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Matching theory is one of the most forefront issues of graph theory. Based on the largest geometric multiplicity, we develop
an e�cient approach to identify maximum matchings in a digraph. For a given digraph, it has been proved that the number
of maximum matched nodes has close relationship with the largest geometric multiplicity of the transpose of the adjacency
matrix. Moreover, through fundamental column transformations, we can obtain the matched nodes and related matching edges.
In particular, when a digraph contains a cycle factor, the largest geometric multiplicity is equal to one. In this case, the maximum
matching is a perfect matching and each node in the digraph is a matched node. 
e method is validated by an example.

1. Introduction

Matching theory is one of the fundamental branches of graph
theory. Historically, matching not only can be used for us
to understand the structure of a graph which plays a crucial
role but also has been related to a wide range of important
problems in theoretical aspects, such as combinatorial opti-
mization, crystal physics, and theoretical computer science
research. In addition, matching theory is also closely linked
with practical problems in work arrangements, resource allo-
cation, information transmission, network �ow, transporta-
tion and postservice, and so forth. To solve these problems
we need to seek the maximum matching which is one of the
core issues in matching theory [1–3]. Not only is it interesting
by itself, but it can also be used to solve an army of other
problems in combinatorial optimization [4–6]. 
erefore,
the work of the maximum matching theory has profound
theoretical signi�cance and wide application background.


e maximum matching in an undirected graph is a
maximum set of edges without common nodes. 
e book by
Burkard et al. [7] reviewed thoroughly the bipartite matching
problem. 
e popular classic method using the Hopcro�-
Karp algorithm needs the determination of the bipartite
equivalent graph. For arbitrary graphs, it is complicated to
�nd a maximum matching and Edmonds and Karp [8] pre-
sented a polynomial algorithm. It was a major breakthrough

and innovation to �nd a maximum matching. Additionally,
on this basis, a multitude of algorithms are given in the
literatures [9–13]. Subsequently, thework [14] gave a fewmax-
imum matching problems such as the maximum-cardinality
matching problem and the minimum cost perfect matching
problem. Later, Dobson et al. [15] developed a new kind
of maximum matching graphs. 
ey pointed out maximum
matchings of special graphs such as trees, cycles, or complete
graphs. Reference [16] presented minimization of the Lapla-
cian spectral radius of trees with given matching number.
Moreover, Duarte et al. [17] established amethod tomaintain
maximum matching under addition and deletion of edges in
a graph. Even et al. [18] then proposed amethod of computing
rough estimate maximum-cardinality matchings and esti-
mation maximum weight matchings based on deterministic
distributed algorithms. 
e work in [19] introduced an algo-
rithm to calculate maximummatchings in a bipartite graph.

However, the abovementioned study was focused on
undirected graphs. Relatively speaking, for the maximum
matching of digraphs only a little research has been con-
ducted. Additionally, the solution of the matching is mainly
based on the bipartite graph method, while the solution of
the bipartite graph itself remains a tough issue. So we are still
in lack of mature theories and algorithms. 
erefore, we put
forward a new method to identify maximum matchings in
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Figure 1: A digraph with six nodes and six edges.

a digraph. 
e main idea of the method stems from two
conditions of controllability of complex networks [20, 21].

e process of the method is simple, yet e�ective. In a sense,
the work of this paper has developed and enriched matching
theory.


e rest of the paper is organized as follows. Section 2
introduces the basic notations and de�nitions used in this
paper. In Section 3, the technique in the case of a digraph is
presented. 
e �rst part of Section 3 describes the technical
concept based on minimum input theorem [20] and the
largest geometric multiplicity theorem [21], and the second
part of it introduces the algorithm steps. Section 4 presents
an example to validate the method and Section 5 gives the
conclusion and future work.

2. Notations and Preliminaries

For integrity, we give a few notations and de�nitions in this
section.

Let �� be a digraph which consists of a nonempty �nite
set � of elements called nodes and a �nite set � of ordered
pairs of di�erent nodes called edges. We write �� = (�, �).

e size of �� is the number of nodes in ��, denoted by
|��| = �. In Figure 1, for instance, � = {1, 2, 3, 4, 5, 6},
� = {(1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (6, 4)}.

We �rst generalize the concepts of geometric multiplicity
of an eigenvalue, matching, and maximum matching in an
undirected graph (in a digraph) and its bipartite representa-
tion (see [20]).

De�nition 1. Given a matrix A with the eigenvalue �, the
dimension of the eigenspace of A corresponding to the
eigenvalue � is called the geometric multiplicity of the
eigenvalue �.

Notice that the geometric multiplicity is the largest
number of linearly independent eigenvectors associated with
an eigenvalue.

De�nition 2. For an undirected graph, a matching � is an
independent set of edges, where no two share a node. A
node is matched if it is incident to an edge in the matching.
Otherwise, the node is unmatched.

De�nition 3. For an undirected graph, a maximummatching
�∗ is a matching of maximum-cardinality among all match-
ings. A maximum matching �∗ is a perfect matching if all
nodes are matched.
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Figure 2: Matching in a digraph and its bipartite representation. (a)
A simple digraph is composed of �ve nodes and �ve edges. (b) 
e
bipartite representation of the digraph shown in (a). Its maximum
matching is displayed in green. Matched (or unmatched) nodes are
displayed in green (or red), respectively.

Similarly, we consider the cases in a digraph and give
the de�nitions of a matching and maximum matching of a
digraph and its bipartite representation.

De�nition 4. For a digraph, matching�� is a subset of edges
with no common starting-nodes or no common ending-
nodes. 
at is to say, no two edges in �� share a common
starting-node or a common ending-node. A node is matched
if it is an ending-node of a matching edge. Otherwise, it is
unmatched.

De�nition 5. For a digraph, a matching of maximum-
cardinality is called a maximum matching, symbolized by
�∗�. A maximum matching�∗� is called perfect if all nodes
in the digraph are matched.

Denote |�∗�| as the size of the maximum matching �∗�
in ��. It is found that if maximum matching�∗� is perfect,
then |�∗�| = �, where�means the number of nodes in ��.

For the maximum matching of a digraph, a simple
algorithm based on bipartite graph is described below. A
bipartite graph is de�ned as �(�) = (�+ ∪ �−, Γ). Here,
�+ = {V+1 , V+2 , . . . , V+�} and �− = {V−1 , V−2 , . . . , V−�} are the sets
of nodes corresponding to the � nodes in ��, respectively.
Edge set Γ = {(V+� , V−� ) | ��� ̸= 0}. See Figure 2. First, we split
each node V into two nodes V+� and V

−
� to make a digraph ��

transform to its bipartite graph representation �(�).
en we
connect an edge between nodes V+� and V

−
� in �(�) if there is

an edge ��� in��. In this way, we get a general bipartite graph.
A�erwards, maximum matchings of the bipartite graph can
be found using the classical Hopcro�-Karp algorithm as
shown in Figure 2.

Amaximummatching in�� contains themaximumpos-
sible number of nodes in Γ. It is worth noting that, generally,
a given digraph could include several di�erent maximum
matchings. In addition, as long as the digraph contains a cycle
factor, its maximummatching is a perfect matching.

However, when the size of a digraph is large it is exceed-
ingly arduous to �nd its maximummatchings by using bipar-
tite graph method. Consequently, it is desirable to propose a
practical method as mentioned below to solve this problem.
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3. Maximum Matchings of a Digraph Based on
Largest Geometric Multiplicity

Motivated by the relation between maximum matchings and
controllability of directed networks, the method proposed in
the paper is derived from two conditions of controllability
of complex networks [20, 21]. In this section, the theoretical
basis and its calculation steps are described in detail.

3.1. 	e 	eoretical Basis. First, two conditions of controlla-
bility of complex networks are reviewed.

Consider a linear time-invariant (LTI) dynamics (1) on a
directed network or digraph ��,

ẋ = Bx +Qu, (1)

where x = (�1, �2, . . . , ��)� ∈ R
� is called the state

vector, the state matrix B = (���)�×� is the transpose of the
adjacency matrix of the network, and ��� means the weight

of a directed edge from node � to node �. Q ∈ R
�×� is the

input matrix (control matrix), and u = (�1, �2, . . . , ��)� ∈
R
� (� ⩽ �) is the input or control vector. Based on

Kalman’s controllability rank condition [22], linear system (1)
can be controlled from any initial state to any desired state in
�nite time if and only if it meets the following condition:

rank [Q,BQ,B2Q, . . . ,B�−1Q] = �. (2)

For large systems, using the abovemethod is a formidable
challenge. Recently, Liu et al. [20] studied network con-
trollability revealing an interesting interplay between the
structure and structural controllability of directed networks.
In particular, they mapped the structural controllability of
a directed network into the maximum matching problem
as Lemma 6 mentioned below and pointed out that the
unmatched nodes are needed to control to achieve full control
of the entire network.
us it can be seen that they have dealt
with the problem of network controllability intensively and
tactfully. Moreover, Yuan et al. [21], based on the maximum
multiplicity, provided another interesting paradigm to iden-
tify driver nodes required to achieve full control of arbitrary
network structures as described in Lemma 7.

Lemma 6 (minimum input theorem [20]). 	e minimum
number of inputs (�	) or identically the minimum number of
driver nodes (��) needed to fully control a network�� is given
by

�	 = �� = max {� − �����∗����� , 1} . (3)

Lemma 7 (largest geometric multiplicity theorem [21]).
Assuming that B with � distinct eigenvalues has been deter-
mined, for a digraph, the minimumnumber of driver nodes��
is determined by the largest geometric multiplicity �(��) of the
eigenvalue �� of B; that is,

�� = max
�
{� (��)} , (4)

where �(��) = dim�
� = �−rank(��I�−B), ��, � = 1, 2, . . . , �,
represent the distinct eigenvalues ofB, and I� is the unit matrix
with the same order as B.

A condition for �ndingmaximummatchings of a digraph
is now established.

�eorem 8 (maximum matchings of a digraph based on
largest geometric multiplicity). Suppose that B has eigen-
values �� with geometric multiplicity ��(��), � = 1, 2, . . . , �,
and �� is the eigenvalue associated with the largest geometric
multiplicity �(��). LetmatrixB� be the column canonical form
of matrix ��I� − B. 	en, the linearly dependent rows in
B� are associated with the unmatched nodes, and the linearly
independent rows are associated with the matched nodes.

Proof. If LTI dynamics (1) is controllable, then according
to the PBH (Popov-Belevitch-Hautus) theorem [23], we can
obtain

rank [��I� − B,Q] = �. (5)

By the property of rank inequalities, it is easy to obtain

� = rank [��I� − B,Q]
⩽ rank (��I� − B) + rank (Q) . (6)


en

rank (Q) ⩾ � − rank (��I� − B) . (7)

When the equality holds, LTI dynamics (1) is controllable. It
implies that

rank (Q) = max
�
{� − rank (��I� − B)} . (8)

Also,�� = rank(Q). 
en

�� = max
�
{� − rank (��I� − B)} . (9)

Let y = P−1x and S = P−1Q, according to nonsin-
gular transformation; then LTI dynamics (1) is equivalently
changed to the following:

ẏ = Jy + Su, (10)

where J is the Jordan matrix. Systems (1) and (10) have
the same controllability properties, that is, for arbitrarily
eigenvalues �� of matrix B, and rank(��I� −B,Q) is the same
as rank(��I� − J, S), and rank(Q) = rank(S). To facilitate
explanation, set � = 9. Suppose we take the Jordan block
matrix J as

J =

[[[[[[[[[[[[[[[[[[[
[

�1 0 0 0 0 0 0 0 0
0 �2 1 0 0 0 0 0 0
0 0 �2 0 0 0 0 0 0
0 0 0 �2 0 0 0 0 0
0 0 0 0 �3 1 0 0 0
0 0 0 0 0 �3 1 0 0
0 0 0 0 0 0 �3 0 0
0 0 0 0 0 0 0 �3 0
0 0 0 0 0 0 0 0 �3

]]]]]]]]]]]]]]]]]]]
]9×9

, (11)
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where each missing entry is zero. Here, �(�1) = 1, �(�2) = 2,
and �(�3) = 3. For �1, in matrix �1I� − J there is one zero
column which is column 1. For �2, in matrix �2I� − J there
are two zero columns which are columns 2 and 4. Similar to
the case of �2, for �3, matrix �3I� − J has three zero columns
which are columns 5, 8, and 9. 
erefore, we can draw the
conclusion that the number of zero columns for an eigenvalue
�� is exactly the geometric multiplicity �(��). Hence, ��I�−B
has �(��) zero columns and � − �(��) linearly independent
columns. 
is implies that

rank (��I� − B) = � − � (��) . (12)

Combining (9) and (12), it follows that

�� = max
�
{� − rank (��I� − B)} = max

�
{� (��)} . (13)


at is, �� is the number of the linearly dependent rows
of the matrix ��I� − B. 
ese linearly dependent rows are
associated with the driver nodes.

On the other hand, by Lemma 6 we conclude that ��
is the number of unmatched nodes with respect to any
maximum matchings. 
ese unmatched nodes are just the
driver nodes. It is not di�cult to see that thesematched nodes
are associated with the rows which are linearly independent
on other rows in B�.


us, the rows of the matrix ��I� −B, which are linearly
dependent, are associated with the driver nodes needed to be
controlled to maintain full control. It means that the number
of the matched nodes is � − max�{�(��)}. 
e proof is thus
completed.

Obviously, the nodes corresponding to the linearly
independent rows are matched nodes with numerical
rank(��I� − B), which is the largest geometric multiplicity
�(��). More precisely, the nodes corresponding to all the
linearly independent rows are matched nodes of a maximum
matching. In fact, we can perform fundamental column
transformations on ��I�−B and obtain its column canonical
form B�, which reveals the linearly dependent rows. 
e
linearly dependent rows in B� correspond to the unmatched
nodes. And those linearly independent rows correspond to
thematched nodes. Next, we proceed to amethod for seeking
maximummatchings in a digraph.

3.2. 	e Algorithm Steps. Amaximummatching of a digraph
consists of matched nodes and matching edges. 
is section
describes how to �nd the matched nodes and the matching
edges, respectively.

First, for a given digraph ��, the algorithm steps based
on largest geometric multiplicity to identify matched nodes
of a maximummatching are described as follows.

Algorithm for Identifying Matched Nodes of
a MaximumMatching

Step 1. Compute the eigenvalues �� of the matrix B and �nd
their geometric multiplicity �(��), � = 1, 2, . . . , �.
Step 2. Find the eigenvalue �� associated with the largest
geometric multiplicity �(��).

Step 3. Perform some fundamental column transformations
on ��I� − B and get its column canonical form B�.

Step 4. Find linearly independent rows in B�.

Step 5. 
e linearly independent rows correspond to the
matched nodes of a maximummatching.

It should be noted that the set of matched nodes of
maximum matchings is not unique, since it is related to
the order of implementing the fundamental transformations.
Generally speaking, there are some candidates of linearly
independent rows. Nevertheless, the number of matched
nodes of these maximum matchings is the same and it
depends on the largest geometric multiplicity �(��).

Once the matched nodes are identi�ed, the maximum
matching edges can be obtained through the following steps.
To describe for convenience, assume the maximum matched
nodes to be nodes 1, 2, and 3, {1, 2, 3} for short.
Algorithm for Identifying Matching Edges of
a MaximumMatching

Step 1. Construct a new matrix C�×� by the following
expression:

C�×� = [[
[

�1
�2
�3
]]
]

�

, (14)

where �� = [�1� �2� ⋅ ⋅ ⋅ ���], � = 1, 2, 3, and * is the
number of thematched nodes, with* = 3.
ese columns are
extracted from the matrix B, which are maximum matched
nodes corresponding to the columns of the matrix B.

Step 2. Find the column �� which contains the least amount
of 1. If it is more than one, we can arbitrarily choose one. For
simplicity, assume �� = �1, where ��1 = 1. 
e edge � = (�, 1)
is the matching edge corresponding to the matching node 1.
Step 3. Let ��� = 0, � = 2, 3, and get a matrix C1�×�.

Step 4. In the matrix C1�×�, consider the rest of the column
�� (�� ̸= ��) and repeat Steps 2 and 3.
Step 5. In the end, make the nonzero elements in di�erent
rows and columns.
e edges corresponding to these nonzero
elements are just matching edges. In this way, we can �nd all
matching edges corresponding to the matched nodes.

To determine matched nodes by using the fundamental
column transformations, we adopt the elimination method

with the computation complexity -(�2(log�)2).

4. Example

To illustrate the method explicitly, we present a simple
example, as shown in Figure 3. 
e digraph �� is illustrated
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Figure 3: A digraph and its maximum matchings. (a) A digraph with six nodes and seven edges. 
e digraph has three kinds of
maximummatchings shown by (b)–(d). In (b)–(d), matched (unmatched) nodes are shown in green (black), respectively. Similarly, matching
(unmatching) edges are shown in red (black), respectively.

in Figure 3(a); � = {1, 2, 3, 4, 5, 6}, � = {(1, 2), (1, 3), (1, 4),
(1, 5), (1, 6), (4, 3), (6, 5)}. 
e transpose of the adjacency
matrix, denoted by B, is as follows:

B =

node

1
2
3
4
5
6

[[[[[[[[[
[

0
1
1
1
1
1

0
0
0
0
0
0

0
0
0
0
0
0

0
0
1
0
0
0

0
0
0
0
0
0

0
0
0
0
1
0

]]]]]]]]]
]

. (15)

It is not di�cult to obtain eigenvalue �� = 0 and �(��) =3. Here, �� is the eigenvalue associated with the largest geo-
metricmultiplicity�(��).
en compute thematrix��I�−B
and perform some fundamental column transformations on
it to obtain its column canonical form B� as follows:

B
� =

node

1
2
3
4
5
6

[[[[[[[[[
[

0
1
0
1
0
1

0
0
1
0
0
0

0
0
0
0
1
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

]]]]]]]]]
]

. (16)

In the column canonical form B�, the 3rd row and 5th row
must be chosen and another row should be chosen from the
2nd, 4th, and 6th rows. 
us we totally have three di�erent
combinations of matched nodes as indicated in Figures 3(b)–
3(d). Each set of options results in a distinct con�guration of
the set of matched nodes. But the number of matched nodes
is �xed. Here we have enumerated all possible combinations
of maximum matchings, respectively, {2, 3, 5}, {3, 4, 5}, and
{3, 5, 6}. 
ese con�gurations of maximum matching are
indeed exactly the same as the results by using the popular
classic method.

With {2, 3, 5}, for example, we �nd the maximummatch-
ing edges. Construct a newmatrixC�×� and �nd the column
�2 with �12 = 1 which contains the least amount of 1. 
e
edge � = (1, 2) is the matching edge corresponding to the

matched node 1. Set �13 = 0 and �15 = 0. 
en we get the
matrix C1�×�. Similarly, for the rest of columns �3 and �5,
repeat Steps 2 and 3 in the matrix C1�×�. Further, we get the
matching edges � = (4, 3) and � = (6, 5). So the matching
edges are � = (1, 2), � = (4, 3), and � = (6, 5) corresponding to
the matched nodes 2, 3, and 5. In the same way, the matching
edges are � = (4, 3), � = (1, 4), and � = (6, 5) corresponding to
the matched nodes 3, 4, and 5. Likewise, the matching edges
are � = (4, 3), � = (6, 5), and � = (1, 6) corresponding to the
matched nodes 3, 5, and 6. Consider

C�×� = [[
[

�2
�3
�5
]]
]

�

=

2 3 5
[[[[[[[[[[[
[

1
0
0
0
0
0

1
0
0
1
0
0

1
0
0
0
0
1

]]]]]]]]]]]
]

,

C1�×� =

2 3 5
[[[[[[[[[[[
[

1
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
0
1

]]]]]]]]]]]
]

.

(17)

Two observations are given here for special cases.
When a digraph is a directed circle shown in Figure 4,

the transpose of the adjacency matrix B1 is shown in the
following:

B1 =
[[[[[[[[
[

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

]]]]]]]]
]

. (18)
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Figure 4: A directed circle and its maximum matching (perfect
matching). (a) is the original directed cycle. 
e directed cycle has
perfect matching as shown in (b). In (b), all nodes are matched.
Matched nodes are displayed in green. Similarly, matching edges are
displayed in red.

In this case, each eigenvalue of B1 has geometric multi-
plicity exactly 1, and each row in B1 is linearly independent.

erefore, each node is matched. All nodes constitute a
perfect matching.

For an arbitrary digraph, it is di�cult tomake a statement
about the largestmultiplicity and digraph structure.However,
for sparse digraphs (weighted or unweighted), the eigen-
value 0 corresponds to the largest geometric multiplicity. In
other words, the zero eigenvalue dominates the eigenvalue
spectrum. In this case, the nodes corresponding to the
linearly independent rows arematched nodes with numerical
rank(��I�−B) = rank(−B) = rank(B).
ereby, the number
of matched nodes can be obtained by solving the rank of B.
For instance, the transpose of adjacency matrix of a sparse
digraph is shown as follows:

B2 =

[[[[[[[[[[[[[[[[[
[

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

]]]]]]]]]]]]]]]]]
]

. (19)

Its eigenvalue corresponding to the largest geometric multi-
plicity is zero. 
us the number of matched nodes |�∗�| =
rank(B2) = 6. To summarize, in a sparse digraph the number
of matched nodes is closely associated with the rank of its
structure matrix. It also reveals the underlying relationship
between the structure of a digraph and its maximum match-
ings.

5. Conclusion and Future Work


e paper constructed and proved one su�cient condition
of matched nodes in a digraph, together with a new and
practical method to �nd maximum matchings of a digraph.
Maximum matchings in a digraph problem with largest

geometricmultiplicity of the eigenvalues are also investigated.
It has shown how to �nd the maximum matched nodes and
matching edges in general digraphs. From the experimental
results, we observe that themethod is e�ective.
e key in our
approach lies in bridging the largest geometric multiplicity
and the matching theory.

Developing and exploring other matching theory algo-
rithms in a digraph would be a challenging job in further
research. In the future, we will address this problem more
systematically. In addition, the extension of this study to the
case of undirected graphs is also an interesting problem.
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