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Abstract

The Dirichlet process mixtures (DPM) can automatically in-
fer the model complexity from data. Hence it has attracted
significant attention recently, and is widely used for model
selection and clustering. As a generative model, it generally
requires prior base distribution to learn component parameters
by maximizing posterior probability. In contrast, discrimina-
tive classifiers model the conditional probability directly, and
have yielded better results than generative classifiers. In this
paper, we propose a maximum margin Dirichlet process mix-
ture for clustering, which is different from the traditional DPM
for parameter modeling. Our model takes a discriminative clus-
tering approach, by maximizing a conditional likelihood to
estimate parameters. In particular, we take a EM-like algo-
rithm by leveraging Gibbs sampling algorithm for inference,
which in turn can be perfectly embedded in the online maxi-
mum margin learning procedure to update model parameters.
We test our model and show comparative results over the tra-
ditional DPM and other nonparametric clustering approaches.

Introduction

Bayesian nonparametric models (Antoniak 1974; Sethu-
raman and Tiwari 1981; Rasmussen 2000; Nguyen et al.
2014) have received a lot of attention in the machine learn-
ing community. The attractive property of these models is
that the number of components can be learned automati-
cally from data, without being specified in advance. One
of the most popular nonparametric models for clustering
is Dirichlet process mixture model (DPM) (Neal 2000;
Teh 2010), which has been widely used on character recog-
nition and document categorization (Blei and Jordan 2005;
Kurihara, Welling, and Teh 2007). For DPM, the prior im-
posed by Dirichlet process (DP) is defined by two parameters:
the concentration parameter α and the base measure G0 re-
spectively. In a DP mixture model, both two parameters heav-
ily influence the model selection and clustering performance.
In general, the concentration parameter can be learned from
the data adaptively (Gilks and Wild 1992) and the component
parameters can be estimated by maximizing posterior proba-
bility (Rasmussen 2000). However, it remains challenging to
estimate these parameters due to the appearance of intractable
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normalizing constants in the likelihood. One possible trend
is to either assume conjugate priors or employ approximate
methods (Blei and Jordan 2005) to accelerate the inference.
Another trend that catches great attention recently is to learn
the parameters with the discriminative models (Vapnik 1995).
An important question is whether it is possible to learn a dis-
criminative model for nonparametric clustering; and whether
the modeling performance is weakened without conjugate
prior assumption.

In this work, we learn component parameters in a dis-
criminative manner, instead of the generative method used
in the DPM model. We prefer discriminative models be-
cause: (1) we can circumvent the intractable inference ef-
fectively, that is usually a challenge in DPM; (2) discrimi-
native models can greatly reduce the parameter space. For
example, the DPM with Gaussian mixtures need to store
and update covariance matrix, which is very expensive in
high dimension space; (3) it has been demonstrated that dis-
criminative models generally yield higher accuracy than gen-
erative approaches (Nigam, Lafferty, and McCallum 1999;
Jebara and Pentland 1998; Lafferty, McCallum, and Pereira
2001). Furthermore, maximum margin learning demon-
strates promising results on both classification (Vapnik 1995;
Tsochantaridis et al. 2005) and clustering problems (Xu et
al. 2005; Chen, Zhu, and Zhang 2014). Recent advances
in online maximum margin learning (Crammer et al. 2006)
make it possible to embed Gibbs sampling inference into the
discriminative model.

Hence, we propose a maximum margin Dirichlet process
mixture model (MMDPM), which inherits the advantages of
online maximum margin learning and nonparametric cluster-
ing. As a discriminative model, we directly optimize the con-
ditional model to learn component parameters. More specifi-
cally, we use Gibbs sampling to infer each instance’s label,
and in turn we use it to learn model parameters and do the
model selection in an online fashion. Our contributions can
be summed up as follows:
• optimize a conditional model, instead of the joint likeli-

hood as in DPM model;
• learn model parameters online, via Gibbs sampling and

maximum margin learning in an unified framework;
• yield higher clustering accuracy with fast speed.
We test our model on both synthetic and real datasets, and
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show comparative results over DPM and other nonparametric
clustering methods.

Maximum margin DPM

Our maximum margin DPM (MMDPM) extends the gen-
erative Dirichlet process mixture model (Ferguson 1973)
by maximizing the conditional likelihood, and learns these
parameters online. We start with Gaussian mixture model
formulation and then take the limit as the number of mix-
ture components approaches infinity to obtain DPM. Then,
we introduce our model, with EM-like algorithm for param-
eter estimation via alternating Gibbs sampling and online
maximum margin learning. Throughout the paper, vector
quantities are written in bold. The index i always indicates
observations, i = {1, ..., n}, index k runs over components,
k = {1, ..,K}, and index t indicates iterations. Generally,
variables that play no role in conditional distributions are
dropped from the condition for simplicity.

Dirichlet process mixture model

The Dirichlet process (DP) (Ferguson 1973) is parameterized
by a base distribution G0 and a positive scaling parameter α.
A DPM model can be constructed as a limit of a parametric
mixture model (Neal 2000; Blei and Jordan 2005) with the
DP prior. For instance, we can generate X = {xi}ni=1 with
symmetric Dirichlet prior:

π|α ∼ Dir(α/K, ..., α/K)
zi|π ∼ Discrete(π1, ..., πK)
θk ∼ G0(β)
xi|zi, {θk}Kk=1 ∼ p(xi|θzi)

(1)

In this model, each datum xi is generated by sampling one
of K clusters firstly, say, cluster k, according to the multino-
mial distribution that is parameterized by π, and then sam-
pling from the distribution of this cluster p(xi|θzi) that is
parameterized by θk. In this equation, an indicator variable
zi ∈ {1, ...,K} are stochastic variables which encodes the
class (or mixture component) to which observation xi be-
longs. The mixture weight π is given a symmetric Dirichlet
prior with a hyperparameter α and the cluster parameters
{θk}Kk=1 are given with a common prior distribution G0(β)
with parameter β.

Fixing all but a single indicator zi, we can obtain the
conditional probability for each individual indicator

p(zi = k|z−i, α) =

∫
π

p(zi|π)p(π|α) = n−i,k + α/K

n− 1 + α
(2)

where the subscript −i indicates all indices except for i, and
n−i,k is the number of data points, excluding xi, that are
associated with class k. Let K go to infinity, the conditional
distribution of the indicator variables reaches the following
limits (Görür and Rasmussen 2010):

p(zi|z−i, α) =

⎧⎪⎨
⎪⎩

p(zi = k|z−i, α) =
n−i,k

n − 1 + α

p(zi �= zi′ for all i �= i
′|z−i, α) =

α

n − 1 + α

(3)

where i′ in the right hand side of Eq. (3) is the set of existed
cluster indicators. In other words, the prior for assigning
instance xi to either an existing component k or to a new
one cluster conditioned on the other component assignments
(zi) is given by Chinese restaurant process (Blei and Jordan
2005). For DPM, we need to specify the base distribution G0

to complete the model. Note that G0 specifies the prior on
the component parameters {θk}Kk=1.

In the following part, we introduce our discriminative
model with Gibbs sampling for inference and maximum mar-
gin learning for parameter estimation.

Gibbs sampling

Given the data points X = {xi}ni=1 (xi ∈ R
d) and their

cluster indicators Z = {zi}ni=1, the Gibbs sampling involves
iterations that alternately draws from conditional probability
while keeping other variables fixed. Recall that for each in-
dicator variable zi, we can derive its conditional posterior in
DPM as follows:

p(zi = k|z−i,xi, {θk}Kk=1, α, β) (4)

= p(zi = k|xi, z−i, {θk}Kk=1) (5)

∝ p(zi = k|z−i, {θk}Kk=1)p(xi|zi = k, {θk}Kk=1) (6)
= p(zi = k|z−i, α)p(xi|θk) (7)

where p(zi = k|z−i, α) is determined by Eq. (3), and
p(xi|θk) is the likelihood for the current observation xi. To
estimate θk, we need to maximize the conditional posterior,
which depends on observations belonging to this cluster and
prior G0(β). If the current set for the cluster k, can be de-
noted as xk, with the number of elements nk = |xk|, then
DPM learns θk by maximizing the posterior:

p(θk|xk, β) = p(θk|β)
|xk|∏
i=1

p(xki
|θk) (8)

For this model, a conjugate base distribution may exist, which
can provide guarantee that the posterior probability can be
computed in closed form and learn the model parameters
explicitly. However, in general it is hard to choose an ap-
propriate prior base distribution, i.e., often chosen based on
mathematical and convenient concern. Moreover, it has the
unappealing property of prior dependency, and cannot re-
flect the observed data distribution in real scenarios, i.e., the
observations obey a certain shape in Fig. 2.

In our conditional likelihood model, we replace the gener-
ative model in DPM with our discriminative SVM classifier.
More specifically, we relax the prior restriction G0(β) and
learn the component parameters {θk}Kk=1 in a discriminative
manner. Thus, we define the following likelihood for instance
xi in Eq. (7):

p(xi|θk) ∝ exp(xT
i θk − λ||θk||2) (9)

where λ is a regularization constant to control weights
between the two terms above. By default, the prediction
function should be proportional to argmaxk(x

T
i θk), for

k ∈ {1, ...,K}. In our likelihood definition, we also mi-
nus λ||θk||2 in Eq. (9), which can keep the maximum margin
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beneficial properties in the model to separate clusters as far
away as possible. Moreover, it can get rid of trivial clustering
results (Hoai and Zisserman 2013). Note that the seminal
work (Platt 1999) basically fits a sigmoid function over SVM
decision values (e.g. xT

i θk) to scale it to the range of [0, 1],
which can then be interpreted as a kind of probability. Com-
pared to (Platt 1999), we maximize (xT

i θk) and minimize
λ||θk||2 simultaneously in Eq. (9), so our method can keep
larger margin between clusters. Another understanding for
the above likelihood is that Eq. (9) satisfies the general form
of exponential families, which are functions solely of the
chosen sufficient statistics (Sudderth 2006). Thus, such prob-
ability in Eq. (9) makes our model general enough to handle
real applications.

Taking the similar form as in Eq. (7), we get the final Gibbs
sampling strategy for our MMDPM model:

p(zi = k|z−i,xi, {θk}Kk=1, α, λ)

∝ p(zi = k|z−i, α)exp(x
T
i θk − λ||θk||2) (10)

we will introduce to learn component parameters {θk}Kk=1 in
the following Sec . For the new created cluster, we generate
θK+1 that is perpendicular to all the previous θk, for k ∈
{1, ...,K} (Xiao, Zhou, and Wu 2011; Hoai and Zisserman
2013). Basically, we random generate a vector θ ∈ R

d, and
then we project it on the weight vector θk, k ∈ {1, ..,K},
and compute the residual vectors:

θK+1 := θ − (θT
k θ)θk (11)

The residual is the component of θK+1 that is perpendicular
to θk, for k ∈ {1, ...,K}.

For the model we consider, we leverage MCMC algorithms
for inference on the model discussed above by sampling each
variable from posterior conditional probability given in Eq.
(10) with others fixed in an alternative way. In addition, we
update α using Adaptive Rejection Sampling (ARS) (Gilks
and Wild 1992) as suggested in (Rasmussen 2000).

Maximum margin learning

Given the clustering label for each instance, we can use K-
means to estimate the component parameters. Unfortunately,
K-means cannot keep an larger margin properties between
clusters. In our work, we estimate the component parameters
under the maximum margin framework. More specifically,
we use the variant of the passive aggressive algorithm (PA)
(Crammer et al. 2006) to learn component parameters. Basi-
cally, our online algorithm treats the labeling inference with
Gibbs sampling as groundtruth. Then, for any instance in
a sequential manner, it infers an outcome with the current
model. If the prediction mismatches its feedback, then the on-
line algorithm update its model under the maximum margin
framework, presumably improving the chances of making an
accurate prediction on subsequent rounds.

We denote the instance presented to the algorithm on
round t by xt ∈ R

d, which is associated with a unique label
zt ∈ {1, ...,K}. Note that the label zt is determined by the
above Gibbs sampling algorithm in Eq. (10). Let’s define
w = [θ1, ...,θK ] is a parameter vector with K clusters (by
concatenating all the parameters {θk}Kk=1 into w, that means

wzt is zt-th block in w, or says wzt = θzt), and Φ(xt, zt)
is a feature vector relating input xt and output zt, which is
composed of K blocks, and all blocks but the zt-th blocks
of are set to be the zero vector while the zt-th block is set
to be xt. We denote by wt the weight vector used by the
algorithm on round t, and refer to the term γ(wt; (xt, zt)) =
wt · Φ(xt, zt) − wt · Φ(xt, ẑt) as the (signed) margin at-
tained on round t, where ẑt = maxz∈[1,K] wt ·Φ(xt, z). In
our work, we use hinge-loss function, which is defined by
the following,

�(w; (xt, zt))

=

{
0 if γ(w; (xt, zt)) ≥ 1
1− γ(w; (xt, zt)) otherwise

(12)

Following the passive aggressive (PA) algorithm (Crammer
et al. 2006), we optimize the objective function:

wt+1 = argmin
w

1

2
||w −wt||2 + Cξ

s.t. �(w; (xt, zt)) ≤ ξ

(13)

where the L2 norm of w on the right hand size can be thought
as Gaussian prior in SVM classifier. If there’s loss, then the
updates of PA-1 has the following closed form

wzt
t+1 = wzt

t + τtxt,

wẑt
t+1 = wẑt

t − τtxt,
(14)

where τt = min{C, �(wt;(xt,zt))
||xt||2 }. Note that the Gibbs sam-

pling step can decide the indicator variable zt for xt, we think
it is the ground truth assignment for xt, and then we update
our parameter w using the above Eq. (14).
Parameter space analysis: if the data dimension is d, and
the current cluster number is K, then w need d×K in our
model. While for the DPM model, if we assume a Gaussian
distribution, we need to update and store d2 ×K for covari-
ance matrix, and that is computationally expensive for high
dimensional data. Even for the diagonal covariance matrix, it
still requires 2d×K to store both mean and covariance.
Time complexity analysis: In the algorithm, we do both
inference and learning, so it needs O(n× d2 ×K) in each
iteration. Note that K is changing in each iteration. While for
the DPM model, the component parameters updating requires
Cholesky decomposition in most cases. Thus, our online
updating on the component parameters is more efficient than
the DPM model.
Model coherence: Given component parameters {θk}Kk=1
estimated from maximum margin learning, we can predict
the likelihood for each xt as p(zi|xt;θk) ∝ exp(xT

i θk). If
we want to keep a large margin between different clusters,
then we can introduce a prior {θk}Kk=1 and finally get the
posterior probability in Eq. (9). Note that Eq. (9) is close to
the probabilistic formula of K-means.

Algorithm

We list the pseudo code below in Algorithm 1 and imple-
mented it in Matlab. Our method takes an EM-like algorithm
to estimate model parameters: infer the label of the current
instance with Gibbs sampling; and update model parameters
given the label for that instance.
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Algorithm 1 Maximum margin Dirichlet process model
Input: sequential training data X , C, λ, iterations T
Output: w, and Z
1: Initialize w1, labels Z for training data, and prior α;
2: for i = 1; i < n; i++ do
3: xi = xi −mean(X );
4: end for
5: for t = 1 to T do
6: Permutate X ;
7: for i = 1; i < n; i++ do
8: Select an instance (xi, zi), and update nzi = nzi − 1;
9: Eliminate empty clusters (if there’s empty cluster, then

K = K − 1);
10: Create a new cluster θK+1 using Eq. (11), and update the

number of clusters K = K + 1;
11: for j = 1; j <= K; j ++ do
12: Calculate posterior probability in Eq. (10) for each

cluster;
13: end for
14: Sample its assignment according to the posterior proba-

bility in Eq. (10);
15: Update its assignment ẑi and nẑi = nẑi + 1;
16: Update wt using maximum margin clustering algorithm

in Eq. (14);
17: end for
18: Update α with ARS algorithm
19: end for
20: Return w and Z;

Experiments

In this section, we conduct empirical studies on both syn-
thetic and real datasets to evaluate the performance of our
method. We also compare the computational cost between
our model and baselines when we vary the number of data
samples and dimensionality.
Experiment setup: For both DPM and MMDPM, we approx-
imated the infinite vector of the mixing proportions using a
finite symmetric Dirichlet prior. For DPM, we assume the dis-
tributions generating the instances of each component were
Gaussians (mean and precision matrix), and assume β obey
normal-inverse Wishart prior for its mean and precision. In
our MMDPM setting, we initialize λ = 3 in the conditional
model in Eq. (9) if it is not specified, and C = 0.01 in the
passive aggressive updating algorithm in Eq. (14). In general,
a larger λ leads to a larger number of clusters. As for the
number of iterations, we set T = 100. The initial number of
components was set to 1 and the concentration parameter α
was set to 4 in all experiments. We implemented our algo-
rithm with Matlab, and all experiments were conducted on
Intel(R) Core(TM) i7-3770K CPU running at 3.50GHz with
32 GB of RAM.
Evaluation measure: The evaluation of unsupervised clus-
tering against a gold standard is not straightforward because
the clusters found by the algorithm are not associated with
the classes in the gold standard. In our experiments, we use
the widely used F-measure (Achtert et al. 2012), V-measure
(Rosenberg and Hirschberg 2007) and adjusted Rand Index
(Hubert and Arabie 1985; Rand 1971) to evaluate the cluster-
ing results.

0 5 10 15
14

16

18

20

22

24

26

28
ground truth

0 5 10 15
14

16

18

20

22

24

26

28
DPM

0 5 10 15
14

16

18

20

22

24

26

28
MMDPM

Figure 1: The experimental comparison on the Frame dataset.
Different colors and shapes indicate different clusters. The
left is the ground truth. The middle is the result (F-score:
0.43) using DPM clustering; the right is our method’s result
(F-score: 0.60). It demonstrates that our method can get better
clustering performance here.

Dataset: The synthetic datasets are composed of 3 toy
datasets (available on line1): Jain’s toy dataset (Jain 2007),
Aggregation (Gionis, Mannila, and Tsaparas 2007) and
Frame dataset (Fu and Medico 2007). For the real datasets,
we test our method on Iris, Wine, Glass and Wdbc datasets,
which are available from the UCI Machine Learning Data
Repository2. We also test our method on MNIST digits3, 20
newsgroup dataset4 and the Reuters data set.
Experimental results: We compare our method to the stan-
dard DPM. For the dataset with Gaussian distribution, DPM
can get better results. For example, DPM can get very good
performance on Aggregation dataset in Table 1. While for
other datasets with no Gaussian distribution, our method out-
performs DPM. We also show the clustering results on these
2-dimension toy datasets for visual understanding. The Frame
dataset is non-linear separable, see the left image in Fig. 1.
The DPM can cluster the points well in an local view (i.e., it
divides the toy data into 12 compact clusters), see the middle
in Fig. 1, but it cannot separate these two semantic clusters
well. Jain’s toy dataset has 2 clusters with spiral shape, see
the left image in Fig. 2. Similarly, DPM can partition the
points well in an local view into 6 compact clusters, but it
cannot separate these two semantic clusters well. For both
cases, our method can get better performance here even for
these non linear separable toy datasets.

We also compare our method to the baseline on the real
UCI datasets. We choose four widely used datasets from
UCI repository: Iris, Glass, Wdbc and Wine. Note that these
datasets have different dimensions and different number of
clusters, which are very good to test model selection perfor-
mance for our method. The experimental results in Table 1
demonstrate that our method can get better performance on
all four datasets with F-measure, and outperform the base-
line on three of the four datasets (Wdbc, Iris and Wine) with

1http://cs.joensuu.fi/sipu/datasets/
2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3http://yann.lecun.com/exdb/mnist/
4http://people.csail.mit.edu/jrennie/20Newsgroups
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Figure 2: The experimental comparison on Jain’ toy dataset.
The left is the ground truth; the middle is the result (F-score:
0.590) of DPM; the right is our method’s result (F-score:
0.73). Considering it is non-linear separable, our method can
get better performance here.

Dataset DPM MMDPM
F-score V-score F-score V-score

Jain 0.59 0.46 0.73 0.41
Aggregation 0.91 0.90 0.79 0.75
Frame 0.43 0.41 0.60 0.29
Wdbc 0.43 0.26 0.85 0.57
Glass 0.49 0.43 0.51 0.38
Iris 0.71 0.66 0.75 0.68
Wine 0.36 0.42 0.68 0.48
MNIST 0.18 0.06 0.368 0.389

Table 1: The experimental comparison on synthetical datasets
(the first three rows), UCI datasets (the middle four rows) and
MNIST digits. Our method outperforms DPM on Jain and
Frame datasets, except on Aggregation dataset. For the real
UCI datasets, Our method outperform DPM on all the four
datasets, except V-score on Glass dataset. It demonstrates
that our method is significantly better than DPM.

V-measure. Refer to Table 1 for more details.
Character clustering MNIST digits consists of 28×28-size
images of hand-written digits from ‘0’ through ‘9’. We pre-
process the images with PCA, reducing them into 100 dimen-
sions, so as to retain about 90% of the total variance. Then,
we randomly sample 2000 examples from 60000 training
images for clustering analysis. The quantitative comparison
is shown in Table 1, which demonstrates that our method
yields better clustering results. We also analyze the time com-
plexity. The result in Fig. 3(a) shows that our online method
is almost linear in the number of training samples, compared
to variational Bayesian DPM (Blei and Jordan 2005).
Newsgroup categorization The 20 Newsgroups dataset is a
collection of approximately 18,846 newsgroup documents,
which are divided into nearly across 20 different topics. The
20 Newsgroups dataset has total 61188 vocabularies, and
each document is represented as a histogram by words count-
ing. In all the following experiments, we keep the same pa-
rameters, except setting λ = 0.2.

Firstly, we selected the most frequent 250 words as the
codebook for feature representation. And then we sampled
10000 examples, and projected them into 250 dimensions.
We did clustering analysis on the projected examples (re-
peat 10 times to calculate the average), and compared it to
widely used baselines, including K-means, Gaussian mixture
model (GMM), Spectral clustering and DPM. For GMM and

spectral clustering, we set the number of clusters equal to 20
(ground truth), and their results in a sense can be thought as
the upper bound. The results in Table 2 shows our method
outperforms baselines with F-measure. As for V-measure,
our model also yield comparative result, which is better than
spectral clustering and DPM.

In order to test how the accuracy changes with data dimen-
sionality, we rank vocabularies according to their frequency,
and vary the codebook size by selecting the most frequent
words to encode each document into histogram. The time
complexity comparison between our method and variational
DPM is shown in Fig. 3(b). The accuracy comparison results
between variational Bayes DPM and our method is shown in
Fig. 3(c) and (d). It demonstrates that our method yield better
results compared to DPM.

We take another experiment on the Reuters data set. In the
experiment, we used the Reuters215785, which has the total
8293 documents with 18933 dimensional features for each
document, belonging to 65 categories. Because the Reuters
dataset has high dimension, we first projected it into 100
dimensions with PCA to keep 95% of the total variance.
Then we normalize the data and do the clustering analysis on
the projected data. Note that the clustering results of other
baselines is evaluated on the same PCA projected data. As
for the parameter setting, we keep the same parameters (e.g.
α = 4), except setting λ = 80. The clustering performance
is shown in Table 3 and demonstrates that our method is
significantly better than other methods on data clustering
task.

Discussion

Recall that the DPM model maximizes the joint model

P (X , z, {θk}Kk=1) ∝ p(z)

N∏
i=1

p(xi|θzi)

K∏
k=1

p(θk|β) (15)

where p(θk|β) is defined by the base measure G0(β), and

p(z) =
Γ(α)

∏K
k=1 Γ(nk+α/K)

Γ(n+α)Γ(α/K)K
for the symmetric Dirichlet

prior. As for our discriminative model, we maximize the
following conditional likelihood:

P (z, {θk}Kk=1|X ) ∝ p(z)

[ N∏
i=1

p(xi|θzi)

] K∏
k=1

p(θk) (16)

where p(z) has the same definition as in DPM above, while
we have no prior base measure restriction on {θk}Kk=1 in
our discriminative model. p(θk) for k = {1, ...,K} can be
thought as the Gaussian prior in SVM classifier in Eq. (13).
The essential difference between our model and DPM is that
our approach is a discriminative model, without modeling
p(X ). And, we maximize a conditional probability for pa-
rameter estimation, instead of joint distribution as in DPM.
Just as the conditional random fields model (CRF) (Lafferty,
McCallum, and Pereira 2001), we propose a similar discrim-
inative model, which do not need to tune prior assumption

5http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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Figure 3: How complexity and accuracy change with the number of training data and dimensionality. (a) The time comparison
between variational bayes DPM and our method on a subset MNIST dataset with 2000 training examples. (b) Given the 2000
training samples from News 20 group, it shows how the time complexity changes with data dimensionality. (c) and (d) show how
F-score and V-score change with data dimensionality on 20 news dataset.

Average accuracy

Measures Methods

K-means GMM Spectral DPM DPVC
(Knowles, Palla, and Ghahramani 2012) MMDPM

F-score 0.088 0.088 0.095 0.094 0.09 0.10

V-score 0.100 0.104 0.061 0.049 0.02 0.066

Table 2: The experimental comparison on a subset of News 20 dataset, with total 10000 training examples and 250 codebooks.
We compare the performances between our method and others baselines. It demonstrates that our method outperforms DPM
significantly.

Average accuracy

Measures Methods
K-means GMM Spectral DPM DPVC(Knowles, Palla, and Ghahramani 2012) MMDPM

F-score 0.146 0.173 0.09 0.484 0.32 0.507

V-score 0.457 0.464 0.432 0.472 0.395 0.335
Adjusted Rand Index 0.100 0.123 0.062 0.383 0.211 0.416

Table 3: The experimental comparison on the Reuters dataset. We compare the performances between our method and others
baselines. It demonstrates that our method outperforms DPM and DPVC significantly with adjusted rand index and v-measure.

for {θk}Kk=1 constricted by G0(β) in DPM. Removing con-
straints reduces the statistical bias, and fit the model param-
eters well to the training data. In addition, the difficulty in
modeling Eq. (15) is that it often contains many highly de-
pendent features, which are difficult to model (Minka 2003;
Sutton and Mccallum 2006).

Related work

Dirichlet process mixture model (DPM) adopts DP prior to
determine model complexity and learn the mixture distribu-
tions of data automatically. Considering the advantages of
DPM, it has been extensively used for model selection and
clustering (Antoniak 1974; Sethuraman and Tiwari 1981;
Neal 2000; Rasmussen 2000; Blei and Jordan 2005). In gen-
eral, the conjugate prior assumption is preferred for math-
ematical and computational concern, otherwise it is not
tractable to compute posterior probability.

One trend is to use DPM in different research fields. Vla-
chos et al. had applied DPM for verb clustering on natural
language processing problem (Vlachos, Ghahramani, and Ko-
rhonen 2008). How to evaluate the influence of the base dis-
tribution to DPM is also explored in (Görür and Rasmussen

2010). Another direction is to speed up the inference in DPM.
Markov chain Monte Carlo (MCMC) has been widely used
for DPM inference, see (Neal 2000) for a survey of MCMC
inference procedures for DP mixture models. Except MCMC,
variational Bayesian approaches (Blei and Jordan 2005;
Kurihara, Welling, and Teh 2007) are also proposed. In addi-
tion, many DPM variants have also been proposed recently.
For example, (Shahbaba, Neal, and Ghahramani 2009) intro-
duced a new nonlinear model for classification, which mod-
els the joint distribution of response variable and covariates,
nonparametrically using DPM. Recently, (Hannah, Blei, and
Powell 2011) proposed Dirichlet Process mixtures of Gen-
eralized Linear Models (DP-GLM), a new class of methods
for nonparametric regression. (Zhang, Dai, and Jordan 2010)
have derived a new Bayesian nonparametric kernel regression
method based on the matrix-variate Dirichlet process mix-
ture prior and introduced an MCMC algorithm for inference
and prediction. Recently, Knowles et al. proposed a Dirichlet
process variable clustering (DPVC) method by leveraging
the correlation between variables and formulating the corre-
sponding probabilistic model for non-parametric clustering
(Knowles, Palla, and Ghahramani 2012). In general, typical
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clustering algorithms, such as K-means and GMM (Chen et
al. 2009), consider how similar entities (in terms of Euclidean
distance) rather how correlated they are. Thus, DPVC can
discover block diagonal covariance structures in data, and
partition observed variables into sets of highly correlated
variables for clustering.

On the other hand, much work has focused on maximum
margin clustering and demonstrate promising results (Xu et
al. 2005; Hoai and Zisserman 2013). However, these methods
still need to specify the number of clusters.

Conclusion
In this paper, we propose a maximum margin Dirichlet pro-
cess mixture model (MMDPM) for clustering. We infer indi-
cator variables with Gibbs sampling, which can be perfectly
embedded in our online maximum margin framework for
parameters learning. In a sense, our conditional model can
fit the dataset well and get better decision boundaries for
clustering problem. Moreover, our model can greatly reduce
the space storage and the learning time, compared to DPM.
To the best of our knowledge, this is the first work to learn the
model parameters for nonparametric clustering in an discrimi-
native manner. The experimental results show the advantages
of our method over the traditional DPM model.
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