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MAXIMUM MODULUS CONVEXITY AND THE LOCATION

OF ZEROS OF AN ENTIRE FUNCTION
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(Communicated by Irwin Kra)

Abstract. Let / be an entire function with non-negative Maclaurin coeffi-

cients and let b{r) = r{rf'{r)/f{r))'. It is shown that if all the zeros of / lie in

the angle | arg z\ < S , where 0 < S < n , then lim supr_0O b{r) > | cosec2 ¿S .

In particular, we always have limsupr_0O b{r) > |  for such functions.

1. Introduction

Let / be an entire function and let M(r) = M(r,/) = sup,. \f(z)\ be its

maximum modulus. It is known that the function

(1.1) b(r) = d2logM(r)/d(logr)2

exists and is continuous except at isolated points and b(r) > 0 by Hadamard's

convexity theorem. Some time ago Hayman [2] showed that in certain situa-

tions a little more can be said about b(r). Specifically Hayman showed that

if / is transcendental, then limsupr_tooÄ(r) > A0 where A0 > .18. Hayman

conjectured that \ is the best possible value of A0 but this was disproved by

Kjellberg [3]. At about the same time Boichuck and Gol'dberg [1] proved that

the best possible value of A0 is indeed \ if discussion is restricted to entire

functions with positive coefficients. They also showed that more information

about b(r) may be obtained if the class of functions under consideration is

further restricted. In fact they proved that if f(z) = Yl'k>=oakz"k *s entife an(*

A — limsupA._>oo(nyt+1 - nk) then AQ > \A2 when ak > 0 for all A:. Thus

the presence of gaps in the Maclaurin series of / tends to increase the size or

growth of b(r).

In this note we consider the connection between the size of b(r) and the

location of the zeros of /. It turns out that there is a simple and direct rela-

tionship between the size of b(r) as measured by lim sup ¿(r) and the location

of the zeros relative to the negative x-axis. The smallest value of limsupô(r)

occurs when all but a finite number of the zeros lie on or in the direction of the
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negative x-axis, and it increases as we swing the zeros away from the negative

x-axis. Our main result may be stated as follows.

Theorem 1. Let f be an entire function with non-negative Maclaurin coefficients

and suppose that the equation f(z) — w has infinitely many roots in the angle

| arg z\ < ô, where 0 < ô < n . Then

2  1
(1.2) limsupÄ(r) > icosec -S.

r—>oo 2.

In particular if f is any transcendental entire function with non-negative coeffi-

cients then

(1.3) limsup2>(r)> \.
r—>oo

Note that (1.3) is Hayman's ^-conjecture for functions with positive coeffi-

cients.

A result slightly more general than Theorem 1 may also be obtained by

our method.

Theorem 2. Let f be an entire function with non-negative Maclaurin coefficients

and g an entire function satisfying M(r,g) - o(f(r)) as r -* oo. Assume that

(1.4) — = limsupè(r) <+00.
4a r—»oo

Then for every ô e (0,2sin-1 s/a) the equation f(z) = g(z) has at most a

finite number of roots in | argz| < ô .

In the original paper [2], Hayman showed that when / is a polynomial then

limsupr_>ooè(r) = 0; but supr>0 b(r) > AQ > .18 if / is not of the form czm .

Hayman asked whether there exist entire functions other than czm which satisfy

b(r+0) — b(r-O) = 0 for a value of r > 0. An example of such a function was

constructed by London [4]. Our next result shows that when the coefficients are

non-negative, the vanishing of b(r) at one point r > 0 implies f(z) = czm .

Theorem 3. Let f be an entire function with non-negative Maclaurin coefficients.

Then

(a) lim sup,.^^ b(r) - 0 if and only if f is a polynomial;

(b) there exists R > 0 such that b(R) - 0 if and only if f(z) = czm ;

(c) // / is a polynomial other than czm then supr>0 b(r) > \

and equality holds if and only if f(z) = cz"(l + z/a) where c > 0, a > 0 and

n is a non-negative integer.

2. AN AUXILIARY LEMMA

An entire function / with non-negative coefficients cannot vanish on the

positive x-axis unless an — 0 for all n where an is its n th Maclaurin coeffi-

cient. Thus if one of its coefficients is positive, then f(r) > 0 for all r > 0 and,
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by continuity, we may find an open set containing the positive x-axis where /

never vanishes. Is there a simple way of describing some such set? The follow-

ing Lemma which is fundamental to our proofs arose as an answer to the above

question.

Lemma 1. Let f(z) = J2T=oanz" be an entire function satisfying an > 0 for
¡a

n — 0, 1, 2, ■■■ and let b(r) be defined by (1.1). If r> 0 and z = re then
we have

(2.1) f\r) - \f(zf < (4sin2 \6) f2 (r)b(r).

Proof. We have
oo n

f2(r)-\f(z)\2=J2rnJ2an_kak(l-e'{n-2k)e)
n=0      k=0

oo n

= J2r"J2an-kak-2sin2(n-2k)je
n=0      k=0

oo n

<(2sin2Iö)^r"^iz„_A(«-2/:)2

n=0      k=0

= (4 sin2 10) f2(r)b(r).

The second equality above is due to the fact that the sum is real; while the

inequality in the third step is a result of | sin(m/)| < \m\ | sin t\ which is valid for

all integers m and all real t. The last equality is obtained as follows: Since an >

0 we have M(r) = f(r) for all r > 0 and so b(r) can be expressed explicitly

in terms of f(r) and its first two derivatives. Indeed using the definition (1.1)

of b(r) we have

(2.2) f\r)b(r) = r2f(r)f(r) + rf(r)f(r) - (rf(r))2.

If the terms appearing on the righthand side of (2.2) are expressed as series we

obtain
oo n

f\r)b(r) =J2r"J2 an-kakik(k -l) + k-k(n-k)}
n=0      k=0

oo n

(2.3) =^2^rn^2an_kak{k2-k(n-k) + (n-k)2-(n-k)k}
n=0 k=0

oo n

= lEanEan-k^k(n-2k)2,        (r>0).
n=0      k=0

This finishes the proof of Lemma 1.

We now turn to the proofs of our results.  We shall prove Theorem 3 first

since we are going to use one of its assertions in the proof of Theorem 1.

Proof of Theorem 3. (a). Let f(z) — YlT=oanz" ^e an entrre function with

non-negative coefficients and suppose that limsupr_>ooe(r) = 0 where b(r) is
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defined in (1.1). Let e be a positive number less than 1 . Then there exists

R > 0 such that b(r) < \( 1 - e) for all r > R. If this, together with sin2 \6 <

1, is used in (2.1) we obtain

(2.4) |/(2)| > y/ïfr)       (\z\ = r>R).

Now if an — 0 for all n > 1, there is nothing to prove. Otherwise an > 0 for

at least one value of n > 1 in which case f(r) —► oo as r->oo and then, (2.4)

implies that \f(z)\ —► oo as \z\ —> oo. But then / must be a polynomial being

an entire function with a pole at oo. Conversely, if / is a polynomial then

by [2, p. 212] limsup^^ b(r) = 0 and this does not require the hypothesis of

positivity of coefficients.

(b). Suppose that b(R) = 0 for some R > 0. Then (2.1) gives \f(Reie)\ > f(R)

for all 6 ; and since the opposite inequality is always true under our assumptions

(non-negativity of coefficients) we must have

(2.5) \f(z)\ = f(R)        for an \z\=R.

We may assume that f(R) / 0 since otherwise f(z) = 0. Let {zx,z2, ... , zp}

be the possible zeros of / in 0 < \z\ < R, necessarily finite in number since

otherwise f(z) = 0. Let m > 0 be the multiplicity of the possible zero of /

at the origin. Put <pa(z) = R(z-a)/(R2-az) and note that \<t>a(z)\ = 1 when

\z\ = R. Now put g(z) = f(z)/zm rjJt=i 4>z (z) ■ Then g is analytic and never

vanishes in \z\ < R, and \g(z)\ = \z~mf(z)\ = R~mf(R) on \z\ = R. By the

maximum principle applied to g and to 1/g, we conclude that g must be a

constant in \z\ < R. That is g(z) = c where \c\ = R~mf(R). It follows that

p

(2.6) f(z) = czmH<j>Zk(z)        for all \z\ < R ,
k=l

and so for all z ^ zk. But / has no poles and hence we must have f(z) = czm .

Since the converse is trivial the proof of part (b) is complete.

(c). Suppose that f(z) is a polynomial other than czm with positive coeffi-

cients. Then / has zeros {z,,z,, ... , zN,zN} away from the origin. If these

zeros are ordered so that 0 < dx < d2< ■■ ■ < 6N < n where 6k = arg zk then

by using zx in (2.1) we obtain 1 < (4sin2 j8x)b(rx) < 4b(rx) where r, = |z,|.

Hence supr>0ô(r) > |csc2 \dx > \ .

For the remaining parts of (c) note first that if f(z) = czn(l + z/a) with

positive c and a then b(r) = ra/(r + a) from which it follows immediately

that supr>0 b(r) = ¿ . Suppose next that / is an entire function with positive
i if)

coefficients and that sup,.>0 b(r) - |. If z = re is a zero of / away from the

origin then (2.1) gives 1 < (4sin {-O)b(r) < sin2 \6 and this implies that 8 =

n. Thus all the zeros of / must lie on the negative x-axis. Since log M(r, f) —

O(logr) we may write f(z) = cznY[k=x(l + z/zk) where zk > 0 and 1 <

N < oo. But then we will have b(r) = J2k=i(rzk/(r + zk)2) and b(zx) will be
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greater than l unless N = 1. Hence /V = 1 and / has the desired form. This

finishes the proof of (c) and the proof of Theorem 3 is complete.

Proof of Theorem 1. Let ô e (0, n] and assume that / has an infinite number
if)

of zeros in the angle | argz| < ô . If we denote these zeros by zn = rne " where

rn increases to oo, then \6n\ < S and sin \Qn < sin \5. Using z — zn in

(2.1) we obtain 1 < (4 sin \ô)b(r) and this implies (1.2). To prove (1.3) we

may assume that limsupr_f00b(r) < +00. Then logM(r,f) = O(logr) and

since / is now assumed to be transcendental it must have an infinity of zeros.

Of course these zeros lie in the angle | argz| < n and so taking S = n we have

csc2 \ô = 1 and (1.3) follows from (1.2).

Proof of Theorem 2. Let / be an entire function with non-negative Maclaurin

coefficients and suppose that (1.4) holds true. Then a e (0,1] by (1.3), and

logM(r,f) = 0(\ogr) . By part (a) of Theorem 3, (1.4) also implies that /

is not a polynomial and so / is transcendental. Let g be an entire function

satisfying M(r,g) = o(f(r)) and assume that the equation f(z) — g(z) has

an infinite number of roots in | arg z\ < ô , where (5 e (0,2 sin- y/ä). Denote
if)

these roots by w„ — re " so that r„ = \w\ increases to infinity and 10 1 < ô .

Then sin2 j0„ < sin2 ¿S < a and, by Lemma 1,

f\rn) - \g(wn)\2 < (4 sin2 ^n)f2(rn)b(rn) < (4 sin2 \ô)f2(rn)b(rn).

Since /(/•)—> 00 as r —► 00 we have f(rn) ^ 0 for all large n. Of course

Icîi10,,)! = °(f(r„)) as n —► 00. Dividing by f(rn) and passing to the limit as

«-»oo we obtain (4 sin 5f5)limsupr_>oo b(r) > 1. This last inequality implies

that limsupr_>oo¿(r) > l/4a a contradiction to (1.4). Hence at most a finite

number of the roots of the equation f(z) — g(z) lie in the angle | arg z\ <S.

3. Examples

We define

00

(3.1) g(z) = ]J(l + ze-k).
k=i

Then g has all its zeros on the negative x-axis, its Maclaurin coefficients are

non-negative and by [2, p. 213] limsupr^ooZ?(r,^) = \ . Let « be a positive

integer and put f(z) = f(z;b) = g(z"). It is easy to verify that b(r,f) =

n b(r" ,g) and so limsup(._>ooô(r,/) = n ¡4. Thus for the function f, a —

1/n and the zeros nearest to the x-axis lie on the ray n/n. We have to

compare n/n with 2 sin- ^/a. The inequality 2/n < 2 sin" (1/«) < n/n is

easily verified for n > 1. Equality on the right side holds only for n = 1. This

shows that the constant 2 sin" ' y/a in Theorem 2 is best possible when a = 1.

We conjecture that it is best possible for all a e (0,1).
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