into DY = �y� ȳ	, the domain of Y , where
y ≡ limx→x+ )�x��	 and ȳ ≡ limx→x− )�x��	. For example, if DX = �0�+
	 and

�x��	= x%, then Y = �1−%	X1−% if 0< %< 1 (so DY = �0�+
		, Y = ln�X	 if
%= 1 (so DY = �−
�+
		 and Y =−�%−1	X−�%−1	 if %> 1 (so DY = �−
�0		.
For a given model under consideration, assume that the parameter space � is
restricted in such a way that DY is independent of � in �. This restriction on �
is inessential, but it helps keep the notation simple. By applying Itô’s Lemma, Y
has unit diffusion, that is

dYt = �Y �Yt� �	dt+dWt� where(2.2)

�Y �y� �	=
��)−1�y� �	� �	


�)−1�y� �	� �	
− 1
2

,


,x
�)−1�y� �	� �	�

Assumption 3 (Boundary Behavior): For all � ∈ ���Y �y� �	 and its deriva-
tives with respect to y and � have at most polynomial growth6 near the bound-
aries and limy→y+ or y− -Y �y� �	 <+
 where −-Y is the potential, i.e., -Y �y� �	≡
−��2Y �y� �	+ ,�Y �y� �	/,y�/2.

1. Left Boundary: If y = 0, there exist constants .0�/�0 such that for all 0 <
y ≤ .0 and � ∈ ���Y �y� �	 ≥ /y−0 where either 0 > 1 and / > 0, or 0 = 1 and
/≥ 1. If y =−
, there exist constants E0 > 0 and K > 0 such that for all y ≤−E0
and � ∈���Y �y� �	≥Ky.

2. Right Boundary: If ȳ = +
, there exist constants E0 > 0 and K > 0 such
that for all y ≥E0 and � ∈���Y �y� �	≤Ky. If ȳ = 0, there exist constants .0�/�0
such that for all 0 > y ≥ −.0 and � ∈ ���Y �y� �	 ≤ −/ �y�−0 where either 0 > 1
and / > 0 or 0= 1 and /≥ 1/2.

Note that -Y is not restricted from going to −
 near the boundaries. Assump-
tion 3 is formulated in terms of the function �Y for reasons of convenience, but
the restriction it imposes on the original functions � and 
 follows from (2.1).
Assumption 3 only restricts how large �Y can grow if it has the “wrong” sign,
meaning that �Y is positive near y and negative near y: then linear growth is the
maximum possible rate. But if �Y has the “right” sign, the process is being pulled

5 The same transformation, sometimes referred to as the Lamperti transform, has been used, for

instance, by Florens (1999).
6 Define an infinitely differentiable function f as having at most polynomial growth if there exists

an integer p ≥ 0 such that �y �−p�f �y	� is bounded above in a neighborhood of infinity. If p = 1� f is
said to have at most linear growth, and if p= 2 at most quadratic growth. Near 0, polynomial growth
means that �y�+p�f �y	� is bounded.
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back away from the boundaries and I do not restrict how fast mean-reversion
occurs (up to an arbitrary large polynomial rate for technical reasons). The con-
straints on the behavior of the function �Y are essentially the best possible for
the following reasons. If �Y has the wrong sign near an infinity boundary, and
grows faster than linearly, then Y explodes (i.e., can reach the infinity boundary)
in finite time. Near a zero boundary, say y = 0, if there exist / > 0 and 0 < 1
such that �Y �y� �	 ≤ ky−0 in a neighborhood of 0+, then 0 becomes attainable.
The behavior of the diffusion Y implied by the assumptions made is fully char-
acterized by the following proposition, where TY ≡ inf�t ≥ 0 �Yt �∈ DY = �y� ȳ	�
denotes the exit time from DY :

Proposition 1: Under Assumptions 1–3, (2.2) admits a weak solution �Yt � t ≥
0�, unique in probability law, for every distribution of its initial value Y0.

7 The
boundaries of DY are unattainable, in the sense that Prob�TY =
	= 1. Finally, if
+
 is a right boundary, then it is natural if, near +
� ��Y �y� �	� ≤Ky and entrance
if �Y �y� �	 ≤−Ky5 for some 5 > 1. If −
 is a left boundary, then it is natural if,
near −
� ��Y �y� �	� ≤K�y� and entrance if �Y �y� �	≥K�y�5 for some 5 > 1. If 0
is a boundary (either right or left), then it is entrance.8

Note also that Assumption 3 neither requires nor implies that the process is
stationary. When both boundaries of the domain DY are entrance boundaries,
then the process is necessarily stationary with common unconditional (marginal)
density for all Yt

6Y �y� �	≡ exp
{
2
∫ y

�Y �u��	du

}/∫ ȳ

y
exp

{
2
∫ v

�Y �u��	du

}
dv�(2.3)

provided that the initial random variable Y0 is itself distributed with density
(2.3) (see, e.g., Karlin and Taylor (1981)). When at least one of the boundaries
is natural, stationarity is neither precluded nor implied in that the (only) pos-
sible candidate for stationary density, 6Y , may or may not be integrable near

7 A weak solution to (2.2) in the interval DY is a pair �Y �W	, a probability space and a filtra-

tion, such that �Y �W	 satisfies the stochastic integral equation that underlies the stochastic differen-

tial equation (2.2). For a formal definition, see, e.g., Karatzas and Shreve (1991, Definition 5.5.20).

Uniqueness in law means that two solutions would have identical finite-dimensional distributions, i.e.,

in particular the same observable implications for any discrete-time data. From the perspective of sta-

tistical inference from discrete observations, this is therefore the appropriate concept of uniqueness.
8 Natural boundaries can neither be reached in finite time, nor can the diffusion be started or

escape from there. Entrance boundaries, such as 0, cannot be reached starting from an interior point

in DY = �0�+
	, but it is possible for Y to begin there. In that case, the process moves quickly

away from 0 and never returns there. Typically, economic considerations require the boundaries to

be unattainable; however, they say little about how the process would behave if it were to start at the

boundary, or whether that is even possible, and hence it is sensible to allow both types of boundary

behavior.
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the boundaries.9 Next, I show that the diffusion Y admits a smooth transition
density:

Proposition 2: Under Assumptions 1–3, Y admits a transition density
pY ���y �y0� �	 that is continuously differentiable in �> 0, infinitely differentiable in
y ∈DY and y0 ∈DY , and three times continuously differentiable in � ∈�. Further-
more, there exists ��> 0 such that for every � ∈ �0� ��	, there exist positive constants
Ci� i = 0� � � � �4, and D0 such that for every � ∈� and �y� y0	 ∈D2

Y :

0< pY ���y �y0� �	≤ C0�
−1/2e−3�y−y0	

2/8�eC1�y−y0��y0�+C2 �y−y0�+C3�y0�+C4y
2
0 �(2.4) ∣∣, pY ���y �y0� �	/,y

∣∣(2.5)

≤D0�
−1/2e−3�y−y0	

2/8�P��y�� �y0�	eC1�y−y0��y0�+C2 �y−y0�+C3�y0�+C4y
2
0 �

where P is a polynomial of finite order in ��y�� �y0�	, with coefficients uniformly
bounded in � ∈�. Finally, if �Y ≤ 0 near the right boundary +
 and �Y ≥ 0 near
the left boundary (either 0 or −
), then �=+
.

The next result shows that these properties essentially extend to the diffusion
X of original interest.

Corollary 1: Under Assumptions 1–3, (1.1) admits a weak solution �Xt � t ≥
0�, unique in probability law, for every distribution of its initial value X0. The
boundaries of DX are unattainable, in the sense that Prob�TX = 
	 = 1 where
TX ≡ inf�t ≥ 0 �Xt �∈DX�. In addition, X admits a transition density pX���x�x0� �	
which is continuously differentiable in �> 0, infinitely differentiable in x ∈DX and
x0 ∈DX, and three times continuously differentiable in � ∈�.

2�2� Second Transformation Y → Z

The bound (2.4) implies that the tails of pY have a Gaussian-like upper bound.
In light of the discussion at the beginning of Section 2 about the requirements
for convergence of a Hermite series, this is a big step forward. However, while
Y , thanks to its unit diffusion �
Y = 1	, is “closer” to a Normal variable than X
is, it is not practical to expand pY . This is due to the fact that pY gets peaked
around the conditional value y0 when � gets small. And a Dirac mass is not a
particularly appealing leading term for an expansion. For that reason, I perform
a further transformation. For given �> 0� � ∈�, and y0 ∈R, define the “pseudo-
normalized” increment of Y as

Z ≡ �−1/2�Y −y0	�(2.6)

9 For instance, both an Ornstein-Uhlenbeck process, where �Y �y� �	 = 5�0−y	, and a Brownian
motion, where �Y �y� �	= 0, satisfy the assumptions made, and both have natural boundaries at −

and +
. Yet the former process is stationary, due to mean-reversion, while the latter (null recurrent)
is not.
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Of course, since I do not require that �→ 0, I make no claim regarding the
degree of accuracy of this standardization device, hence the term “pseudo.” How-
ever, I will show that for fixed ��Z defined in (2.6) happens to be close enough
to a N�0�1	 variable to make it possible to create a convergent series of expan-
sions for its density pZ around a N�0�1	. In other words, Z turns out to be the
appropriate transformation of X if we are going to start an expansion with a
N�0�1	 term. Expansions starting with a different leading term could be con-
sidered (with matching orthogonal polynomials) but, should � in fact be small,
they would have the drawback of starting with an inadequate leading term and
therefore requiring additional correction.10

Let pY ���y�y0� �	 denote the conditional density of Yt+��Yt , and define the
density function of Z

pZ���z�y0� �	≡ �1/2pY ����
1/2z+y0�y0� �	�(2.7)

Once I have obtained a sequence of approximations to the function �z� y0	 �→
pZ���z�y0� �	, I will backtrack and infer a sequence of approximations to the
function �y� y0	 �→ pY ���y�y0� �	 by inverting (2.7):

pY ���y�y0� �	≡ �−1/2pZ����
−1/2�y−y0	�y0� �	�(2.8)

and then back to the object of interest �x�x0	 �→pX���x�x0� �	, by applying again
the Jacobian formula for the change of density:

pX���x�x0� �	= 
�x��	−1×pY ���)�x��	�)�x0� �	� �	�(2.9)

2�3� Approximation of the Transition Function of the Transformed Data

So this leaves us with the need to approximate the density function pZ. For
that purpose, I construct a Hermite series expansion for the conditional density
of the variable Zt , which has been constructed precisely so that it is close enough
to a N�0�1	 variable for an expansion around a N�0�1	 density to converge. The
classical Hermite polynomials are

Hj�z	≡ ez
2/2 d

j

dzj
[
e−z

2/2
]
� j ≥ 0�(2.10)

and let <�z	≡ e−z
2/2/

√
26 denote the N�0�1	 density function. Also, define

p
�J 	
Z ���z �y0� �	≡ <�z	

J∑
j=0
=
�j	
Z ���y0� �	Hj�z	(2.11)

as the Hermite expansion of the density function z �→ pZ���z�y0� �	 (for fixed
��y0, and �).

11 By orthonormality of the Hermite polynomials, divided by
√
j!�

10 This is because the limiting form of the density for a diffusion, which is driven by a Brownian

motion, is Gaussian. However a different leading term would be appropriate for processes of a

different kind (for example driven by a non-Brownian Lévy process).
11 Hence the boundary behavior of the transition density approximation is designed to match that

of the true density as the forward variable (not the backward variable) nears the boundaries of the

support: under the assumptions made, pZ → 0 near the boundaries.
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with respect to the L2�<	 scalar product weighted by the Normal density, the

coefficients =
�j	
Z are given by

=
�j	
Z ���y0� �	≡ �1/j!	

∫ +


−

Hj�z	pZ���z�y0� �	dz�(2.12)

Section 4 will indicate how to approximate these coefficients in closed-form,
yielding a fully explicit sequence of approximations to pZ.
By analogy with (2.8), I can then form the sequence of approximations to pY

as

p
�J 	
Y ���y�y0� �	≡ �−1/2p

�J 	
Z ����−1/2�y−y0	�y0� �	(2.13)

and finally approximate pX by mimicking (2.9), i.e.,

p
�J 	
X ���x�x0� �	≡ 
�x��	−1p

�J 	
Y ���)�x��	�)�x0� �	� �	�(2.14)

The following theorem proves that the expansion (2.14) converges uniformly
as more terms are added, and that the limit is indeed the true (but unknown)
density function pX .

Theorem 1: Under Assumptions 1–3, there exists �> 0 (given in Proposition 1)
such that for every � ∈ �0��	, � ∈� and �x�x0	 ∈D2

X:

p
�J 	
X ���x�x0� �	−→

J→

pX���x�x0� �	�(2.15)

In addition, the convergence is uniform in � over � and in x0 over compact subsets
of DX . If 
�x��	 > c > 0 on DX, then the convergence is further uniform in x
over the entire domain DX . If DX = �0�+
	 and limx→0+ 
�x��	 = 0, then the
convergence is uniform in x in each interval of the form '.�+
	� . > 0.

3� a sequence of approximations to

the maximum-likelihood estimator

I now study the properties of the sequence of maximum-likelihood estima-

tors �̂
�J 	
n derived from maximizing over � in � the approximate likelihood func-

tion computed from p
�J 	
X , i.e., (1.2) with pX replaced by p

�J 	
X .

12 I will show that

�̂
�J 	
n converges as J →
 to the true (but uncomputable in practice) maximum-
likelihood estimator �̂n. I further prove that when the sample size gets larger

(n→
), one can find Jn →
 such that �̂
�Jn	
n converges to the true parameter

value �0.
13

12 The roots of the Hermite polynomials are such that p
�J 	
X > 0 on an interval '−cJ � cJ ( with cJ →


as J →
. Let aJ be a positive sequence converging to 0 as J →
. Define $J as a (smooth) version

of the trimming index taking value 1 if p
�J 	
X > aJ and aJ otherwise. Before taking the logarithm,

replace p
�J 	
X by $Jp

�J 	
X . It is shown in the Appendix that such trimming is asymptotically irrelevant.

13 This setup is different from either the psuedo-maximum likelihood one (see White (1982) and

Gouriéroux, Monfort, and Trognon (1984)), or the semi-nonparametric case (Gallant and Nychka
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3�1� Likelihood Function: Initial Observation and
Random Sampling Extension

When defining the log-likelihood function in (1.2), I ignored the unconditional
density of the first observation, ln�60�X0� �		, because it is dominated by the
sum of the conditional density terms ln�pX���Xi� �X�i−1	�� �	� as n→
. The
sample contains only one observation on the unconditional density 6 and n on
the transition function, so that the information on 60 contained in the sample
does not increase with n. All the distributional properties below will be asymp-
totic, so the definition (1.2) is appropriate for the log-likelihood function (see
Billingsley (1961)). In any case, re-introducing the term ln�60�X0� �		 back into
the log-likelihood poses no difficulty.
Note also that I have assumed for convenience that � is identical across pairs

of successive observations. If instead � varies deterministically, say �i is the time
interval between the �i− 1	th and ith observations, then it is clear from (1.2)
that it suffices to replace � by its actual value �i when evaluating the transition
density for the ith pair of observations. If the sampling interval is random, then
one can write down the joint likelihood function of the pair of observations and
�i and utilize Bayes’ Rule to express it as the product of the conditional density
of the ith observation X̃i given the �i− 1	th and �i, times the marginal den-

sity q of �i: that is pX��i� X̃i � X̃i−1� �	×q��j�/	 where / is a parameter vector
parameterizing the sampling density.14 If the sampling process is independent of
X and �, then the marginal density is irrelevant for the likelihood maximiza-
tion and the conditional density is the same function pX as before, evaluated at
the realization �i. Hence for the purpose of estimating �, the criterion function
(1.2) is unchanged and as in the deterministic case it suffices to replace � by the
realization �i corresponding to the time interval between the �i− 1	th and ith
observations. By contrast, when the sampling interval is random and informa-
tive about the parameters of the underlying process (for example, if more rapid
arrivals of trade signal an increase of price volatility), then the joint density can-
not be integrated out as simply. I now return to the base case of fixed sampling
at interval �.

3�2� Properties of the Maximum-Likelihood Estimator

To analyze the properties of the estimators �̂n and �̂
�J 	
n , I introduce the

following notation. Define the K × K identity matrix as Id and Li��	 ≡

(1987)). We are in a somewhat atypical situation in the sense that the psuedo-likelihood does approx-

imate the true likelihood function, and we wish to exploit this fact. In particular, the choice of J

is independent of n and J can always be chosen sufficiently large to make the resulting estimator

arbitrarily close to the true MLE. This paper is not concerned with the potential misspecification of

the true likelihood function, i.e., it accepts (1.1) as the data generating process, but then does not

require that the densities belong to specific classes such as the linear exponential family.
14 To insure that Theorem 1 remains applicable when � is not constant, assume that the distribution

of � has a support contained in an interval of the form �B� B̄	 where 0< B < B̄ < �. In this case, the

convergence in Theorem 1 is uniform in �.
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ln�pX���Xi� �X�i−1	�� �		. L̇i��	 (and additional dots) denotes differentiation
with respect to �, and T denotes transposition. The score vector Vn��	 ≡∑n

i=1 L̇i��	 is a martingale. Corollary 1 proved that pX admits three continuous

derivatives with respect to � in �; the same holds for p
�J 	
X by direct inspection of

its expression given in Section 2.3. Next define

in��	≡
n∑
i=1
E�'L̇i��	L̇i��	

T (� Hn��	≡−
n∑
i=1
L̈i��	�(3.1)

In��	≡ diag�in��	�� Tn��	≡−
n∑
i=1

...
Li��	�

The finiteness of in��	 for every n is proved as part of Proposition 3 below.
Note that if the process is not stationary. E�'L̇i��	L̇i��	

T ( varies with the time
index i because it depends on the joint distribution of �Xi��X�i−1	�	. The square
root of the diagonal element in in��	 will determine the appropriate speeds of
convergence for the corresponding component of �̂n−�0, and I define the local
I 1/2n ��	-neighborhoods of the true parameter as N .

n ��	 ≡ ��̃ ∈ �/�I 1/2n ��	��̃−
�	� ≤ .�, where �� denotes the Euclidean norm on �

K . Recall that E�'Hn��	(=
in��	.

15 To identify the parameters, we make the following assumption.

Assumption 4 (Identification): The true parameter vector �0 belongs to ��
In��	 is invertible,

I−1n ��	
a�s−→0 as n→
� uniformly in � ∈��(3.2)

and Rn��� �̃	≡ I−1/2n ��	Tn��̃	I
−1/2
n ��	 is uniformly bounded in probability for all �̃

in an I 1/2n ��	-neighborhood of �.

If X is a stationary diffusion, a sufficient condition that guarantees (3.2) is that
for all k = 1� � � � �K� � ∈�, and x0 ∈DX ,

0< 'I��	(kk =
∫ x̄

x

∫ x̄

x
�, ln�pX���x �x0� �		/,�k�2pX���x�x0� �	dxdx0(3.3)

<+


uniformly in � (where pX���x�x0� �	 = pX���x �x0� �	6�x0� �	 denotes the
joint density of observations sampled � units of time apart) since in that

case I−1n ��	 = n−1I−1��	
a�s�−→ 0. For the upper bound, it is sufficient that

�, ln�pX���x �x0� �		/,�k� remain bounded as x varies in DX , but not necessary.
For the lower bound, it is sufficient that ,pX���x �x0� �	/,�k not be zero in a

15 The order of differentiation with respect to � and integration with respect to the conditional

density pX (i.e., computation of conditional expectations) can be interchanged due to the smoothness

of the log-likelihood resulting from Corollary 1.
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region �x�x0	 where the joint density has positive mass, i.e., the transition func-
tion pX must not be uniformly flat in the direction of any one of the param-
eters �k. Otherwise ,pX���x �x0� �	/,�k ≡ 0 for all �x�x0	 and the parameter
vector cannot be identified. Furthermore, a sufficient condition for (3.3) is that
��x��	=��x��0	 and 
�x��	= 
�x��0	 for 6-almost all x imply � = �0. I show
in the proof of Proposition 3 that the boundedness condition on Rn��� �̃	 in
Assumption 4 is automatically satisfied in the stationary case. A nonstationary
example is provided in Section 5.

The strategy I employ to study the asymptotic properties of �̂
�J 	
n is to first

determine those of �̂n (see Proposition 3) and then show that �̂
�J 	
n and �̂n share the

same asymptotic properties provided one lets J go to infinity with n (Theorem 2).
In Proposition 3, I show that general results pertaining to time series asymptotics
(see, e.g., Basawa and Scott (1983) and Jeganathan (1995)) can be applied to the
present context. These properties follow from first establishing that the likelihood
ratio has the locally asymptotically quadratic (LAQ) structure, i.e.,

ℓn��+ I−1/2n ��	hn	−ℓn��	= hnSn��	−hTnGn��	hn/2+op�1	(3.4)

for every bounded sequence hn such that �+ I−1/2n ��	hn ∈ �, where Sn��	 ≡
I−1/2n ��	Vn��	 and Gn��	 ≡ I−1/2n ��	Hn��	I

−1/2
n ��	. Then, depending upon the

joint distribution of �Sn�Gn	, different cases arise:

Proposition 3: Under Assumptions 1–4, and for � ∈ �0� ��	, the likelihood
ratio satisfies the LAQ structure (3.4), the MLE �̂n is consistent and has the follow-
ing properties:
i. (Locally Asymptotically Mixed Normal Structure): If

�Sn��0	�Gn��0		
d−→�G1/2��0	×Z�G��0		(3.5)

where Z is a N�0� Id	 variable independent of the possibly random but almost surely
finite and positive definite matrix G��	, then

I 1/2n ��0	��̂n−�0	
d−→G−1/2��0	×N�0� Id	�(3.6)

Suppose that �̃n ∈� is an alternative estimator such that for any h ∈RK and � ∈�,

I 1/2n ��	��̃n−�− I−1/2n ��	h	
d−→F ��	 under P

�+I1/2n ��	h
(3.7)

where F ��	 is a proper law, not necessarily Normal. Then �̂n has maximum con-
centration in that class, i.e., is closer to �0 than �̃n is, in the sense that for any . > 0

lim
n→


Prob�0
(
I 1/2n ��0	��̂n−�0	 ∈ C.

)
≥ lim

n→

Prob�0

(
I 1/2n ��0	��̃n−�	 ∈ C.

)
(3.8)

where C. ≡ '−.�+.(K . Further, if �̃n has the distribution I 1/2n ��0	��̃n − �0	
d−→

G−1/2��0	×N�0� Ṽ0	 under P�0 , then Ṽ0− Id is non-negative definite.



236 yacine aït-sahalia

ii. (Locally Asymptotically Normal Structure): If X is a stationary diffusion,
then a special case of the LAMN structure arises where (3.3) is a sufficient con-
dition for Assumption 4, i��	 ≡ E�'L̇1��	L̇1��	

T ( is Fisher’s information matrix,
in��	 = ni��	� I��	 ≡ diag�i��	�� In��	 = nI��	�G��	 = I−1/2��	i��	I−1/2��	 is a
nonrandom matrix and (3.6) reduces to

n1/2��̂n−�0	
d−→N�0� i

(
�0	

−1)�(3.9)

The efficiency result simplifies to the Fisher-Rao form: i��0	
−1 is the smallest pos-

sible asymptotic variance among that of all consistent and asymptotically Normal
estimators of �0.
iii. (Locally Asymptotically Brownian Functional structure): If

�Sn��0	�Gn��0		
d−→

(∫ 1
0
MJ dWJ�

∫ 1
0
MJM

T
J dJ

)
(3.10)

where �MJ�WJ	 is a Gaussian process such thatWJ is a standard Brownian motion,
then

I 1/2n ��0	��̂n−�0	
d−→
(∫ 1

0
MJM

T
J dJ

)−1

×
∫ 1
0
MJ dWJ �(3.11)

If MJ and WJ are independent, then LABF is a special case of LAMN, but not
otherwise.

If one had normed the difference ��̂n − �0	 by the stochastic factor
diag�Hn��0	�

1/2 rather than by the deterministic factor I 1/2n ��0	, then the asymp-
totic distribution of the estimator would have been N�0� Id	 rather than
G−1/2��0	×N�0� Id	 (see the example in Section 5). In other words, the stochas-
tic norming, while intrinsically more complicated, may be useful if the distribu-
tion of G��0	 is intractable, since in that case, the distribution of I

1/2
n ��0	��̃n−�0	

need not be asymptotically Normal (and depends on �0) whereas that of the
stochastically normed difference would simply be N�0� Id	. None of these diffi-
culties are present in the stationary case, where G��	 is nonrandom.16

Sufficient conditions can be given that insure that the LAMN structure holds:

for instance, if Gn��	
p

−→G��	 uniformly in �� over compact subsets of �� then
(3.5) necessarily holds by applying Theorem 1 in Basawa and Scott (1983, page
34). Note also that when the parameter vector is multidimensional, the K diag-
onal terms of i1/2n ��0	 do not necessarily go to infinity at the same rate, unlike
the common rate n1/2 in the stationary case (see again the example in Section 5).
Proposition 3 is not an end in itself since in our context �̂n cannot be com-
puted explicitly. It becomes useful however when one proves that the approxi-

mate maximum-likelihood estimator �̂
�J 	
n is a good substitute for �̂n, in the sense

16 In the terminology of Basawa and Scott (1983), when G��	 is deterministic (resp. random), the

model is called ergodic (resp. nonergodic). But the LAMN situation where G��	 is random is only

one particularly tractable form of nonergodicity.
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that the asymptotic properties of �̂n identified in Proposition 3 carry over to �̂
�J 	
n .

For technical reasons, a minor refinement of Assumption 2 is needed:

Assumption 5 (Strengthening of Assumption 2 in the limiting case where
0= 1 and the diffusion is degenerate at 0): Recall the constant % in Assumption
2(2), and the constants 0 and / in Assumption 3(1). If 0 = 1, then either % ≥ 1
with no restriction on /, or / ≥ 2%/�1−%	 if 0 ≤ % < 1. If 0 > 1, no restriction is
required.

The following theorem shows that �̂
�J 	
n inherit the asymptotic properties of the

(uncomputable) true MLE �̂n:

Theorem 2: Under Assumptions 1–5, and for � ∈ �0� �̄	:
i. Fix the sample size n. Then as J →
� �̂�J 	n

p
−→�̂n under P�0 .

ii. As n→
, a sequence Jn →
 can be chosen sufficiently large to deliver any

rate of convergence of �̂
�Jn	
n to �̂n. In particular, there exists a sequence Jn →
 such

that �̂
�Jn	
n − �̂n = op�I

−1/2
n ��0		 under P�0 which then makes �̂

�Jn	
n and �̂n share the

same asymptotic distribution described in Proposition 3.

4� explicit expressions for the density expansion

I now turn to the explicit computation of the terms in the density expansion.
Theorem 1 showed that

pZ���z �y0� �	= <�z	

∑
j=0
=
�j	
Z ���y0� �	Hj�z	�(4.1)

Recall that p
�J 	
Z ���z�y0� �	 denotes the partial sum in (4.1) up to j = J . From

(2.12), we have

=
�j	
Z ���y0� �	= �1/j !	

∫ +


−

Hj�z	pZ���z �y0� �	dz(4.2)

= �1/j !	
∫ +


−

Hj�z	�

1/2pY
(
���1/2z+y0�y0� �

)
dz

= �1/j !	
∫ +


−

Hj

(
�−1/2�y−y0	

)
pY ���y�y0� �	dy

= �1/j !	E
[
Hj

(
�−1/2�Yt+�−y0	

)
�Yt = y0� �

]

so that the coefficients =
�j	
Z are specific conditional moments of the process Y . As

such, they can be computed in a number of ways, including for instance Monte
Carlo integration. A particularly attractive alternative is to calculate explicitly a

Taylor series expansion in � for the coefficients =
�j	
Z . Let f �y� y0	 be a polynomial.
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Taylor’s Theorem applied to the function s �→ E'f �Yt+s� y0	�Yt = y0( yields

E
[
f �Yt+�� y0	

∣∣Yt = y0
]
=

K∑
k=0

Ak��	 · f �y0� y0	
�k

k!(4.3)

+E
[
AK+1��	 · f �Yt+B� y0	

∣∣Yt = y0
] �K+1

�K+1	!

where A��	 is the infinitesimal generator of the diffusion Y , defined as the opera-
tor A��	M f �→�Y �·� �	,f /,y+�1/2	,2f /,y2. The following proposition provides
sufficient conditions under which the series (4.3) is convergent:

Proposition 4: Under Assumptions 1–3, suppose that for the relevant bound-
aries of DY = �y� ȳ	, near ȳ = +
M �Y �y� �	 ≤ −Ky5 for some 5 > 1; near

y =−
M �Y �y� �	≥K�y�5 for some 5 > 1; near y = 0M �Y �y� �	≥ /y−0 for some
0 > 1 and / > 0; and near ȳ = 0 �Y �y� �	 ≤ −/�y�−0 for some 0 > 1 and / > 0.
Then the diffusion Y is stationary with unconditional density 6Y and the series (4.3)
converges in L2�6Y 	 for fixed � > 0.

Now let p
�J �K	
Z denote the Taylor series up to order K in � of p

�J 	
Z . The

series for the first seven Hermite coefficients �j = 0� � � � �6	 are given by =�0	Z = 1,
and to order K = 3 by:

=
�1�3	
Z =−�Y�1/2−

(
2�Y�

'1(
Y +�'2(Y

)
�3/2

/
4(4.4)

−
(
4�Y�

'1(2
Y +4�2Y�

'2(
Y +6�'1(Y �

'2(
Y +4�Y�

'3(
Y +�'4(Y

)
�5/2

/
24�

=
�2�3	
Z =

(
�2Y +�

'1(
Y

)
�
/
2+

(
6�2Y�

'1(
Y +4�'1(2Y +7�Y�

'2(
Y +2�'3(Y

)
�2

/
12(4.5)

+
(
28�2Y�

'1(2
Y +28�2Y�

'3(
Y +16�'1(3Y +16�3Y�

'2(
Y +88�Y�

'1(
Y �

'2(
Y

+21�'2(2Y +32�'1(Y �
'3(
Y +16�Y�

'4(
Y +3�'5(Y

)
�3

/
96�

=
�3�3	
Z =−

(
�3Y +3�Y�

'1(
Y +�'2(Y

)
�3/2

/
6−

(
12�3Y�

'1(
Y +28�Y�

'1(2
Y(4.6)

+22�2Y�
'2(
Y +24�'1(Y �

'2(
Y +14�Y�

'3(
Y +3�'4(Y

)
�5/2

/
48�

=
�4�3	
Z =

(
�4Y +6�2Y�

'1(
Y +3�'1(2Y +4�Y�

'2(
Y +�'3(Y

)
�2

/
24(4.7)

+
(
20�4Y�

'1(
Y +50�3Y�

'2(
Y +100�2Y�

'1(2
Y +50�2Y�

'3(
Y +23�Y�

'4(
Y

+180�Y�
'1(
Y �

'2(
Y +40�'1(3Y +34�'2(2Y +52�'1(Y �

'3(
Y +4�'5(Y

)
�3

/
240�

=
�5�3	
Z =−

(
�5Y +10�3Y�

'1(
Y +15�Y�

'1(2
Y +10�2Y�

'2(
Y(4.8)

+10�'1(Y �
'2(
Y +5�Y�

'3(
Y +�'4(Y

)
�5/2

/
120�

=
�6�3	
Z =

(
�6Y +15�4Y�

'1(
Y +15�'1(3Y +20�3Y�

'2(
Y +15�'1(Y �

'3(
Y +45�2Y�

'1(2
Y(4.9)

+10�'2(2Y +15�2Y�
'3(
Y +60�Y�

'1(
Y �

'2(
Y +6�Y�

'4(
Y +�'5(Y

)
�3

/
720�
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where I have used the more compact notation �
'k(m
Y for �,k�Y �y0� �	

/
,yk0 	

m.
Different ways of gathering the terms are available (as in the CLT, where for

example both the Edgeworth and Gram-Charlier expansions are based on a Her-
mite expansion). Here, if we gather all the terms according to increasing powers

of � instead of increasing order of the Hermite polynomials, and let p̃
�K	
Z ≡p�
�K	Z

(and similarly for Y , so that p̃
�K	
Y ���y �y0� �	= �−1/2p̃

�K	
Z

(
���−1/2�y−y0	�y0� �

)
,

and then for X), we obtain an explicit representation of p̃
�K	
Y , given by

p̃
�K	
Y ���y�y0��	=�−1/2<

(
y−y0
�1/2

)
exp

(∫ y

y0

�Y �w��	dw

) K∑
k=0
ck�y�y0��	

�k

k!(4.10)

where c0�y�y0� �	= 1 and for all j ≥ 1:

cj�y�y0��	= j�y−y0	−j
∫ y

y0

�w−y0	j−1(4.11)

×
{
-Y �w��	cj−1�w�y0��	+

(
,2cj−1�w�y0��	

/
,w2

)/
2

}
dw�

Finally, note that in general, conditional moments of the process Y need not
be analytic in time,17 in which case (4.3) and (4.10) must be interpreted strictly
as Taylor series. Even when that is the case, their relevance for empirical work
lies in the fact that including a small number of terms (one, two, or three) makes
the approximation very accurate for the values these variables typically take in
financial econometrics, as we shall now see.18

5� accuracy of the approximations and

monte carlo evidence

While Figure 1 shows that the approximation of pX was extremely accurate as
a function of the state variables, it does not necessarily imply that the resulting
parameter estimates would in practice necessarily be close to the true MLE, as
was proved theoretically in Theorem 2. To answer that question, I perform Monte
Carlo experiments. Consider first the Ornstein-Uhlenbeck specification, dXt =
−5Xtdt+
 dWt , where � ≡ �5�
2	 and DX = �−
�+
	. The process X has
a Gaussian transition density with mean x0e

−5� and variance �1− e−25�	
2
/
25.

In this case, Y = )�X��	= 
−1X� �Y �y� �	=−5y, and the additional terms in

17 Note however that as a result of Theorem 1 the transition function is analytic in the forward

state variable. The expansion is designed to deliver an approximation of the density function y �→
pY ���y �y0� �	 for a fixed value of the backward (conditioning) variable y0. Therefore, except in the
limit where � becomes infinitely small, it is not designed to reproduce the limiting behavior of pY in

the limit where y0 tends to the boundaries. The expansion delivers the correct behavior for y tending

to the boundaries, except in the limiting situation of �Y �y� �	 ∼ /y−1 in Assumption 3.1 where it is

only appropriate if � becomes infinitesimally small.
18 See also the companion paper (Aït-Sahalia (1999)) for examples and an application to the

estimation of interest rate models.
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the approximation p
�J 	
Z need only correct for the inadequacy of the conditional

moments in the leading term p
�0	
Z , not for any non-Gaussianity. In other words,

in the transformation from X to Y being linear, there is no deformation or
stretching of the Gaussian leading term when going from the approximation of
pY to that of pX . By specializing Proposition 3 to this model, one obtains the
following asymptotic distributions for the MLE:19

Corollary 2: (Asymptotic Distribution of the MLE for the Ornstein-
Uhlenbeck Model):

i. If 5 > 0 (LAN, stationary case):

√
n

((
5̂n

̂2n

)
−
(
5

2

))
(5.1)

d−→N



(
0
0

)
�




e25�−1
�2


2�e25�−1−25�	
5�2


2�e25�−1−25�	
5�2


4
(
�e25�−1	2+252�2�e25�+1	+45��e25�−1	

)
52�2�e25�−1	




�

ii. If 5 < 0 (LAMN, explosive case), assume X0 = 0; then

e−�n+1	5��

e−25�−1 �5̂n−5	
d−→G−1/2×N�0�1	 and

√
n�
̂2n−
2	

d−→N�0�2
4	(5.2)

where G has a P2 [1] distribution independent of the N�0�1	. G−1/2×N�0�1	 is a
Cauchy distribution.

iii. If 5= 0 (LAQ, unit root case), assume X0 = 0; then

n5̂n
d−→�1−W 2

1 	
/(
2�

∫ 1
0
W 2

t dt

)
and

√
n�
̂2n −
2	

d−→N�0�2
4	(5.3)

where Wt denotes a standard Brownian motion.

In Monte Carlo experiments, I study the behavior of the true MLE of � (which
is computable in this example since the transition function is known in closed-
form), the Euler estimator, and the estimators of this paper corresponding to
one and two orders in � respectively. The Euler approximation corresponds
to a simple discretization of the continuous-time stochastic differential equa-
tion, where the differential equation (1.1) is replaced by the difference equation
Xt+�−Xt = ��Xt� � �	�+
�Xt� �	

√
�.t+� with .t+� ∼N�0�1	, so that

pEulerX ���x�x0� �	=�26�
2�x0� �		−1/2(5.4)

×exp
{
−
(
x−x0−��x0� �	�

)2/
2�
2�x0� �	

}
�

19 Since there is no confusion possible in what follows, the subscript 0 is omitted when denoting

the true parameter values.
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I set the true value of 
2 at 1.0, and examine the behavior of the various
estimators of 5 and 
2 for the different cases of Corollary 2, by setting 5= 10,
5, and 1 (stationary root LAN), 5= 0 (unit root LABF), and 5=−1 (explosive
root LAMN). For each value of the parameters, I perform M = 5�000 Monte
Carlo simulations of the sample paths generated by the model, each containing
n= 1�000 observations.
These Monte Carlo experiments answer four separate questions. Firstly, how

accurate are the various asymptotic distributions in Corollary 2? This question
is answered in Figures 2 and 3, where I plot the finite sample distributions
of the estimators (histograms) and the corresponding asymptotic distribution
(solid line). The asymptotic distribution of �̂n − � reported in Panels A–C of
Figure 2 is from (5.1). Not surprisingly, as the drift parameter 5 makes the pro-
cess closer and closer to a unit root (5 decreasing from 10 to 1), the quality of
the asymptotic approximation (5.1) deteriorates and the small sample distribution
starts to resemble (5.3), which is strongly skewed. This only affects the drift
parameter; the estimator of 
2 behaves in small samples as predicted by the
asymptotic distribution—which is compatible with the fact that the distribution
for estimating 
2 is continuous when going through the 5= 0 boundary. Panel A
of Figure 3 reports results for the unit root case, with the asymptotic distribution
given in (5.3). In the explosive case �5 < 0	, Panel B of Figure 3 is based on
the Cauchy distribution (5.2), while Panel C exploits the possibility of random
norming to obtain a Gaussian asymptotic distribution of the drift coefficient (see
(A.69) in the Appendix). The diffusion estimator is identical in both Panels B
and C, and is therefore not repeated in Panel C. Since the rate of convergence
in nonstationary cases varies, both Panels B and C report the distribution of the
drift estimator scaled by the relevant rate of convergence, rather than the raw
distribution of 5̂n−5 as in all other panels. The simulations show that in both
nonstationary cases, and in the stationary case when sufficiently far away from a
unit root, the asymptotic distribution of the drift estimator is an accurate guide
to its small sample distribution.
The second question these experiments address is: what is the dispersion of

the MLE around the true value? Tables I and II report the first four moments
of the finite sample and asymptotic distributions. For each of the parameter
values and the M samples, I also report in these tables the first two moments
of the differences between the true MLE estimators of 5 and 
2, their Euler
versions and the estimators from using the method of this paper with one and
two terms. This makes it possible, thirdly, to compare the MLE dispersion, or
sampling noise, to the distance between the MLE and the various approximations
under consideration. In particular, when selecting the order of approximation, it
is unnecessary to select a value larger than what is required to make the distance

between �̂
�J 	
n and �̂n an order of magnitude smaller than the distance between

�̂n and the true value � (as measured by the exact MLE sampling distribution).
These simulations show that the parameter estimates obtained with one and even
more so two terms are several orders of magnitude closer to the exact MLE than
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Figure 2.— Small sample and asymptotic distributions of the MLE for the Ornstein-Uhlenbeck

process: stationary processes.

the MLE is to the parameter, so that the approximate estimates can be used in
place of the exact MLE in practice.
Finally, these Monte Carlo experiments make it possible to compare the rela-

tive accuracy of the three estimators based on the Euler discretization approxi-
mation, and those of this paper. The results of the bottom part of Tables I and II,
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Figure 3.— Small sample and asymptotic distributions of the MLE for the Ornstein-Uhlenbeck

process: nonstationary processes.

comparing the differences between the approximate and exact estimators, show
that the estimators with one and even more so with two terms are substantially
more accurate than the Euler estimator, even though the latter is in an ideal
situation in this example. Indeed, since the true transition function is Gaussian,
the only approximation involved in the Euler estimation consists in using first
order Taylor series expansions of the true conditional mean and variances rather
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TABLE I

Comparison of Approximate Estimators for

the Ornstein-Uhlenbeck Process

Stationary Processes

Panel A: 5= 10 Panel B: 5= 5 Panel C: 5= 1

5̂�MLE	−5�TRUE	 Mean Asymptotic 0 0 0

Sample 0�11826 0�11522 0�10965

Stand. Dev. Asymptotic 1�12619 0�75209 0�32561

Sample 1�12894 0�77012 0�36598

Skewness Asymptotic 0 0 0

Sample 0�362 0�457 0�959

Kurtosis Asymptotic 3 3 3

Sample 3�295 3�432 4�484

5̂�EUL	− 5̂�MLE	 Mean Sample −0�933615 −0�248697 −0�0130134
Stand. Dev. Sample 0�203568 0�074819 0�0091453

5̂�1	− 5̂�MLE	 Mean Sample −0�279554 −0�070803 −0�0028979
Stand. Dev. Sample 0�162931 0�049566 0�0046431

5̂�2	− 5̂�MLE	 Mean Sample 0�013228 0�001209 −0�0000005
Stand. Dev. Sample 0�050978 0�006701 0�0000163

v̂�MLE	−v�TRUE	 Mean Asymptotic 0 0 0

Sample −0�0002404 −0�0003080 −0�0004357
Stand. Dev. Asymptotic 0�0491017 0�0468901 0�0451521

Sample 0�0504349 0�0480553 0�0462890

Skewness Asymptotic 0 0 0

Sample 0�067 0�054 0�061

Kurtosis Asymptotic 3 3 3

Sample 3�066 3�046 3�041

v̂�EUL	− v̂�MLE	 Mean Sample −0�1716920 −0�092254 −0�021040
Stand. Dev. Sample 0�0218769 0�014914 0�007035

v̂�1	− v̂�MLE	 Mean Sample −0�0000395 0�000732 0�000992

Stand. Dev. Sample 0�0014829 0�000439 0�000059

v̂�2	− v̂�MLE	 Mean Sample 0�0000182 0�000010 0�000010

Stand. Dev. Sample 0�0000433 0�000075 0�000046

Cov�5̂�MLE	� v̂�MLE		 Asymptotic 0�022831 0�010673 0�002026

Sample 0�023627 0�010958 0�002240

Cov�5̂�EUL	� v̂�EUL		 Sample 0�000529 −0�000027 −0�000298
Cov�5̂�1	� v̂�1		 Sample 0�022308 0�010632 0�002220

Cov�5̂�2	� v̂�2		 Sample 0�023785 0�010978 0�002242

Notes: The model is dXt = −5Xtdt+ 
 dWt . In the table, v designates the diffusion parameter 

2 , whose true

value is 1.0. The superscripts (MLE), (EUL), (1) and (2) refer to the exact estimator, the estimator based on the Euler
approximation, and the estimators based on the methods of this paper with one and two terms respectively (see (4.10)).
Panels A, B, and C in this table correspond to the same panels in Figure 2. The asymptotic values correspond to the
asymptotic distribution given in Corollary 2. The sample moments are averages over 5,000 Monte Carlo simulations.
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TABLE II

Comparison of Approximate Estimators for the Ornstein-Uhlenbeck Process

Non-Stationary Processes

Unit Root Explosive Root Explosive Root
Panel A: 5= 0 Panel B: 5=−1 Panel C: 5=−1

5̂�MLE	−5�TRUE	 Mean Asymptotic 0�09226 0 0

Sample 0�09274 0�6026 0�0153

Stand. Dev. Asymptotic 0�16701 +
 1

Sample 0�16494 70�0266 1�0239

Skewness Asymptotic 2�265 undefined 0

Sample 2�154 27�685 0�0428

Kurtosis Asymptotic 11�582 undefined 3

Sample 9�527 1588�61 3�002

5̂�EUL	− 5̂�MLE	 Mean Sample −0�00034314
Stand. Dev. Sample 0�001004

5̂�1	− 5̂�MLE	 Mean Sample 0�0000179

Stand. Dev. Sample 0�0003434

5̂�2	− 5̂�MLE	 Mean Sample −0�000000039
Stand. Dev. Sample 0�000000313

v̂�MLE	−v�TRUE	 Mean Asymptotic 0 0 0

Sample 0�0002837 −0�001027 −0�001027
Stand. Dev. Asymptotic 0�0447214 0�044730 0�044730

Sample 0�0443634 0�044962 0�044962

Skewness Asymptotic 0 0 0

Sample 0�125 0�097 0�097

Kurtosis Asymptotic 3 3 3

Sample 2�982 3�079 3�079

v̂�EUL	− v̂�MLE	 Mean Sample −0�001782
Stand. Dev. Sample 0�003171

v̂�1	− v̂�MLE	 Mean Sample 0�000103

Stand. Dev. Sample 0�000045

v̂�2	− v̂�MLE	 Mean Sample 0�000011

Stand. Dev. Sample 0�000044

Cov�5̂�MLE	� v̂�MLE		 Asymptotic 0 0 0

Sample 0�0003960 −1�0910−10 −1�0910−10

Cov�5̂�EUL	� v̂�EUL		 Sample −0�0001255
Cov�5̂�1	� v̂�1		 Sample 0�0003955

Cov�5̂�2	� v̂�2		 Sample 0�0003953

Notes: The same notes as in Table I apply. In the explosive case, the dispersion of the simulated data around the mean
of the process (zero) makes it impractical to simulate the approximate estimators. The panels match those of Figure 3. The
diffusion estimators in Panels B and C are identical.
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TABLE III

Comparison of Approximate Estimators for the Vasicek,

Cox-Ingersoll-Ross, and Black-Scholes Models

Vasicek Cox-Ingersoll-Ross Black-Scholes
dXt = 5�0−Xt	dt dXt = 5�0−Xt	dt dXt = 5Xt dt

+
 dWt +
X�5
t dWt +
Xt dWt

5̂�MLE	−5�TRUE	 Mean 0�099674 0�09711 −0�0002561
Stand. Dev. 0�178366 0�18772 0�0468815

5̂�EUL	− 5̂�MLE	 Mean −0�015993 −0�00164 0�0017667

Stand. Dev. 0�009873 0�03250 0�0008121

5̂�1	− 5̂�MLE	 Mean −0�003675 0�00053 −0�0020946
Stand. Dev. 0�005003 0�00105 0�0017052

5̂�2	− 5̂�MLE	 Mean −0�000012 −0�00036 0�0000197

Stand. Dev. 0�000270 0�00494 0�0000294

0̂�MLE	−0�TRUE	 Mean 0�000023341 0�0006947 not applicable

Stand. Dev. 0�009078321 0�0011893 not applicable

0̂�EUL	− 0̂�MLE	 Mean −0�000000003 0�0000089 not applicable

Stand. Dev. 0�000000071 0�0001789 not applicable

0̂�1	− 0̂�MLE	 Mean 0�000001102 0�0001747 not applicable

Stand. Dev. 0�000109126 0�0002057 not applicable

0̂�2	− 0̂�MLE	 Mean −0�000000017 −0�0000009 not applicable

Stand. Dev. 0�000003544 0�0001322 not applicable


̂ �MLE	−
 �TRUE	 Mean 0�00008690 0�000560 −0�00000165
Stand. Dev. 0�00101568 0�004905 0�00966928


̂ �EUL	− 
̂ �MLE	 Mean −0�00073620 −0�002768 0�00562312

Stand. Dev. 0�00022012 0�001492 0�00189766


̂ �1	− 
̂ �MLE	 Mean −0�00000043 0�000029 0�00005585

Stand. Dev. 0�00000248 0�000391 0�00006205


̂ �2	− 
̂ �MLE	 Mean −0�00000002 0�000013 −0�00000058
Stand. Dev. 0�00000029 0�000387 0�00000117

Cov�5̂�MLE	� 
̂ �MLE		 0�0000308 0�000202 0�00003267

Cov�5̂�EUL	� 
̂ �EUL		 −0�0000077 −0�000017 0�00227254

Cov�5̂�1	� 
̂ �1		 0�0000305 0�000199 0�00003588

Cov�5̂�2	� 
̂ �2		 0�0000308 0�000200 0�00003262

Cov�5̂�MLE	� 0̂�MLE		 0�0000368 −0�00102 not applicable

Cov�5̂�EUL	� 0̂�EUL		 0�0000345 −0�00099 not applicable

Cov�5̂�1	� 0̂�1		 0�0000371 −0�00102 not applicable

Cov�5̂�2	� 0̂�2		 0�0000367 −0�00102 not applicable

Cov�0̂�MLE	� 
̂ �MLE		 0�0000003112 0�0000006 not applicable

Cov�0̂�EUL	� 
̂ �EUL		 0�0000002616 0�0000057 not applicable

Cov�0̂�1	� 
̂ �1		 0�0000003134 0�0000006 not applicable

Cov�0̂�2	� 
̂ �2		 0�0000003112 0�0000006 not applicable

Notes: The true values of the parameters, chosen to be realistic for US interest rates (Vasicek and CIR) and stock
prices (Black-Scholes) respectively, are: 5= 0�5�0= 0�06�
 = 0�03 (Vasicek), 5= 0�5�0= 0�06�
 = 0�15 (CIR), and
5= 0�2�
 = 0�3 (Black-Scholes). All moments reported are averages over 5,000 Monte Carlo replications.
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than the exact expressions. By contrast, the approximate estimators correspond-
ing to one and two terms mimic the moments of the MLE finite sample distribu-
tion extremely closely, often to multiple accurate decimal places. Further Monte
Carlo experiments for three standard models in finance (Black-Scholes (1973),
Vasicek (1977), Cox-Ingersoll-Ross (1985)) reported in Table III reveal that the
estimators proposed here outperform by orders of magnitude the Euler estima-
tor, especially in non-Gaussian situations.

6� conclusions

This paper has constructed a series of explicit functions, based on Hermite
expansions and converging to the conditional density of the diffusion process,
under mild regularity conditions. This method makes maximum-likelihood a prac-
tical option for the estimation of parameters in discretely-sampled diffusion mod-
els. Beyond maximum-likelihood, the formulae for the expansion of pX apply
to any specification of ���
2	, including nonparametric ones. Different types of
evidence have been provided in favor of this method. First, it largely outper-
forms discrete approximations, binomial trees, PDE methods, and simulation-
based methods in a direct comparison of speed and accuracy (Figure 1). Second,
Monte Carlo experiments show that maximizing the log-likelihood approxima-
tion provides parameter estimates that are very close to the true MLE (Tables
I, II, and III) and outperforms by several orders of magnitude the alternative
methods—not only in terms of computational speed and ease of implementation
but also in terms of accuracy.
Extensions to multi-dimensional diffusions (including unobservable state vari-

ables to be integrated out of the likelihood function, such as stochastic volatility)
and applications to derivative pricing will be considered in future work. A further
appeal of this method lies in its potential to be generalized to yet other types
of Markov processes, such as those driven by non-Brownian Lévy processes for
instance. As I remarked earlier, this generalization would involve different scaling
X→ Y → Z, a non-Gaussian leading term for pZ (in this case a natural choice
is the limiting transition density of the driving process), and orthogonal functions
that correspond to this leading term. But the basic principle remains valid: first
form an orthogonal series to approximate the density and prove its convergence;
then determine its coefficients using repeated iterations of the infinitesimal gen-
erator of the Markov process under consideration.
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APPENDIX: Proofs

Proof of Proposition 1: I treat the case where DY = �0�+
	, the other boundary configura-
tions being dealt with similarly. Let sY �v��	≡ exp�−

∫ v
2�Y �u��	du� be the scale density of Y and
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SY �y� �	 ≡
∫ y
sY �v��	dv its scale function.

20 In each case, the lower limit of integration is a fixed

value in DY , the choice of which is irrelevant in what follows (i.e., for the purpose of determining

whether or not the relevant quantities below are infinite or not). Let mY �v��	 ≡ 1/sY �v��	 be the
speed density of Y .

Step 1—Existence and unicity in law of a weak solution: This follows from the Engelbert-Schmidt

criterion (see, e.g., Theorem 5.5.15 in Karatzas and Shreve (1991), replacing � by DY throughout).

To apply this result, note that continuity of �Y (and of course 
Y = 1) implies the local integrability
requirements for ��Y �/
 2Y and 1/
 2Y . Explosions are ruled out in Step 2 of this proof.

Step 2—Unattainability of the boundaries 0 and +
: Define




Q
 ≡
∫ +


y

{∫ v

y
mY �u��	du

}
sY �v��	dv =

∫ +


y

{∫ +


u
sY �v��	dv

}
mY �u��	du�

Q0 ≡
∫ y

0

{∫ y

v
mY �u��	du

}
sY �v��	dv =

∫ y

0

{∫ u

0
sY �v��	dv

}
mY �u��	du�

(A.1)

From Feller’s test for explosions, Prob�TY = 
	 = 1 if and only if Q
 = 
 and Q0 = 
 (see, e.g.,

Karatzas and Shreve (1991, Theorem 5.5.29) or Karlin and Taylor (1981, Section 15.6)). Near ȳ=+
,
Assumption 3.1 gives the upper bound �Y �y� �	≤Ky for all y ≥E (without restraining how negative
�Y can get); thus

Q
 =
∫ +


y

{∫ +


u
sY �v��	dv

}
s−1Y �u��	du=

∫ +


y

∫ +


u
e−

∫ v
u 2�Y �w��	dw dvdu(A.2)

≥
∫ +


y

∫ +


u
e−

∫ v
u 2Kwdwdvdu=

∫ +


y

{∫ +


u
e−Kv

2
dv

}
eKu

2
du�

Now by integration by parts

∫ +


u
e−Kv

2
dv =

∫ +


u
v−1ve−Kv

2
dv = �2Ku	−1e−Ku

2 − �2K	−1
∫ +


u
v−2e−Kv

2
dv

and, since
∫ +

u

v−2e−Kv
2
dv < u−2 ∫ +


u
e−Kv

2
dv, it follows that

(
1+ �2K	−1u−2) ∫ +


u
e−Kv

2
dv > �2Ku	−1e−Ku

2
� or

∫ +


u
e−Kv

2
dv >

(
2Ku+u−1)−1e−Ku2 �

Therefore

Q
 ≥
∫ +


y

{∫ +


u
e−Kv

2
dv

}
eKu

2
du≥

∫ +


y
�2Ku+u−1	−1e−Ku

2
eKu

2
du=+
�(A.3)

If y = 0, there exist constants .0�/�0 such that for all 0< y ≤ .0 and � ∈���Y �y� �	 ≥ /y−0 where

either 0 > 1 and / > 0, or 0= 1 and k ≥ 1. If 0 > 1, we have for 0< v ≤ .0

sY �v��	= exp
{∫

v
2�Y �w��	dw

}
≥ exp

{∫

v
2/w−0dw

}
= /0 exp

{
2/�0−1	v−�0−1	

}
(A.4)

and hence
∫ u
0
sY �v��	dv =+
. If however 0= 1,

sY �v��	≥ exp
{∫

v
2/w−1dw

}
= k0exp�−2/ ln�v	�= k0v

−2/(A.5)

20 The scale function has the following intuitive interpretation: with x < a < x0 < b < x̄, the proba-

bility that X will reach a before b (resp. b before a) starting from x0 is
(
S�b��	−S�x0� �		/�S�b��	−

S�a��	
)
(resp. one minus this number). Taking the limit b→ x̄− and a→ x+ respectively, we see that

under Assumption 2.2 the probability that X will reach either boundary of DX in finite time is zero.
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and
∫ u
0
sY �v��	dv ≥

∫ u
0
k0v

−2/ dv =+
 again since we have assumed that /≥ 1 when 0= 1 (in fact,
/ ≥ 1/2 would be enough to obtain an entrance boundary, but we have also required that / ≥ 1
to insure that limy→0+ -Y �y� �	 < +
 since -Y �y� �	 = /�1−/	y−2 if �Y �y� �	 = /y−1). In all these

inequalities, k0 denotes a different positive and finite constant. It follows from
∫ u
0
sY �v��	dv = +


and the finiteness of the measure mY in the second equality defining Q0 that Q0 =
, i.e., y = 0 too
is unattainable.

Step 3—Boundary classification for ȳ = +
∗: The boundary +
 is a natural boundary when

Q
 = N
 =
, and an entrance boundary when Q
 =
 and N
 <
 (see, e.g., Karlin and Taylor

(1981, Table 6.2)), where

N
 ≡
∫ +


y

{∫ v

y
sY �u��	du

}
mY �v��	dv =

∫ +


y

{∫ +


u
mY �v��	dv

}
sY �u��	du�(A.6)

Under Assumption 3, consider first the case where there exists E > 0 such that −Ky ≤�Y �y� �	≤Ky
for all y ≥ E. We then have

N
 =
∫ +


y

{∫ +


u
mY �v��	dv

}
m−1

Y �u��	du=
∫ +


y

∫ +


u
e
∫ v
u 2�Y �w��	dw dvdu(A.7)

≥
∫ +


y

∫ +


u
e−

∫ v
u 2Kwdw dvdu=

∫ +


y

{∫ +


u
e−Kv

2
dv

}
eKu

2
du=+


as in (A.3). If instead we have �Y �y� �	≤−Ky5� 5 > 1, for all y ≥ E, then

N
 =
∫ +


y

∫ +


u
e
∫ v
u 2�Y �w��	dw dvdu≤

∫ +


y

∫ +


u
e−

∫ v
u 2Kw

5dw dvdu(A.8)

=
∫ +


y

{∫ +


u
e−Sv

5+1
dv

}
eSu

5+1
du

where S ≡ 2�5+1	−1K. By integration by parts
∫ +


u
e−Sv

5+1
dv =

∫ +


u
v−5v5e−Sv

5+1
dv

= �S�5+1		−1u−5e−Su
5+1 − S−1�5+1	−2

∫ +


u
v−5−1e−Sv

5+1
dv�

hence
∫ +

u

e−Sv
5+1

dv < �2K	−1u−5e−Su
5+1
. So

N
 ≤
∫ +


y

{∫ +


u
e−Sv

5+1
dv

}
eSu

5+1
du < �2K	−1

∫ +


y
u−5e−Su

5+1
eSu

5+1
du <+
�(A.9)

Step 4—Boundary classification for y = 0: Among unattainable boundaries (i.e., given that Q0 =

), whether 0 is an entrance or a natural boundary depends upon whether N0 < 
 or N0 = 

respectively, where

N0 ≡
∫ y

0

{∫ y

v
sY �u��	du

}
mY �v��	dv =

∫ y

0

{∫ u

0
mY �v��	dv

}
sY �u��	du�(A.10)

We have in all cases �Y �w��	≥ /w−1 for some / > 0 (since if 0 > 1��Y �w��	≥ /w−0 > /w−1; note

that this constant / is not necessarily ≥ 1/2). Then we can bound N0 as follows:

N0 =
∫ y

0

∫ u

0
exp

{∫ v

u
2�Y �w��	dw

}
dvdu=

∫ y

0

∫ u

0
exp

{
−
∫ u

v
2�Y �w��	dw

}
dvdu(A.11)

≤
∫ y

0

∫ u

0
e−

∫u
v 2//wdw dvdu=

∫ y

0

{∫ u

0
v2/ dv

}
u−2/ du= �2/+1	−1

∫ y

0

{
u2/+1

}
u−2/ du

= �2/+1	−1y2/2 <+
�

Therefore y = 0 is an entrance boundary for all 0≥ 1.
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Proof of Proposition 2: Step 1—Existence of the transition density pY : Consider first the

case where DY = �−
�+
	. The fact that Girsanov’s Theorem can be applied to Y follows from

Karatzas and Shreve (1991, 5.5.38); note that the explosion time of Y �TY , is infinity with probability

1 as was proved in Proposition 1. By Girsanov’s formula, for every A in the usual 
-field,

Prob
(
Y� ∈A �Y0 = y0� �

)
= E'M� ·1�W� ∈A	�W0 = y0((A.12)

where 1�·	 denotes the indicator function and the nonnegative supermartingale

M� ≡ exp
{∫ �

0
�Y �WJ� �	dWJ −

1

2

∫ �

0
�2Y �WJ� �	dJ

}
(A.13)

is in fact a martingale for all �> 0. Setting TY ���y�y0� �	≡E'M��W� = y�W0 = y0(, (A.12) becomes

Prob�Y� ∈A �Y0 = y0� �	=
∫ +


−

1�y ∈A	TY ���y �y0� �	pBM���y �y0	dy(A.14)

where pBM���y �y0	 = �26�	−1/2 exp
{
− �y− y0	2/�2�	

}
. The existence of the transition density pY

follows from (A.14), and is given by pY ���y �y0� �	 = TY ���y �y0� �	pBM���y �y0	. Integration by
parts inside the conditional expectation defining TY and the scaling property of Brownian motion

allows TY to be further simplified (see Gihman and Skorohod (1972, Chapter 3.13), Dacunha-Castelle

and Florens-Zmirou (1986), or Rogers (1985)) so that

pY ���y �y0� �	= �26�	−1/2e
−�y−y0	2/2�+

∫ y
y0
�Y �w��	dwE

[
e�

∫ 1
0 -Y

(
�1−u	y0+uy+�1/2Bu��

)
du

]
(A.15)

where �Bu/u ∈ '0�1(� designates a Brownian Bridge with B0 = B1 = 0.
Step 2—Bound for pY : The strict positivity of pY (lower bound) follows from (A.15). From

Assumption 3, we obtain
∫ y
y0
�Y �w��	dw ≤H +L�y−y0��1+�y0�	+Q�y−y0	2 for all �y� y0	 in D2

Y ,

where H�L, and Q are positive constants (if y ≥ 0, decompose the integral from y0 to E0, where

�Y is bounded as a continuous function on a compact interval, and then from E0 to y, where �Y
is bounded by Ky; a similar argument holds for y ≤ 0). Hence in general Q = K. This is an upper

bound for the integral itself, not its absolute value. Then by the continuity of -Y �w��	 in w, and its

limit behavior near the boundaries under Assumption 3, it follows that there exists ) ≥ 0 such that
-Y �w��	≤ ) for all w> 0 and � ∈� (in general, however, -Y will not be bounded below). Therefore

E

[
exp

{
�
∫ 1
0
-Y

(
�1−u	y0+uy+�1/2Bu� �

)
du

}]
≤ e)��(A.16)

Collecting all terms we have that

pY ���y�y0� �	≤ �26�	
−1/2

e−�y−y0	
2/2�+H+L�y−y0 ��1+�y0 �	+K�y−y0	2 ×e)�(A.17)

≤ C0�
−1/2e−3�y−y0	

2/8�×eC1 �y−y0 � �y0 �+C2 �y−y0 �+C3 �y0 �+C4y20

provided that −1/�2�	+Q ≤ −3/�8�	, i.e., that 0 < � ≤ � ≡ �8Q	−1. It is clear from the argument

that we could replace 3/�8�	 in the bound for pY by any number less than but arbitrarily close to

1/�2�	, at the cost of reducing �, but this will not be necessary. Further, when �Y ≤ 0 near +
 and

�Y ≥ 0 near −
, Q can be set to 0 in the bound for
∫ y
y0
�Y �w��	dw and hence � = +
 (in which

case we could also replace 3/�8�	 by 1/�2�	).

Step 3—Differentiability of pY : Suppose for now that we are allowed to differentiate under the

expectation sign in (A.15). It follows from the assumed smoothness of � and 
 (hence �Y and -Y )
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that

,pY ���y �y0� �	
,y

= �26�	−1/2e
�y−y0	2
2�

+
∫ y
y0
�Y �w��	dw(A.18)

×
{{

− �y−y0	
�

+�Y �y� �	
}
E

[
e�

∫ 1
0 -Y

(
�1−u	y0+uy+�1/2Bu��

)
du

]

+E
[
�
∫ 1
0
u-′

Y

(
�1−u	y0+uy+�1/2Bu� �

)
du

×e�
∫ 1
0 -Y

(
�1−u	y0+uy+�1/2Bu��

)
du

]}

where -′
Y �w��	 ≡ ,-Y �w��	/,w. The functions under the expectations depend continuously on y

and I will now show that they are bounded by variables having constant expectation themselves.

By uniform convergence, differentiating under the expectation will then have been legitimate and

result in a continuous derivative. First, we have � − �y− y0	/�+�Y �y� �	� ≤ Q1��y�� �y0�	 where Q1

is a polynomial of degree one in ��y�� �y0�	, with coefficients uniformly bounded in � ∈ �. Second∣∣E
[
AeB

]∣∣≤ E
[
�A�eB

]
combined with (A.16) imply

∣∣∣∣E
[
�
∫ 1
0
u-′

Y

(
�1−u	y0+uy+�1/2Bu� �

)
du×e�

∫ 1
0 -Y

(
�1−u	y0+uy+�1/2Bu��

)
du

]∣∣∣∣(A.19)

≤ �E

[∫ 1
0
u

∣∣∣∣-
′
Y

(
�1−u	y0+uy+�1/2Bu� �

)∣∣∣∣du
]
e)��

To bound the expected value on the right-hand side, recall that -′
Y �w��	 has at most polynomial

growth, thus in particular at most exponential growth. Hence there exists - > 0 and G> 0 such that

�-′
Y �w��	� ≤Ge-�w� and thus

E

[∫ 1
0
u
∣∣-′

Y

(
�1−u	y0+uy+�1/2Bu� �

)∣∣du
]

(A.20)

≤GE

[∫ 1
0
ue��1−u	y0+uy+�

1/2Bu � du

]

=G
∫ 1
0
uE

[
e��1−u	y0+uy+�

1/2Bu �
]
du≤G

∫ 1
0
ue��1−u	y0 �+�uy�E

[
e�
1/2 �Bu �

]
du�

Bu is distributed as N�0�u�1−u		. If N is distributed as N�0�
 2	, the density of �N � is given by
2�26	−1/2
−1 exp�−x2/2
 2��x ≥ 0. Therefore for any constant a:

E'ea�N �(= 2�26	−1/2
−1
∫ +


0
eaxe−x

2/2
2dx = 2�26	−1/2
−1ea
2
2/2

∫ +


0
e−�x−a


2	2/2
2dx(A.21)

= ea
2
2/2�26	−1/2
−1

∫ +


−

e−�x−a


2	2/2
2dx = ea
2
2/2

and it follows that E'e�
1/2 �Bu �(= e�u�1−u	/2. Hence

E

[∫ 1
0
u
∣∣-′

Y

(
�1−u	y0+uy+�1/2Bu� �

)∣∣du
]
≤G

∫ 1
0
ue�1−u	�y0 �+u�y�+�u�1−u	/2 du≤Ge�y0 �+�y�(A.22)

(since u runs from 0 to 1) and we obtain (2.5) for all 0 < � < �, where the constant D0 is uniform

in � and P is a polynomial of finite degree with coefficients also uniform in �.

Step 4—Consider finally (briefly) the case where DY = �0�+
	. What is required in the proof of
Theorem 1 is to show that the integral

∫
ew
2/2�,pZ���w�y0� �	/,w�2dw converges. That is, after a

change of variable Z→ Y , we need to show that the integral

∫ +


0
�1/2e�y−y0	

2/2��,pY ���y�y0� �	/,y�2 dy
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converges at both boundaries 0+ and +
. The boundary 0+ is either an entrance or a natural
boundary for Y , and in both cases limy→0+ ,pY ���y�y0� �	/,y = 0 (see McKean (1956, Remark 4.2,
page 541). Hence the integral converges at the left boundary 0. The change of measure in Step 1

above is no longer applicable in its simplest form, because the distribution of Y and that of a

Brownian motion are no longer absolutely continuous with respect to one another since Y is now

distributed on a subset of the real line whereas a Brownian motion is distributed on the entire real

line. However, we can still transform Y into a Brownian motion, but the Radon-Nikodym derivative

is only a local martingale instead of a martingale. Girsanov’s Theorem now gives for y > 0� y0 > 0:

pY ���y �y0� �	= pBM���y �y0	e
∫ y
y0
�Y �w��	dwE

[
e
∫�
0 -Y �Wu��	du

∣∣W� = y�W0 = y0�� < T0
]

(A.23)

where inside the expectation W follows the law of a Brownian motion and T0 indicates the first time

W hits 0. From (A.23), the same bounds can be derived.

Proof of Corollary 1: The existence and unicity in law of a solution of (1.1) follows, as in

Proposition 1, from an application of Theorem 5.5.15 in Karatzas and Shreve (1991) replacing � by

DX throughout. Note that 
�x��	 > 0 for every x in DX and � in �; hence the nondegeneracy con-

dition of the theorem is fulfilled (the only possible local degeneracy of 
 , if any, occurs as x→ 0+,

but 0 �∈DX). The continuity of � and 
 implies the local integrability requirements for ���/
 2 and
1/
 2. Explosions are ruled out by showing that Prob�TX =
	= 1. This in turn follows from the fact
that Yt = )�Xt� �	. The fact that )�x��	 tends to one of the boundaries of DY when x tends to one

of the boundaries of DX means that X would not be able to reach one of its boundaries without

Y also doing so. But we already know that Y cannot do it (recall Proposition 1). Hence X cannot

explode. Finally, the existence of pX and its derivatives follows from the Jacobian formula; specifi-

cally pX���x �x0� �	 = 
�x��	−1pY ���)�x��	 �)�x0� �	� �	 and the differentiability of pY proved in
Proposition 2 (and of course the differentiability of 
 and ) which results from Assumption 2) extend

to pX .

Proof of Theorem 1: Step 1—Let � > 0 be the constant defined in Proposition 2 (possibly

�=
). Let AX be a compact set contained in DX , and consider x0 in AX . Let AY be the compact

set that contains the values of )�x0� �	 as x0 varies in AX and � in the closure of � (recall that � is

bounded). Define S���x�x0� �	≡ �−1/2�)�x��	−)�x0� �		. We seek to bound:

�pX���x�x0� �	−p
�J 	
X ���x�x0� �	� = 
�x��	−1�−1/2�pZ��� S���x�x0� �	�)�x0� �	� �	(A.24)

−p�J 	Z ��� S���x�x0� �	�)�x0� �	� �	��

For that purpose, we will bound the jth coefficient in the approximating function p
�J 	
Z . The =

�J 	
Z ’s

in (2.12) are well-defined since by (2.4), the moments uY ���y0� �� j	 ≡
∫ +

−
 �y�jpY ���y�y0� �	dy are

finite for all j ≥ 0 as a result of

uY ���y0� �� j	≤ e�C3 �y0 �+C4y
2
0
� C0
�1/2

∫ +


−

�w−y0�je�−3w

2/8�+C1 �y0 � �w�+C2 �w�� dw(A.25)

where the variable y has been changed to w= y−y0. For each � and y0 there exists a value ȳ���y0	≥
0 such that for all w� �w� ≥ ȳ���y0	 implies that −3w2/8�+C1�y0� �w � +C2�w� ≤ −5w2/16�.
Next, integration by parts with �j+1	Hj�z	=−dHj+1�z	/dz yields

=
�j	
Z ���y0� �	= �j!	−1

∫ +


−

Hj�w	pZ���w�y0� �	dw(A.26)

=− �j!	−1�j+1	−1
∫ +


−

H ′

j+1�w	pZ���w �y0� �	dw

=− ��j+1	!	−1Hj+1�w	pZ���w�y0 � �	
]+


−


+ ��j+1	!	−1
∫ +


−

Hj+1�w	�,pZ���w�y0 � �	/,w�dw�
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With y = y0+�1/2w and (2.4), we have that

0< pZ���w�y0� �	≤ a0 exp�−3w2/8�exp�a1�w��y0�+a2�w�+a3�y0�+a4y20�(A.27)

where the constants ai� i= 0� � � � �4, are uniform in � ∈�. By Theorem II in Stone (1928), there exists
a constant K such that for all z in R and every integer j , �Hj�z	� ≤K�j!	1/2j−1/4�1+2−5/4�z5/2��ez2/4.
Therefore

∣∣��j+1	!	−1Hj+1�w	pZ���w �y0� �	
∣∣(A.28)

≤ ��j+1	!	−1/2�j+1	−1/4K�1+�w5/2/25/4��ew2/4a0e−3w
2/8ea1 �w� �y0 �+a2 �w�+a3 �y0 �+a4y

2
0

and hence ��j+1	!	−1Hj+1�w	pZ���w�y0� �	
]+

−
 = 0.

Step 2—Proof that the expansion p
�J 	
Z of pZ converges: Define

Wj���y0� �	≡ �j!	−1
∫ +


−

Hj�w	�,pZ���w�y0� �	/,w�dw�(A.29)

We can bound the terms of order j ≥ 1 in the series for pZ according to

�=�j	Z ���y0� �	Hj�z	� = ��j+1	!	−1
∣∣∣∣
∫ +


−

Hj+1�w	�,pZ���w �y0� �	/,w�dw

∣∣∣∣�Hj�z	�(A.30)

= �Wj+1���y0� �	��Hj�z	�

≤K
{
1+

∣∣z5/2/25/4
∣∣}ez2/4×�j−1/4�j!	1/2�Wj+1���y0� �	��

≤K�1+�z5/2/25/4��ez2/4×�j−1/4�j+1	−1/2��j+1	!	1/2�Wj+1���y0� �	��

≤K�1+�z5/2/25/4��ez2/4�j−1/2�j+1	−1+ �j+1	!W2j+1���y0� �	�/2

since �05� ≤ �02 +52	/2. The first series on the right-hand side, ∑ j−1/2�j + 1	−1, is convergent. It
remains to prove that the series

∑

j=0 j!W2j ���y0� �	 converges. The integral

∫ +

−
 e

w2/2�,pZ���w �y0� �	/
,w�2dw converges, since from (2.5) one can conclude that:

�,pZ���w �y0� �	/,w� ≤ b0e
−3w2/8R��w�� �y0�	eb1 �w��y0 �+b2 �w�+b3 �y0 �+b4y

2
0(A.31)

where R is a polynomial of finite order in ��w�� �y0�	 with coefficients uniform in � ∈ �, and where
the constants bi� i = 0� � � � �4, are uniform in � ∈�.
Then expand the squared term in

0 ≤
∫ +


−

ew
2/2

{
,pZ���w�y0� �	/,w−<�w	

J∑
j=0
Wj���y0� �	Hj�w	

}2
dw

=
∫ +


−

ew
2/2�,pZ���w �y0� �	/,w�2 dw

−2�26	−1/2
J∑
j=0
Wj���y0� �	

∫ +


−

�,pZ���w �y0� �	/,w�HJ �w	dw

+�26	−1
J∑
j=0

J∑
k=0
Wj���y0� �	Wk���y0� �	

∫ +


−

e−w

2/2Hj�w	Hk�w	dw

=
∫ +


−

ew
2/2�,pZ���w �y0� �	/,w�2 dw− �26	−1/2

J∑
j=0
j!W2j ���y0� �	

and the (dominated) convergence of the series on the right-hand side follows. Further, the series

converges uniformly with respect to � in � and to y0 in the compact set AY .
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Hence p
�J 	
Z ���z �y0� �	=<�z	

∑J
j=0 =

�j	
Z ���y0� �	Hj�z	 is convergent as J →
. Note that the con-

vergence is uniform in z over the entire real line since the two series in (A.30) are independent of z

and hence converge uniformly with respect to z. The convergence is also uniform with respect to �

in � and y0 in the compact set AY .

Step 3—Proof that the limit of p
�J 	
Z ���z �y0� �	 (which we now know exists) is indeed

pZ���z �y0� �	: Let qZ���z �y0� �	 ≡ limJ→
 p
�J 	
Z ���z �y0� �	. qZ is continuous in z as the uniform

limit of a series of continuous functions. Further, with .j+1 ≡ j−1/2�j + 1	−1 + �j + 1	!W2j+1���y0� �	,
note that there exists a constant K0 such that

<�z	
∣∣=�j	Z ���y0� �	Hj�z	

∣∣≤K�1+
∣∣z5/2/25/4

∣∣�e−z2/4.j+1 ≤K0e
−3z2/8.j+1(A.32)

(for z large enough) and hence qZ satisfies the same bound as pZ (which itself follows from that of

pY in Proposition 2). Therefore the integral �k!	−1
∫ +

−
 qZ���w �y0� �	Hk�w	dw exists and

�k!	−1
∫ +


−

p
�J 	
Z ���w �y0� �	Hk�w	dw(A.33)

= �k!	−1
J∑
j=0
=
�j	
Z ���y0� �	

∫ +


−

�26	−1/2e−w

2/2Hj�w	Hk�w	dw

=
{
=
�k	
Z ���y0� �	 if k ≤ J

0 if k > J

because
∫ +

−
 �26	

−1/2e−w
2/2Hj�w	Hk�w	dw = j! if k = j , and 0 otherwise (see, e.g., Sansone (1991,

page 308)). Hence it follows that �k!	−1
∫ +

−
 qZ���w�y0� �	Hk�w	dw = =k���y0� �	, and so pZ and

qZ have the same =k coefficients for all k ≥ 0. To finish, consider two continuous functions satisfying
the same first bound as in Proposition 2 and sharing the same =k coefficients for all k: they must

be equal. Indeed, define the difference rZ���w�y0; �	≡ qZ���w�y0� �	−pZ���w�y0� �	. The integral
of rZ against polynomials w

k of all orders k ≥ 0 is equal to zero (since any polynomial of order k
is a linear combination of the first k polynomials Hk) and therefore by Weierstrass’s approximation

theorem the function rZ is identically zero.

Step 4—Back to pX : I have shown that, for every . > 0, there exists J.�AY ��	 such that for

all J ≥ J.�AY ��	, the bound
∣∣pZ���z�y0� �	−p

�J 	
Z ���z�y0� �	

∣∣ ≤ . holds for all z ∈ R�y0 ∈AY , and

� ∈�. If 
 is globally nondegenerate under Assumption 2(1), 
−1�x��	 < c−1 <+
 implies that for

all J ≥ J.�AX��	�
∣∣pX���x�x0� �	−p

�J 	
X ���x�x0� �	

∣∣≤ . for all x in R, x0 ∈AX and � ∈�. If not, for
every . > 0, there exists a constant c. such that 


−1�x��	 < c−1. <+
 for all x ∈ '.�+
	 and � ∈�.
Therefore the uniform convergence of p

�J 	
Z to pZ for z in R implies the uniform convergence of p

�J 	
X

to pX for x in '.�+
	� since for such x’s equation (A.24) implies
∣∣pX���x �x0� �	−p

�J 	
X ���x �x0� �	

∣∣(A.34)

≤ c−1. �
−1/2∣∣pZ��� S���x�x0� �	�)�x0� �	� �	−p

�J 	
Z ��� S���x�x0� �	�)�x0� �	� �	

∣∣�

Proof of Proposition 3: First verify that (3.4) holds. By Taylor’s Theorem, we have

ℓn
(
�+ I−1/2n ��	hn

)
−ℓn��	= hnI

−1/2
n ��	ℓ̇n��	+hTn I−1/2n ��	ℓ̈n

˜��	I−1/2n ��	hn/2(A.35)

for every bounded sequence hn such that �+ I−1/2n ��	hn ∈ �, with �̃n between � and �+ I−1/2n ��	hn.

Now under Assumption 4, we have, again by Taylor’s Theorem,

∥∥I−1/2n ��	ℓ̈n��̃	I
−1/2
n ��	−Gn��	

∥∥≤
∥∥I−1/2n ��	

...
ℓ n�

˜̃�	I−1/2n ��	
∥∥×

∥∥I−1/2n ��	
∥∥(A.36)

where the first term on the right-hand side is bounded in probability as the norm of Rn���
˜̃�	, while

the second term, which arises because both �̃ and ˜̃� are in the same I 1/2n ��	-neighborhood, goes to

zero, so

ℓn
(
�+ I−1/2n ��	hn

)
−ℓn��	= hnSn��	−hTnGn��	hn/2+op�1	�(A.37)
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Therefore under (3.5) we have the LAMN structure (see, e.g., Jeganathan (1995, Definition 3,

page 837)), and under (3.10) the LABF structure (see, e.g., Jeganathan (1995, Definition 4,

page 850)).

By Taylor’s Theorem applied to the score function, ℓ̇n��	− ℓn��̂	 = −ℓ̈n��̃	��̂n− �	, i.e., Sn��	 =
I−1/2n ��	Vn��	= I−1/2n ��	Hn��̃	I

−1/2
n ��	I 1/2n ��	��̂n−�	 so

I 1/2n ��	��̂n−�	=
[
I−1/2n ��	Hn��̃	I

−1/2
n ��	

]−1
Sn��	(A.38)

and hence as in (A.36) we have

I 1/2n ��	��̂n−�	−G−1
n ��	Sn��	= op�1	�(A.39)

Now both (3.6) and (3.11) follow from the joint convergence in distribution of �Sn�Gn	 under

LAMN and LABF respectively, and the Continuous Mapping Theorem (e.g., Hall and Heyde (1980,

Theorem A.3, page 276) applied to (A.39). The efficiency statement (3.8) under LAMN follows from

applying Theorem 3 in Basawa and Scott (1983, Chapter 2.4, Theorem 3, page 60); the Normal

asymptotic variance comparison follows from Chapter 2.3, Corollary 2, page 53.

Under stationarity, the convergence in (3.5) follows from the Central Limit Theorem and the Law

of Large Numbers (see, e.g., Hall and Heyde (1980)), and the fact that E�

[
n−1Hn��	

]
= n−1in��	 =

i��	, so

Gn��	 = I−1/2n ��	Hn��	I
−1/2
n ��	= I−1/2��	

[
n−1Hn��	

]
I−1/2��	(A.40)

p→ I−1/2��	i��	I−1/2��	≡G��	�

G��	 is a nonrandom positive definite matrix provided that i��	 is (which is guaranteed by (3.2)),

and we obtain the classical result (3.9) (see, e.g., Billingsley (1961)).

I now show that the condition on Rn��� �̃	 in Assumption 4 is automatically satisfied under sta-

tionarity. In (A.15), let

b��	≡
∫ y

y0

�Y �w��	dw� fu��	≡ �-Y
(
�1−u	y0+uy+�1/2Bu� �

)
� c��	≡

∫ 1
0
fu��	du�(A.41)

q��	≡ ln
(
pY ���y �y0� �	

)
=− ln�26�	/2− �y−y0	2/2�+b��	+ ln

(
E'ec��	(

)
�(A.42)

and recall that �Y and -Y , hence fu and c, are three times differentiable in � under Assumption 2.1.

From (A.42), it follows that

q̇��	= ḃ��	+ E'ċ��	ec��	(

E'ec��	(
� q̈��	= b̈��	+ E'�c̈��	+ ċ��	2	ec��	(

E'ec��	(
− E'ċ��	ec��	(2

E'ec��	(2
�(A.43)

...
q��	=

...
b��	+

E'�
...
c ��	+3ċ��	c̈��	+ ċ��	3	ec��	(

E'ec��	(
(A.44)

− 3E'�c̈��	+ ċ��	
2	ec��	(E'ċ��	ec��	(

E'ec��	(2
+ 2E'ċ��	e

c��	(3

E'ec��	(3
�

where for simplicity I use the same notation as if the parameter vector were one-dimensional. Let

v��	 play the role of ċ��	� c̈��	+ ċ��	2, and ...c ��	+3ċ��	c̈��	+ ċ��	3 respectively and apply Hölder’s
Inequality, with p = 4/3 and r = 4, to

�E'v��	ec��	(� ≤ E'�v��	�ec��	(= E'ec��	/pec��	/q �v��	�(≤ E'ec��	(1/pE'ec��	�v��	�q(1/q �(A.45)

Under Assumption 3, the function v��	 has at most polynomial growth in w and as a result it

follows from the same calculations as in (A.19)–(A.22), and the fact that c��	≤ ) that

E'ec��	�v��	�q(1/q ≤Ge)+�y0 �+�y�(A.46)
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(where G is a constant) for all the v��	 listed above. We therefore have shown that

�E'v��	ec��	(�/E'ec��	(≤Ge)+�y0 �+�y�E'ec��	(1/p−1 ≤Ge)+�y0 �+�y�E'ec��	(−1/4. Recall next that �̇Y � �̈Y , and...
�
Y all have at most polynomial growth. Hence there exist a constant G and a finite order polynomial

P such that




�q̇��	�≤P��y���y0�	+Gea�)+�y�+�y0 �	�E'ec��	(−1/4	�

�q̈��	�≤P��y���y0�	+Gea�)+�y�+�y0 �	�E'ec��	(−1/4+E'ec��	(−1/2	�
�
...
q��	�≤P��y���y0�	+Gea�)+�y�+�y0 �	�E'ec��	(−1/4+E'ec��	(−1/2+E'ec��	(−3/4	�

(A.47)

From this it follows that

E
[
�q̇��	�

∣∣Y0 = y0
]
≤
∫ ȳ

y

{
P��y�� �y0�	+Gea�)+�y�+�y0 �	E'ec��	(−1/4

}
(A.48)

× �26�	−1/2e−�y−y0	2/2�+b��	E'ec��	( dy

is finite (the negative powers of E'ec��	( get compensated), and similarly for E'�q̈��	�
∣∣Y0 = y0( and

E'�
...
q��	�

∣∣Y0 = y0(. Hence E'�
...
q��	�( is bounded, and by the Law of Large Numbers

Rn��� �̃	= I−1/2n ��	Tn��̃	I
−1/2
n ��	

p−→ I−1/2��	E
[...
q��̃	

]
I−1/2��	(A.49)

which is a finite constant, uniformly bounded in �̃.

By using the top inequality in (A.47) and squaring it, it also follows as in (A.48) that E'�q̇��	�2
∣∣Y0 =

y0( is bounded (the highest negative power becomes �E'e
c��	(−1/4	2	 and therefore in��	 is finite.

The fact that the derivatives of ln�pX	 are bounded follows from the bounds just given for the

derivatives of ln�pY 	, and the differentiation chain rule applied to (2.9). Under Assumption 2, 1/
 is

bounded (except possibly near a 0 boundary) and the function ) defined in (2.1) and its derivatives

have at most polynomial growth. The same bounds as in (A.48) (with negative powers E'ec��	(−1/2

and E'ec��	(−3/4 similarly annihilated by E'ec��	(	 apply to the second and third derivatives of ln�pY 	

with respect to y and y0 rather than �. Thus

, ln�pX	

,�
=− 
̇



+ , ln�pY 	

,�
+ )̇�x� �	 , ln�pY 	

,y
+ )̇�x0� �	

, ln�pY 	

,y0
(A.50)

(and the next two derivatives) are bounded similarly to (A.48) using the bounds for the derivatives

of ln�pY 	 in (A.50).

Proof of Theorem 2: Step 1—Fix . > 0 and x0 ∈ R. Let r
�J 	
X ���x�x0� �	 = pX���x�x0� �	−

p
�J 	
X ���x�x0� �	,

R
�J 	
X ���x�x0��	≡ sup

�∈�

∣∣r �J 	X ���x�x0� �	
∣∣(A.51)

and also define the corresponding quantities for Y and Z. By Theorem 1, the conver-

gence of p
�J 	
Y ���y�y0� �	 to pY ���y�y0� �	 is uniform in y over DY and in � over �, and in

y0 over bounded subsets AY of Dy . Hence there exists J.���AY � �	 such that for all J ≥
J.���AY ��	M sup�∈� supy∈DY supy0∈AY �r �J 	Y ���y�y0� �	�< .. Now recall:

�pX���x�x0� �	−p
�J 	
X ���x�x0� �	� = 
�x��	−1

∣∣pY ���)�x��	�)�x0� �	� �	

−p�J 	Y ���)�x��	�)�x0� �	� �	
∣∣

and for given x0 let AY be the set of y0 described by )�x0� �	 as � varies in �. Since � is bounded and

) is continuous in � (
 is by Assumption 2.1), AY is bounded. It follows that for all J ≥ J.���AY ��	

R
�J 	
X ���x�x0��	≤ sup

�∈�

{

�x��	−1

}
× sup

�∈�
sup
y∈DY

sup
y0∈AY

∣∣r �J 	Y ���y�y0� �	
∣∣≤ sup

�∈�

{

�x��	−1

}
×.�(A.52)
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Let Q−1�x	 ≡ sup�∈��
�x��	−1�, which is finite by the boundedness of � and the continuity of


−1 in �. Then for m= 1 and m= 2, we have that
∣∣∣∣E�0

[{
R
�J 	
X ���Xt+��Xt��	

}m∣∣Xt = x0

]∣∣∣∣≤
∫ x̄

x

∣∣R�J 	
X ���x�x0��	

∣∣mpX���x�x0� �0	dx(A.53)

≤ .m
∫ x̄

x
Q−m�x	pX���x�x0� �0	dx

i.e., limJ→
E�0

[{
R
�J 	
X ���Xt+��Xt��	

}m∣∣Xt = x0
]
= 0 for m = 1�2� provided that we prove that the

two integrals
∫ x̄
x
Q−m�x	pX���x�x0� �0	dx�m= 1�2� converge.

Step 2—Bounding the integral in the right-hand side of (A.53): A difficulty only arises when DX =
�0�+
	� limx→0+ 
�x��	= 0 (otherwise Q−m�x	≤ c−m and then

∫ x̄
x
Q−m�x	pX���x�x0� �0	dx ≤ c−m).

Applying the change of variable X→Y , I will prove convergence of the integral
∫ ȳ
y
Q−m�)−1�y� �		×

pY ���y�y0� �	dy �Q−1 means 1/Q whereas )−1 represents the inverse of the function )). We need

to consider the two cases where y ≡ limx→0+ )�x��	 is either 0
+ or −
. Under Assumption 2.1, we

have that 
−1�x��	 ≤ $−1x−% for all 0< x ≤ #0 and � ∈�. For 0< x ≤ #0, we have
∫ x
0
du/
�u��	 ≤∫ x

0
$−1u−% du = $−1�1−%	−1x1−% if 0 ≤ % < 1, and therefore y = 0+ by taking the limit as x tends to

0+. Let x = )−1�y� �	, and I have just shown that for y near 0+� y ≤ $−1�1−%	−1x1−%, from which it
follows that )−1�y� �	≥ �$�1−%	y	1/�1−%	 and consequently

Q−m�)−1�y� �		≤ $−m')−1�y� �	(−m% ≤ $−m�$�1−%	y	−m%/�1−%	�(A.54)

So naturally the upper bound tends to +
 as y tends to 0+. The issue is whether this upper bound

increases faster than pY decreases as y tends to 0
+. To answer this question, we need to call upon

Assumption 3.1. For 0< y ≤ .0,

e
∫ y
.0

�Y �w��	dw = e−
∫ .0
y �Y �w��	dw ≤ e−/

∫ .0
y w−0dw =

{
.−/0 y

/ if 0= 1�
e/�0−1	.

−�0−1	
0

−/�0−1	y−�0−1	 if 0 > 1�
(A.55)

will provide an upper bound to pY for y near 0
+ (see the proof of Proposition 2; the other terms

are bounded near 0+). It is clear that if 0 > 1 the left tail of pY decays exponentially fast, while the

upper bound for

Q−m�)−1�y� �		≤ $−m')−1�y� �	(−m% ≤ $−m�$�1−%	y	−m%/�1−%	(A.56)

increases only geometrically, so the integral will converge. If 0 = 1, then the tail of pY is bounded
above by y/ and therefore the integral will converge if /≥ 2%/�1−%	. This is given by Assumption 5.
If instead %≥ 1, then

y = lim
x→0+

∫ x

+


−1�u��	du=

∫ #0

+


−1�u��	du+ lim

x→0+

∫ x

#0


−1�u��	du

where
∫ #0
+
 


−1�u��	du≤ 0

and

lim
x→0+

∫ x

#0


−1�u��	du≤ lim
x→0+

∫ x

#0

$−1u−% du= lim
x→0+

{
$−1 ln�x	 if %= 1�
−$−1�%−1	−1x−�%−1	 if % > 1�

(A.57)

which is −
, so y = −
 when % ≥ 1. In that case, we have for y near y M Q−m�)−1�y� �		 ≤
$−m')−1�y� �	(−m%. Let x = )−1�y� �	. From the same calculation as above, we have y ≤ $−1 ln�x	 if

%= 1. Thus )−1�y� �	 ≥ e$y and therefore Q−m�)−1�y� �		 ≤ $−me−m%$y . Now from (A.17), we know

that pY is bounded above by a term of the form e−3y
2/8�, so the integral of e−m%$ye−3y

2/8� converges for

y near −
. If %> 1� y≤−$−1�%−1	−1x−�%−1	 and therefore )−1�y� �	≥ �−$�%−1	y	−1/�%−1	, and thus
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Q−m�)−1�y� �		 ≤ $−m�−$�%−1	y	m%/�%−1	, which again tends to +
 as y tends to −
, but not fast
enough to overcome the decay e−3y

2/8� of pY . Hence the integral
∫ ȳ
y
Q−m�)−1�y� �		pY ���y �y0� �	dy

converges near y =−
 when %≥ 1. Therefore from (A.53) we conclude that

lim
J→


E�0

[
�R

�J 	
X ���Xt+��Xt��	�

m �Xt = x0
]
= 0 for m= 1�2�(A.58)

Step 3—The convergence of its first two moments given by (A.58) to zero imply by Chebyshev’s

Inequality that the sequence R
�J 	
X ���Xt+��Xt��	 converges to zero in probability, given Xt = x0,

that is:

lim
J→


Prob
(∣∣R�J 	

X ���Xt+��Xt��	
∣∣> .�Xt = x0� �0

)
= 0�(A.59)

By Bayes’ Rule we have

Prob
(∣∣R�J 	

X ���Xt+��Xt��	
∣∣> .��0

)
(A.60)

=
∫ +


−

Prob

(∣∣RJ
X���Xt+��Xt��	

∣∣> .
∣∣Xt = x0� �0

)
6t�x0� �0	dx0

where 6t�x0� �0	≡ ,Prob�Xt ≤ x0� �0	/,x0 denotes the unconditional (or marginal) density of Xt at

the true parameter value. Note that since we are not assuming that the process is strictly station-

ary, that density depends on t. Now since 0 ≤ Prob
(∣∣R�J 	

X ���Xt+��Xt��	
∣∣ > .�Xt = x0� �0

)
≤ 1 and∫ +


−
 6t�x0� �0	dx0 = 1 it follows from Lebesgue’s Dominated Convergence Theorem (see, e.g., Haaser
and Sullivan (1991, Theorem 6.8.6)) that

lim
J→


Prob
(∣∣R�J 	

X ���Xt+��Xt��	
∣∣> .��0

)
= 0�(A.61)

Step 4—Convergence as J →
: I have now established that

p
�J 	
X ���Xt+��Xt� �	

p−→ pX���Xt+��Xt� �	 as J →
�

Before taking the logarithm of p
�J 	
X , we need to trim it to insure that it is positive on the entire support

DX . The roots of the Hermite polynomials are such that p
�J 	
X > 0 on an interval '−cJ � cJ ( with cJ →


as J →
. Let aJ be a positive sequence converging to 0 as J →
. Define $J as a (smooth) version

of the trimming index taking value 1 if p
�J 	
X > aJ and aJ otherwise. As a consequence of the bound

(2.4), pX is tight, i.e., for every . > 0 there always exists a compact space K. ⊂ DX that contains

1−. of the mass of the density pX . As a result, trimming by $J is asymptotically irrelevant (as J →

), that is $J

p−→ 1. It follows that $Jp
�J 	
X

p−→ pX and furthermore ln'$Jp
�J 	
X ���Xt+� �Xt� �	(

p−→
ln'pX���Xt+��Xt� �	( by the continuity of the logarithm. Thus for any given n we have obtained that

ℓ
�J 	
n ��	

p−→ ℓn��	 as J →
, uniformly in �. The convergence of the respective argmax in �̂�J 	n

p−→ �̂n
as J → 
 is then an application of standard methods since ℓ

�J 	
n ��	 and ℓn��	 and their derivatives

are both continuous in � for all n and J . This proves part (i) of the Theorem.

Step 5—Convergence as n→ 
. From Step 4, a value of Jn can be chosen for each n to make

��̂�Jn	n − �̂n� arbitrarily small in probability. In particular, one can select Jn →
 such that �̂
�Jn	
n − �̂n =

op�I
−1/2
n ��0		 as n→
. This proves part (ii) of the theorem.

Proof of Proposition 4:21 Under the assumptions made on �Y , the boundaries are entrance

(see Proposition 1). The former insures stationarity of Y (see the discussion following Proposition

1). It is also the case that the scale measure sY �v��	≡ exp�−
∫ v
2�Y �u��	du� diverges exponentially

fast at each boundary. The spectrum of A��	 is discrete, from Section 4.1 in Hansen, Scheinkman,

21 I am grateful to Ernst Schaumburg for providing a key element in this proof.
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and Touzi (1998).22 That is, there exists a countable number of eigenvalues -p and eigenfunc-

tions <p� p = 0�1� � � � , forming an orthonormal basis in L2�6Y 	 such that for all functions f in
the domain of A��	, A��	 · f = ∑


p=0 -p�f �<p�<p where �·� ·� denotes the natural inner product
of L2�6Y 	. Now polynomials f and their iterates (by repeated application of the generator) retain

their polynomial growth characteristic near the boundaries; so they are all in L2�6Y 	 and satisfy

limy→y f
′�y	/sY �y� �	 = limy→ȳ f

′�y	/sY �y� �	 = 0. This follows from the exponential divergence of

sY �y� �	 near both boundaries whereas polynomials and their iterates diverge at most polynomially

(recall that under Assumption 3 �Y and its derivatives have at most polynomial growth; multiply-

ing and adding functions with polynomial growth yields a function still with polynomial growth).

Using then the Hansen, Scheinkman, and Touzi (1998, page 10) characterization of the domain of

the generator of a scalar diffusion, polynomials and their iterates are in the domain of the gen-

erator. Since f is in L2�6Y 	, it follows that f = ∑

p=0

〈
f �<p

〉
<p with

∑

p=0

〈
f �<p

〉2
<
. Moreover,

Ak��	 · f =∑

p=0 -

k
p

〈
f �<p

〉
<p. Therefore:

K∑
k=0
Ak��	 · fk!−1�k =

K∑
k=0

(

∑
p=0
-kp�f �<p�<p

)
k!−1�k =


∑
p=0

(
K∑
k=0
-kpk!−1�k

)
�f �<p�<p(A.62)

by Fubini’s Theorem. Y being a time-reversible diffusion, its eigenvalues -p are all real and negative.

Therefore �∑K
k=0 -

k
pk!−1�k� ≤ 1, with limit exp�-p�	≤ 1, and it follows that


∑
p=0

(
K∑
k=0
-kpk!−1�k

)2
�f �<p�2 ≤


∑
p=0

�f �<p�2 <
(A.63)

for all J and by the dominated convergence theorem the series
∑K

k=0A
k��	 · fk!−1�k converges as

K→
.

Proof of Corollary 2: Step 1—Part (i) follows directly from (3.9).

Step 2—Part (ii): With the notation .i� ≡Xi�− e−5�X�i−1	�, the matrices Hn��	� In��	� and G��	

of Section 3 can be calculated explicitly. It is easy to see that the terms of Hn��	 are of the form:

[
Hn��	

]
11
= a1��	n+a2��	

n∑
i=1
X2

�i−1	�+a3��	
n∑
i=1
X�i−1	�.i�+a4��	

n∑
i=1
.2i��(A.64)

[
Hn��	

]
22
= b1��	n+b2��	

n∑
i=1
.2i��(A.65)

[
Hn��	

]
12
= c2��	

n∑
i=1
X�i−1	�.i�+c3��	

n∑
i=1
.2i��(A.66)

where ak� bk, and ck are functions of the parameters �. Now E
[∑n

i=1X
2
�i−1	�

]
and E

[∑n
i=1 .

2
i�

]
are

asymptotically equivalent as n→
 to e−2n5�
 2/25�e−25�−1	 and n
 2�e−25�−1	/25 respectively, and
E
[∑n

i=1X�i−1	�.i�
]
= 0 (see White (1958) and Anderson (1959)). So to calculate an asymptotic equiv-

alent for In��	 = diag�E�'Hn��	(� we only need a2��	 = 25�2e−25�/
 2�e−25�− 1	, b1��	 = −1/2
 4�

22 Natural boundaries do not necessarily lead to a discrete spectrum (for example, in some instances

a mixed discrete-continuous spectrum results). A stationary Ornstein-Uhlenbeck process (i.e., one

with positive mean reversion) is an example of a process with natural boundaries and a discrete

spectrum. What Proposition 4 shows is that having a discrete spectrum is a sufficient condition for

the convergence of the series (4.3).
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and b2��	 = 5/2
 6�e−25�−1	 to obtain that 'In��	(11 is equivalent to e−2�n+1	5��2/�e−25�−1	
2
while

'In��	(22 = n/2
 4. Finally,

Gn��	=
(

'Hn��	(11/'In��	(11 'Hn��	(12/
√
'In��	(11'In��	(22

'Hn��	(12/
√
'In��	(11'In��	(22 'Hn��	(22/'In��	(22

)
p−→G��	

=
(
P2'1( 0

0 1

)
�

(A.67)

because �25�1− e−25�	/
 2e−2n5��∑n
i=1X

2
�i−1	�

p−→ P2'1( = N�0�1	2, while
∑n

i=1 .
2
i� = Op�n

1/2	 and∑n
i=1X�i−1	�.i� = Op�e

−n5�	. Therefore (5.2) follows, which is a non-Gaussian distribution under

deterministic scaling by the asymptotic equivalent of
√
'In��	(11. Since

Prob
(
'G−1/2(11×N�0�1	≤z

)
=Prob

(
N�0�1	≤z'G1/2(11

)
=
∫ +


0

∫ z
√
g

−


e−n
2/2

√
26

e−g/2√
26g

dndg(A.68)

yields by differentiation with respect to z the density 1/6�1+z2	� 'G−1/2(11×N�0�1	 is the Cauchy
distribution. Alternatively, we obtain a Gaussian distribution under random scaling by the asymptotic

equivalent of
√
'Hn��	(11:

√
25�2

∑n
i=1X

2
�i−1	�


 2�e25�−1	 �5̂n−5	
d−→N�0�1	�(A.69)

Step 3—Part (iii): 'In��0	(11 is asymptotically equivalent to �

−2E

[∑n
i=1X

2
�i−1	�

]
, i.e., to n2�2/2,

when 5= 0. Further,

'Sn��0	(1 = 'In��0	(
−1/2
11

{
2−1n�−
−2

n∑
i=1
X�i−1	�.i�−2−1
−2

n∑
i=1
.2i�

}
�(A.70)

'Gn��0	(11 = 'In��0	(
−1
11

{
6−1n�2+�
−2

n∑
i=1
X2

�i−1	�+�
−2
n∑
i=1
X�i−1	�.i�+�3−1
−2

n∑
i=1
.2i�

}
�(A.71)

Thus
(
'Sn��0	(1� 'Gn��0	(11

) d−→
(
2−1/2�1−W 2

1 	�2
∫ 1
0
W 2

J dJ
)
since from White (1958):

(∑n
i=1X�i−1	�.i�

2n
 2�
�

∑n
i=1X

2
�i−1	�

n2
 2�

)
d−→
(
W 2
1 −1�

∫ 1
0
W 2

J dJ

)
�(A.72)

And (5.3) follows from (3.11) with MJ =WJ and 2
∫ 1
0
WJ dWJ =

∫ 1
0
dW 2

J −
∫ 1
0
dJ =W 2

1 − 1. In this
case the convergence Gn →G occurs in distribution but not in probability (which as discussed in the

text would have been sufficient to insure an LAMN likelihood ratio structure). In both nonstationary

cases �5 ≤ 0	, Assumption 4, including the boundedness condition on Rn, is verified explicitly from

the exact expression of the likelihood function (whose second and third derivatives diverge at the

same rate: differentiate once more with respect to � the expressions (A.64)–(A.66)). Finally, when

5≤ 0 but not when 5 > 0, the asymptotic distribution of the diffusion coefficient 
 2 is unaffected by
the estimation of the drift, since the convergence rate of the latter is faster when 5≤ 0.
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