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We develop a novel maximum neighborhood margin discriminant projection (MNMDP) technique for dimensionality reduction
of high-dimensional data. It utilizes both the local information and class information to model the intraclass and interclass
neighborhood scatters. By maximizing the margin between intraclass and interclass neighborhoods of all points, MNMDP cannot
only detect the true intrinsic manifold structure of the data but also strengthen the pattern discrimination among di
erent classes.
To verify the classi�cation performance of the proposed MNMDP, it is applied to the PolyU HRF and FKP databases, the AR face
database, and the UCIMusk database, in comparison with the competingmethods such as PCA and LDA.	e experimental results
demonstrate the e
ectiveness of our MNMDP in pattern classi�cation.

1. Introduction

Dimensionality reduction (DR) plays an important role in
many �elds such as pattern classi�cation, machine learning,
and computer vision. Its purpose is to solve the “curse of
dimensionality” [1] and map the high-dimensional points to
a subspace that reveals the intrinsic structure of the origi-
nal data. Among the DR techniques, principal component
analysis (PCA) [2, 3], linear discriminant analysis (LDA)
[3, 4], locality preserving projection (LPP) [5, 6], and their
kernelized and tensorized variants [7–18] are the most repre-
sentative and well-known algorithms. Although these meth-
ods have di
erent suppositions, they can be put into a uni�ed
graph embedding framework with di
erent constraints [19].

Generally, PCA aims to preserve the global geometric
structure of data by maximizing the trace of the feature
covariance matrix and produces compact representation of
the original space in a low-dimensional space. However, it
does not take into account the class label information. 	e
goal of LDA is to �nd the global discriminant information
for classi�cation by maximizing the ratio between interclass
and intraclass scatters. In contrast to PCA, LDA takes much

consideration of the class information and strengthens the
ability of pattern discrimination. Since both PCA and LDA
only consider the global structure of data, they have little to do
with the essential manifold of the data. As for them, it is di�-
cult to discover the hidden submanifold that truly re�ects the
essential structure of the data.

In contrast to PCA and LDA, locality preserving projec-
tion (LPP) is introduced to detect the intrinsic geometry of
the manifold structure of data [5, 6]. LPP is a classical liner
graph embedding [19] derived from Laplacian Eigenmap
[20]. It attempts to �nd an embedding that preserves the
local neighborhood information and re�ects the inherent
submanifold structure. In recent years, many variants of LPP
have been developed for dimensionality reduction [21–34].
	ese LPP-based DR algorithms can be mainly put into two
categories: supervised and unsupervised ones. As for the
supervised LPP-based methods, they generally employ class
information of data in the process of subspace leaning, such
as in [23–27, 29–32]. On the contrary, the unsupervised LPP-
based ones do not consider class information [21, 22, 33, 34].
Among them, unsupervised discriminant projection (UDP)
[21], as a simpli�ed version of LPP [35], is a very popular
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method with the aim of resolving the “overlearning locality”
existing in LPP.UDP seeks to �nd a projection bymaximizing
the nonlocal scatter and minimizing the local scatter simul-
taneously. As for LPP and UDP, since the local structure of
data is modelled by the nearest neighbor graph, they may
be not e
ective in the case of noisy data. Moreover, they are
completely unsupervised in regard to the class label informa-
tion and cannot perform well for classi�cation. In addition,
recently there are some new DR techniques that integrate
sparse representation (SR) and subspace learning [36–41].
Based on the theory of sparse representation, these DR
methods have more discriminating power for classi�cation.

In this paper, we propose a novel dimensionality reduc-
tion method, named maximum neighborhood margin dis-
criminant projection (MNMDP). It is based on the idea of
LPP. However, unlike LPP, MNMDP is a supervised learning
technique by fully utilizing the class label information for
discovering the inherent manifold structure. 	e proposed
MNMDP constructs a weighted �-nearest neighbor (�-NN)
graph that models the data topology, and then the a�nity
weights of edges of the graph are built to fully capture local
geometry of interclass and intraclass neighborhoods of each
point in the phase of manifold learning. Although there exist
many supervised variants of LPP, our MNMDP is very di
er-
ent from them in building adjacent similarities and the objec-
tive functions. In MNMDP, the a�nity weight can be viewed
as the combination of the local weight and the discriminating
weight, the de�nition of which is di
erent for intraclass and
interclass neighbors of a given point. 	e local weight can
well represent the local neighborhood structure, while the
discriminating weight can further di
erentiate between dif-
ferent classes by using the class label information. Note that
the de�nition of the a�nity weight �rst appears in [23] and
then is adopted to get good performance in face recognition
in [26, 42]. A�er establishing the a�nity weights of �-NN
graph, we compute the intraclass neighborhood scatter and
interclass neighborhood scatter, respectively. 	en, a liner
mapping forMNMDP is obtained by maximizing the margin
between them. Hence, our MNMDP cannot only well pre-
serve the intrinsic submanifold structures of data but also
enhance the discrimination among di
erent classes, so as to
improve classi�cation performance.	e experimental results
on four high-dimensional databases show that our proposed
method performs well in pattern classi�cation, compared to
the competing methods: PCA, LDA, LPP, and UDP.

	e rest of this paper is organized as follows. Section 2
brie�y reviews LPP. In Section 3, we introduce the proposed
MNMDP method. Section 4 represents in detail the clas-
si�cation performance of the competing methods by con-
ducting comprehensive experiments. Section 5 discusses the
characteristics of the MNMDP. Finally, we conclude this
paper in Section 6.

2. Locality Preserving Projection

For a general classi�cation problem, denote by � = {�� ∈
R
�}��=1 the set of � �-dimensional samples, each of which

has the class label �� ∈ {1, 2, . . . , 	}, where 	 is the total
number of classes. In general, the aim of dimensionality

reduction is to transform the original �-dimensional space
to a new 
-dimensional subspace by a liner mapping; that is,� = {�� ∈ R

�}��=1, where 
 ≪ �. 	e liner mapping for DR is
always mathematically formulated as

�� = Φ��� for � = 1, . . . , �, (1)

where Φ ∈ R
�×� is a transformation matrix and Φ = [�1,�2, . . . , ��].

Nowadays, locality preserving projection (LPP) [5, 6] is
a promising dimensionality reduction technique, which is
a classical graph embedding [19]. 	rough a liner transfor-
mation projection, LPP can �nd an embedding that best
discovers the intrinsical manifold structure of data. In order
to do so, it �rst constructs a weighted a�nity graph G =(V,E), where V is the set of all points of data and E is the
set of edges between any pairs of points. Note that the a�nity
graph G is usually established by �-neighborhood; nodes �
and � are connected by an edge if �� is in � nearest neighbors
of �� or �� is in � nearest neighbors of ��. 	en, the weight��� of an edge between �� and �� is o�en de�ned as follows:

��� = {{{{{{{
exp(−������� − �������2� ) , �� ∈N� (��) or �� ∈N� (��)
0, otherwise,

(2)

where N�(��) or N�(��) denotes a set of the � nearest
neighbors of the sample �� or �� and the parameter � is a
positive constant.

To obtain a liner graph embedding, the objective function
of LPP to be minimized is as follows:

min∑
��

������� − �������2���. (3)

	e criterion above with��� can give a penalty for mapping
neighboring points �� and �� far apart in an embedded sub-
space. By simple algebra, the objective criterion for LPPunder
the appropriate constraint can be rewritten as

argmin
Φ

tr (Φ�� ��Φ)
s.t. Φ��!��Φ = ", (4)

where ! is a diagonal matrix and its entries are column (or
row, since � is symmetric) sum of �; that is, !�� = ∑����
and  = ! − � are the Laplacian matrix. In (4), tr(⋅) and "
denote the trace of the matrix and the identity matrix,
respectively.

Finally, the transformation matrixΦ to minimize (4) can
be achieved by solving the generalized eigenvalue problem

� ��Φ = %�!��Φ, (5)

whereΦ only contains 
 eigenvectors corresponding to the 

smallest eigenvalues, that is, %1 ≤ %2 ≤ ⋅ ⋅ ⋅ ≤ %�.
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3. Maximum Neighborhood Margin
Discriminant Projection

In pattern recognition, the class label information of data
plays an important role for classi�cation. Moreover, the local
structures of the training samples are also very useful for it.
Inspired by the two facts, a novel dimensionality reduction
method, called maximum neighborhood margin discrimi-
nant projection (MNMDP), is introduced in this section. In
the proposed MNMDP, both the class information and local
geometry of data are fully taken into account for classi�cation
simultaneously. 	e major focus of MNMDP is to seek a
liner graph embedding that not only detects the underlying
submanifold structure of data from the same class but
also enhances the discrimination among submanifolds from
di
erent classes in the process of the learning. To obtain
this graph embedding of given data, it �rst constructs the �-
nearest neighbor graph of all points that can be retained in
the projected subspace, and then assigns completely distinct
weights for the interclass and intraclass neighbors of a point
by fully considering the class information, and at last �nds
a liner mapping by maximizing the margin between the
interclass and intraclass neighbors of all points, so as to
improve the classi�cation performance in the new subspace.

3.1. Intraclass Neighborhood Scatter. Given a data set � ={�� ∈ R
�}��=1, MNMDP �rst begins to build an adjacent

graph G by �-neighborhood for all points. For a data point��, let N�(��) be the set of �-nearest neighbors of it. In the
meantime, let N+� (��) denote the intraclass neighbors in the�-neighborhood N�(��) (i.e., neighbors from the same class
as ��) and N

−
� (��) the interclass neighbors of �� in N�(��)

(i.e., neighbors from di
erent classes). In order to represent
the neighborhood relationship of each data point, we need to
build an a�nitymatrix for intraclass neighborhood and inter-
class neighborhood, respectively. 	en, the intraclass and
interclass neighborhood scatters are accordingly computed
to preserve the local neighborhood structures of the data.
Subsequently, by keeping the margin between the intraclass
and interclass neighborhood maximum with two scatters,
MNMDP can possess important pattern discrimination for
classi�cation in the projected subspace.

	e a�nity weights for intraclass neighborhoods of all
points are de�ned as follows:

�+�� =
{{{{{{{{{{{{{

exp(−������� − �������2� )(1 + exp(−������� − �������2� )) ,
�� ∈ N

+
� (��) or �� ∈ N

+
� (��) ,0, otherwise,

(6)

where the parameter � is a positive regulator. According to
(6), the a�nity weight integrates the local weight, that is,

exp(−‖�� − ��‖2/�), which can preserve the local intraclass
neighborhood structure and the intraclass discriminating

weight, that is, 1 + exp(−‖�� − ��‖2/�), which can represent
the class information of the same classes. From (6), the a�nity

weights of the intraclass points are larger than those in LPP.
	is fact is very advantageous to classi�cation.

From the viewpoint of pattern recognition, it is quite
favorable for presuming that the di
erent samples have
di
erent contributions to classi�cation. Generally speaking,
the fact that the samples with greater contributions have the
more signi�cance for classi�cation is naturally related to their
neighborhood location in the feature space. Here, we take
into account a local scaling regulator of data to dynamically
adjust adjacent weights between pairs of neighbors, so as
to reasonably re�ect the classi�cation contribution of each
sample. According to the �-neighborhood of one sample ��,
the parameter � as local scaling regulator in (6) is set to be as
follows:

� = 1�2
�∑
�=1

������� − �������2. (7)

	is can be a good reasonable way to estimate the value of �,
and the a�nity weights�+�� between nodes � and � are allowed
to self-tune in terms of the �-neighborhood with �.

To still retain the intraclass neighborhood relations

through a liner mapping, that is, �� = Φ���, the intraclass
neighborhood scatter along a projection � is de�ned as

*+ (�) = 12∑�� ������� − �������
2�+�� . (8)

It follows from (8) that

*+ (�) = 12∑�� ��������� − ���������
2�+��

= ��[[
12∑�� (�� − ��) (�� − ��)

��+��]]�
= ��6+�,

(9)

where 6+ is called the intraclass neighborhood scatter matrix:

6+ = 12∑�� (�� − ��) (�� − ��)
��+�� . (10)

To gain more insight into (10) in terms of the a�nity
matrix�+ from (6), 6+ is rewritten as

6+ = 12 (∑���+�� ����� +∑���+�� ����� − 2∑���+�� �����)
= ∑
�
!+������� −∑

��
�+�� �����

= �!+�� − ��+��
= � +��,

(11)

where !+ is a diagonal matrix, its elements are column sum
of�+, that is,!+�� = ∑��+�� , and  + = !+−�+. Note that  +,!+, and 6+ are symmetric matrixes.
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In order to well preserve the intraclass neighborhood
and keep the intraclass neighborhood scatter compact in the
embedded subspace, the optimal projections can be obtained
by minimizing the intraclass neighborhood scatter:

Min *+ (�) = ��6+�. (12)

3.2. Interclass Neighborhood Scatter. In contrast to intra-
class neighborhood scatter, the a�nity weights for interclass
neighborhoods of all points are de�ned as follows:

�−�� =
{{{{{{{{{{{
exp(−������� − �������2� )(1 − exp(−������� − �������2� )) ,

�� ∈ N
−
� (��) or �� ∈ N

−
� (��) ,0, otherwise,

(13)

where the parameter � is a positive regulator, the same as
(7). In (13), the a�nity weight can simultaneously re�ect
the local interclass neighborhood structure by the local

weight exp(−‖�� − ��‖2/�) and the class information of the
di
erent classes by interclass discriminating weight 1 −
exp(−‖�� − ��‖2/�). From (13), the fact that the a�nity
weights of the interclass points are less than those in LPP is
also very helpful for classi�cation.

	en, the interclass neighborhood scatter along a projec-
tion � is de�ned as

*− (�) = 12∑�� ������� − �������
2�−�� . (14)

It follows from (14) that

*− (�) = 12∑�� ��������� − ���������
2�−��

= ��6−�,
(15)

where 6− is called the interclass neighborhood scatter matrix:

6− = 12∑�� (�� − ��) (�� − ��)
��−�� . (16)

By the same algebra as 6+, 6− in (16) is rewritten as follows:
6− = � −��, (17)

where !− is a diagonal matrix, its elements are column sum
of �−, that is, !−�� = ∑��−�� , and  − = !− − �−. Note that −,!−, and 6− are symmetric matrixes.

To gain more discrimination between di
erent classes
through a liner mapping, the interclass neighborhood scatter
in the projected subspace should be kept more separable by
maximizing the following criterion:

Max *− (�) = ��6−�. (18)

3.3. Optimal Liner Embedding. Combining (12) and (18) with

the orthonormal constraint (i.e., Φ�Φ = "), we get the
following objective function:

Min *+ (Φ) = tr (Φ�6+Φ)
Max *− (Φ) = tr (Φ�6−Φ)
s.t. Φ�Φ = ",

(19)

where Φ = [�1, �2, . . . , ��] and �� is an orthogonal vector.
Based on the idea of themaximummargin criterion [43], (19)
can be reformulated as follows:

argmax
Φ

tr (Φ� (6− − 6+)Φ)
s.t. Φ�Φ = ", (20)

or

max
�∑
�=1
��� (6− − 6+) ��

s.t. ��� �� = 1, ��� �� = 0 (� ̸= �) .
(21)

According to (20) or (21), we can �nd two aspects that
are favorable for classi�cation. On one hand, the optimal
projections obtained are such that the intraclass samples are
attracted being more compact (minimizing the intraclass
neighborhood scatter), while the interclass samples are simul-
taneously pulled beingmore separable (maximizing the inter-
class neighborhood scatter). Of course, it can keep themargin
between intraclass and interclass neighborhoodmaximum in
a new subspace, so as to clearly enhance pattern discrimi-
nation. On the other hand, the graph embedding obtained
with orthogonal projections can have both more locality
preserving power and more discriminating power [33].

To maximize the above objective function, we can use
the Lagrangian multiplier method to �rst build the following
function:

 (��, %�) = �∑
�=1

(��� (6− − 6+) �� − %� (��� �� − 1)) , (22)

where %� (� = 1, . . . , 
) is a Lagrange multiplier. 	en, the
optimization is carried out by the partial derivative of  (��,%�) with respect to ��:

: (��, %�):�� = (6− − 6+) �� − %���. (23)

Let (23) be zero; we yield

(6− − 6+) �� = %���. (24)

	us, the optimal matrix Φ that maximizes the objective
criterion in (20) can be achieved by solving the generalized
eigenvalue problem

(6− − 6+)Φ = %Φ, (25)
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Require:� ∈ R
�: a testing point.� = {�� ∈ R

�}��=1: a training set.
Ensure:

Predict the class label of �.
Step 1. Construct the adjacent graphG for any point
in the training set� using k-neighborhood.
Step 2. Compute the a�nity weight matrix�+
for intraclass neighborhood and�− for interclass
neighborhood of any point, respectively.

If �� ∈ N
+
� (��) or �� ∈ N

+
� (��), then

�+�� = exp(−������� − �������2� )(1 + exp(−������� − �������2� ))
else

0
end if

if �� ∈ N
−
� (��) or �� ∈ N

−
� (��), then

�−�� = exp(−������� − �������2� )(1 − exp(−������� − �������2� ))
else

0
end if
Step 3. Compute the intraclass neighborhood scatter

matrix 6+ = � +�� and the interclass neighborhood

scatter matrix 6− = � −��.
Step 4. Obtain the optimal projection matrixΦ
by maximizing the generalized eigenvalue problem(6− − 6+)Φ = %Φ.
Step 5. Dimensionality reduction: transform all the
points from the high-dimensional feature space� to
a subspace � with the optimized projection matrixΦ,
that is, � = Φ��.
Step 6. Classify � using a certain classi�er. 	e projection

of � is �rst obtained by � = Φ�� and then
classify � in the projected subspace �.

Algorithm 1: Maximum neighborhood margin discriminant pro-
jection.

whereΦ only contains 
 eigenvectors corresponding to the 

largest positive eigenvalues, that is, %1 ≥ %2 ≥ ⋅ ⋅ ⋅ ≥ %� ≥ 0.
Note that, since the symmetric matrix (6−−6+) is not positive
semide�nite, the eigenvalues of (6−−6+)may be positive, neg-
ative, or zero. To maximize (20), we only need to select the 

largest positive eigenvalues.

3.4. 
e MNMDP Algorithm. Based on the above descrip-
tion, the algorithmic procedure of the proposed MNMDP is
summarized in Algorithm 1.

4. Experimental Results

In this section, we evaluate the classi�cation performance of
the proposed MNMDP, in comparison with the state-of-the-
art DRmethods: PCA, LDA, LPP, and UDP.	e experiments
are conducted on four databases including HRF, FKP, AR,

Figure 1: Ten sample images of one subject in the HRF database.

and Musk databases. In order to measure the recognition
performance, < images per class on each database are ran-
domly selected as training samples, while the remaining
images per class are used for testing. To ensure that the
performance is not biased from certain random realization
of training/testing set, 10 independent runs for a given < are
performed. Since training and testing samples are chosen
randomly online, those 10 runs give us 10 di
erent training
and testing sets for performance evaluation. Note that both
training and testing sets on each run have no overlap between
them.	e average recognition rates across these 10 runs with
95% con�dence are regarded as the �nal classi�cation results.
In our experiments, to overcome the small sample size prob-
lem encountered in LDA, LPP, and UDP, PCA preprocessing
is employed to solve the singular matrix by keeping nearly
98% image energy. If the singularities still exist, pseudoin-
verse is adopted. In order to ensure a fair comparisons, the
regulator � in LPP is set in terms of (7). 	e �-neighborhood
parameter denoted by �� for building the weight matrix in
LPP and UDP is selected as �� = < − 1 [21]. 	e nearest
neighbor (NN) classi�er with Euclidean distance is used for
classi�cation in the experiments.

4.1. Experiments onHRF. 	ePolyUHRF (High-Resolution-
Fingerprint) database [44] was collected in two separate
sessions. Here, we use theDBII ofHRF.	e database contains
148 �ngers, each of which has �ve sample images per session.
Each image is taken with 1200 dpi and the size per image is640 × 480 pixels, with 256 grey levels per pixel. For compu-
tational e�ciency, each image is resized to 32 × 32 pixels in
our experiments. As an example, Figure 1 shows ten images
of one �nger in the HRF database. We form the training set
by a random subset of < images per class and use the rest as
a testing set. In the following experiments, the numbers of
training sample images per class are chosen as < = 5, 6, 7, 8.

In the experiments on HRF, we �rst explore the perfor-
mance of MNMDP with varying �-neighborhood parameter�� in terms of recognition rates.	e value of�� is set from
1 to 21 in Step 2. 	e maximal average classi�cation results
via�� for each < are plotted in Figure 2. It can be obviously
observed that the proposed MNMDP with more training
samples has better classi�cation. As can be seen in Figure 2,
the performance of MNMDP for each < �rst increases
slowly when �� changes from 1 to 5, and then increases
rapidly when�� changes from 5 to 9, and �nally drops with
increase of ��. 	e possible reason for this experimental
phenomenon is that the a�nity graph is unable to capture
e
ectively the geometry of data when �� is small and



6 	e Scienti�c World Journal

1 3 5 7 9 11 13 15 17 19 21

0.65

0.7

0.75

0.8

0.85

Wk

R
ec

o
gn

it
io

n
 r

at
e

l = 5

l = 6

l = 7

l = 8

Figure 2: 	e average recognition rates of MNMDP versus�� on
HRF.

the more geometrical information of data can be preserved
as �� increases. However, when �� is beyond the rea-
sonable value, the �-neighborhood for a given point may
include more interclass points [45], and this can degrade the
ability of pattern discrimination. Consequently, the exper-
imental results reveal that �-neighborhood parameter ��
in MNMDP plays an important role for preservation of
geometrical and discriminant information of data that is
available for classi�cation and its suitable value can be easily
selected to achieve good performance.

Furthermore, the experimental comparisons of compet-
ingmethods are studied by varying the reduced dimensional-
ity onHRF.We experimentwith the dimension of the reduced
space from 5 to 100 in Step 5. Based on the results shown in
Figure 2 the best �-neighborhood parameters for MNMDP
are set as �� = 9 for < = 5, 6, 7, 8, respectively. For each <
onHRF, the comparative average recognition performance of
each method is given in Figure 3. As shown in Figure 3, the
classi�cation performance of each method ascends quickly
until the dimensionality is about 30 and then keeps almost
stable or decreases slowly with increase of dimensionality.
It is clear that the proposed MNMDP consistently outper-
forms the other methods at any value of dimensionality,
making the superiority of the MNMDP evident. Observe
again that LDA obtains the better performance than PCA,
LPP, and UDP, PCA is preferable to LPP at small values of
dimension while they get the quite similar performance at
large values of dimension, and UDP is the weakest among
them. 	is fact that the performance of MNMDP and LDA
is better than that of PCA, LPP, and UDP may be because
our MNMDP and LDA are supervised learning methods
using class information. 	ereby, the experimental results in
Figure 3 demonstrate that MNMDP is more robust over a
large range of dimensionality with satisfactory performance.

	e best performance of the competing methods
by means of the highest average recognition rates with

Table 1:	emaximal average recognition rates (%) of each method
on HRF with the corresponding standard deviations (stds) and
values of dimension in the parentheses.

Methods < = 5 < = 6 < = 7 < = 8
PCA 66.96 ± 1.49 71.37 ± 1.27 73.87 ± 1.44 76.99 ± 2.43(60) (55) (65) (50)
LDA 68.64 ± 1.31 73.00 ± 1.06 75.43 ± 1.29 78.55 ± 2.31(55) (45) (40) (55)
LPP 67.21 ± 1.41 71.58 ± 1.25 74.29 ± 1.09 77.55 ± 2.01(135) (80) (85) (65)
UDP 67.41 ± 1.58 71.21 ± 1.26 73.36 ± 1.52 75.57 ± 2.28(135) (145) (150) (150)
MNMDP 74.31 ± 1.62 78.47 ± 1.61 81.21 ± 1.64 83.78 ± 1.58

(30) (30) (30) (40)

the corresponding standard deviations (stds) and values of
dimension in the parentheses is also given in Table 1 for each <
onHRF. Note that the best recognition rates for each < among
the methods are marked in bold face. We can obviously see
that the performance of each method increases with increase
of the training samples. As expected, the proposed MNMDP
achieves the best performance and the corresponding
dimensionality is the smallest among the competing
methods. It can also be observed from Table 1 that LDA is
better than PCA, LPP, and UDP and LPP is superior to PCA.
In addition, UDP is better than LPP and PCA when < = 5
and less than them when < = 6, 7, 8. As a consequence, the
promising performance of our MNMDP is con�rmed on
HRF.

4.2. Experiments on FKP. 	e PolyU FKP (Finger-Knuckle-
Print) database [46] contains 165 subjects, each of which has
48 samples that were taken in two separate sessions. Each
session per subject has 6 images for each of the le� index
�nger, the le� middle �nger, the right index �nger, and the
right middle �nger. Here, we use FKP ROI database obtained
byROI extraction algorithm in [47] and the size of each image
is 220 × 110 pixels, with 256 grey levels per pixel. To save
computation time, we use a subset of the FKP ROI database
in the experiment. 	e data set we selected contains the 100
subjects and 12 images for each individual. Note that the �rst
3 sample images per �nger are selected. In our experiments,
each image is resized to 32 × 32 pixels for computational
e�ciency. As an example, Figure 4 shows twelve images of
one subject in the FKP database. We form the training set by
a random subset of < images per class and use the rest as a
testing set. In the following experiments on FKP, the numbers
of training sample images per class are chosen as < = 5, 7,9, 11.

In the experiments on FKP, we �rst investigate the
recognition performance of MNMDP on FKP by varying the�-neighborhood parameter ��. 	e value of �� is varied
from 1 to 21 in Step 2. 	e maximal average recognition rate
at each value of �� for each < is illustrated in Figure 5. It
is obvious that the classi�cation performance of MNMDP
increases when the number of training samples increases.
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Figure 3: 	e average recognition rates versus dimension on HRF.

Figure 4: Twelve sample images of one subject in the FKP database.

As can be noted in Figure 5, the performance of MNMDP
nearly increases when �� changes from 1 to 7 at �rst and
then decreases when�� becomes large. From Figure 5, it can
be concluded that the appropriate value of �� in MNMDP
is signi�cant for capturing the geometrical structure and
pattern discrimination of data on FKP, the same as on HRF,
and it can be easily selected to obtain good performance.

To further verify the performance of MNMDP, the
comparative classi�cation results of the competing methods

on FKP are reported in Figure 6 with varying the reduced
dimensionality from 5 to 100 in Step 5. According to the
experimental results in Figure 5, the best �-neighborhood
parameters for MNMDP are set as�� = 7 for < = 5, 7, 9 and�� = 5 for 11, respectively. We can see that the classi�cation
performance of each method almost ascends monotonically
with increasing the dimensionality, at �rst increases quickly,
and �nally increases very slowly or even keeps stable. It is
noticeable that the proposedMNMDP outperforms the other
methods signi�cantly across all values of dimensionality for
each <, and UDP almost obtains the worst performance
among them. We can also observe that the performance of
LDA is always superior to that of LPP and UDP over a
large range of dimensionality, and PCA performs better than
LPP when the dimension is small whereas it does worse
when the dimension is large. Based on the experimental
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Figure 5: 	e average recognition rates of MNMDP versus�� on
FKP.

comparisons in Figure 6, the conclusion we have drawn is
that our method consistently obtains better classi�cation
performance, irrespective of the variation in dimensions.

For each < on FKP, the experimental comparisons of the
competingmethods in terms of themaximal average recogni-
tion rates with the corresponding standard deviations (stds)
and values of dimension in the parentheses are also tabulated
in Table 2. It should be noted that the best performance for
each < among the methods is indicated in bold face. It can be
seen fromTable 2 that the proposedMNMDP is very superior
to the other methods and its optimal reduced dimensionality
is far smaller than that of them.Moreover, the performance of
each method increases as the number of the training samples
increases. We can also observe that the best performance of
LDA is better than that of PCA, LPP, and UDP and UDP and
LPP are preferable to PCA. 	rough the comparative study
of the best performance of the competing methods, we can
conclude that the MNMDP has more discriminating power
to achieve the satisfactory classi�cation.

4.3. Experiments on AR. 	e AR face database [48] contains
over 4,000 color images corresponding to 126 people’s faces
(70 men and 56 women). 	e image samples of each person
were taken in two sessions, separated by two weeks time.
Here, we select a subset of AR including 50 men and 50
women, and each person has 14 image samples, separately
collected in two sessions with neutral expression, smile,
anger, and scream, le� light on, right light on, and all
side lights on. Each image is manually cropped and then
normalized to 32×32 pixels, with 256 grey levels per pixel. As
an example, Figure 7 shows the images of one person in the
AR database. We form the training set by a random subset
of < images per class and use the rest as a testing set. In
the following experiments on AR, the numbers of training
sample images per class are chosen as < = 7, 9, 11, 13.

Table 2:	emaximal average recognition rates (%) of eachmethod
on FKP with the corresponding standard deviations (stds) and
values of dimension in the parentheses.

Methods < = 5 < = 7 < = 9 < = 11
PCA 63.31 ± 2.52 76.56 ± 2.80 85.18 ± 1.98 90.75 ± 2.40(110) (125) (130) (110)
LDA 65.80 ± 2.35 79.44 ± 2.88 88.02 ± 2.01 92.80 ± 2.07(105) (115) (125) (125)
LPP 64.30 ± 2.43 78.36 ± 2.52 86.80 ± 1.80 91.50 ± 2.31(110) (110) (120) (105)
UDP 64.88 ± 2.32 78.16 ± 2.84 86.37 ± 1.83 91.30 ± 2.45(110) (120) (125) (135)
MNMDP 69.49 ± 1.98 82.96 ± 2.54 90.98 ± 1.59 94.45 ± 1.90

(70) (50) (55) (65)

In the experiments on AR, the classi�cation performance
of the proposedMNMDP versus the �-neighborhood param-
eter �� is �rst carried out for each <, shown in Figure 8.
Notice that the values of �� are varied from 1 to 21 in Step
2. It is obvious that the performance of MNMDP increases
with the increase of the training samples. As can be noted
in Figure 8, the recognition rates of MNMDP ascend quickly
at �rst with increase of �� and then almost keep stable
when �� becomes large. 	us, we can conclude that the
appropriate value of�� plays an important role in MNMDP
for preserving the geometry of data and enhancing the power
of pattern discrimination, and it can be easily set to obtain
good performance.

Moreover, the classi�cation performance of the proposed
MNMDP is further evaluated on AR by varying the reduced
dimensionality, in comparison with the competing methods.
	e dimensionality varies from 5 to 100 with an interval
of 5. Note that from the results in Figure 8, the best �-
neighborhood parameters for MNMDP are set as �� = 17
for < = 7, �� = 15 for < = 9, and �� = 13 for < = 11, 13,
respectively. 	e performance of each method in terms of
average recognition rates is illustrated in Figure 9. It can
be seen that the performance of each method for each <
�rst increases rapidly when �� becomes large and then
approximately tends to be stable. Compared to PCA, LDA,
LPP, andUDP, the proposedMNMDPmethod almost has the
best performance by varying the dimensionality, especially
at the large values of dimensionality. In the meantime, LDA
is superior to PCA, LPP, and UDP with increasing the
dimensionality. In addition, in most cases LPP is better than
PCA and UDP, and PCA is better than UDP. From the
comparative performance in Figure 9, we can conclude that
ourmethod always has better classi�cation results over a large
range of the dimensionality.

	emaximal average recognition rates of each competing
method on AR for each < with the corresponding standard
deviations (stds) and values of dimension in the parentheses
are also reported in Table 3. It is to be noted that the best
performance among them is described in bold face. We can
see that the performance of each method is improved by
increasing the number of the training samples. As Table 3
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Figure 6: 	e average recognition rates versus dimension on FKP.

Figure 7: Fourteen sample images of one subject in theARdatabase.

displays, MNMDP has the best performance among the
methods for each <. It can also be observed that the best classi-
�cation performance of LDA is better than that of LPP, PCA,
and UDP. Consequently, the experimental results in Figure 9

and Table 3 on AR face database certainly demonstrate the
good performance of the proposed MNMDP.

4.4. Experiments on Musk. 	e Musk (version1) database
[49] is one of the two-class classi�cation tasks that predicts
whether new molecules will be musks or nonmusks. It
totally contains 476 samples, each of which has 166 attributes
that depend on the exact shape or conformation of these
molecules. In the experiments, we set the number of training
samples per class as < = 50, 80, 110, 140, respectively, and the
remaining samples are used to test the competing methods.

In the experiments on Musk, we �rst investigate the
classi�cation performance of the proposed MNMDP versus
the �-neighborhood parameter �� for each <. 	e experi-
mental results are shown in Figure 10. 	e values of �� are
presented from 1 to 21 in Step 2. As can be seen in Figure 10,
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Figure 8: 	e average recognition rates of MNMDP versus�� on
AR.

Table 3:	emaximal average recognition rates (%) of eachmethod
on ARwith the corresponding standard deviations (stds) and values
of dimension in the parentheses.

Methods < = 7 < = 9 < = 11 < = 13
PCA 64.17 ± 2.05 71.60 ± 1.40 76.70 ± 3.28 81.80 ± 3.46(100) (100) (110) (100)
LDA 70.94 ± 1.74 78.24 ± 1.09 83.80 ± 2.82 88.80 ± 2.04(60) (55) (55) (45)
LPP 65.23 ± 1.79 72.60 ± 1.02 78.20 ± 2.67 83.10 ± 3.31(85) (95) (80) (95)
UDP 65.27 ± 1.68 72.22 ± 0.96 77.43 ± 3.17 82.80 ± 4.18(100) (105) (105) (105)
MNMDP 81.63 ± 3.24 89.52 ± 2.99 94.37 ± 2.26 99.00 ± 0.94

(120) (125) (140) (120)

the recognition rates of MNMDP increase from 1 to 5 and
then drop when the values of �� increase. Hence, the
classi�cation results have revealed that the �-neighborhood
parameter �� is very important for MNMDP to preserve
the geometrical structures of data and to strengthen pattern
discrimination, and the appropriate value of �� for good
performance can be easily determined.

To further verify the classi�cation performance of our
MNMDP onMusk, it is compared to the competing methods
by varying the reduced dimensionality. 	e dimensional-
ity increases from 1 to 30 in Step 1. It should be noted
that from the results in Figure 10, the best �-neighborhood
parameters for MNMDP are determined as �� = 5 for< = 50, 80, 110, 140, respectively. Figure 11 shows the perfor-
mance of each method in terms of average recognition rates.
It can be found that the performance of eachmethod for each< �rst ascends at small values of�� and then approximately
tends to be stable or increases slowlywhen�� becomes large.
As shown in Figure 11, the proposedMNMDPmethod almost

Table 4:	emaximal average recognition rates (%) of eachmethod
on Musk with the corresponding standard deviations (stds) and
values of dimension in the parentheses.

Methods < = 50 < = 80 < = 110 < = 140
PCA 77.82 ± 2.85 79.21 ± 2.36 81.05 ± 2.47 83.72 ± 3.2(33) (40) (42) (19)
LDA 77.87 ± 2.72 79.59 ± 3.08 81.25 ± 2.25 83.47 ± 3.45(35) (38) (40) (43)
LPP 77.66 ± 2.88 80.28 ± 2.45 81.45 ± 2.72 85.56 ± 3.17(33) (24) (32) (25)
UDP 77.63 ± 3.37 79.81 ± 2.63 80.94 ± 2.31 84.18 ± 3.83(33) (38) (42) (24)
MNMDP 78.03 ± 3.50 81.46 ± 2.87 85.47 ± 2.25 87.91 ± 1.74

(11) (18) (8) (7)

has the best performance by varying the dimensionality
among all the methods. It can also be observed that PCA,
LPP, and UDP get the similar performance when�� is about
larger than 10, and LDA obtains the worse performance when�� varies from 6 to 30.	erefore, the classi�cation results in
Figure 11 indicate that our method is always better than PCA,
LDA, LPP, and UDP with the change of dimensionality.

	e comparative experiments onMusk for each < in terms
of the maximal average recognition rates with the corre-
sponding standard deviations (stds) and values of dimension
in the parentheses are �nally shown in Table 4. Note that
the best performance for each < among all the methods is
represented in bold face. It is clear that the classi�cation per-
formance of the proposedMNMDP is better than PCA, LDA,
LPP, and UDP. In the meantime, the optimal reduced dimen-
sionality of our MNMDP for each < is smaller than that of
them.	erefore, we can conclude that the proposedMNMDP
does well in dimensionality reduction with good classi�ca-
tion.

In summary, the proposed MNMDP almost yields the
best classi�cation performance in all the experiments, com-
pared to PCA, LDA, LPP, and UDP. It implies that both
pattern discrimination and geometrical information of the
data are very important for classi�cation, and MNMDP fully
captures them in the learning processing.

5. Discussions

In this section, some characteristics of the proposedMNMDP
that are available for classi�cation are discussed. We �rst
analyze the a�nity weight for intraclass and interclass neigh-
borhoods, then discuss the MNMDP from the viewpoint
of distance metric learning [50, 51], and �nally explore
the eigenvalues of the generalized eigenvalue problem in
MNMDP.

According to (6) and (13), the a�nity weight can be

thought of as integration of the local weight exp(−‖�� − ��‖2/�) and the discriminating weight that is divided into
two categories: intraclass one for intraclass neighbors 1 +
exp(−‖�� − ��‖2/�) and interclass one for interclass neighbors
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Figure 9: 	e average recognition rates versus dimension on AR.

1 − exp(−‖�� − ��‖2/�). It means that the a�nity weight can-
not only preserve local structures of data but also distinguish
between di
erent classes. 	rough the analysis of the a�nity
weight in MNMDP, its three properties can be summarized
as follows [23].

Property 1. For a given point, the a�nity weight gives more
similarity to the intraclass neighbors than the interclass ones,
when the Euclidean distances are equivalent.	is is favorable
for classi�cation.

Property 2. 	e a�nity weight can retain intraclass and
interclass similarity in certain ranges no matter how strong

the noise is, since 1 ≤ 1 + exp(−‖�� − ��‖2/�) ≤ 2 and 0 ≤1 − exp(−‖�� − ��‖2/�) ≤ 1. 	is can largely preserve local
geometric structures of data for di
erent classes.

Property 3. 	e a�nity weight can strengthen the ability
of margin augmentation and noise suppression. 	is is
explained by two aspects. One is that the close points from
di
erent classes could have smaller values of similarity and
the margin between di
erent classes can be augmented,

because 1 − exp(−‖�� − ��‖2/�) tends towards 0 with a
decrease of the Euclidean distance. 	e other is that the
a�nityweight can inhibit the noise in somedegree; that is, the
more distant points from the same class could be less similar

to each other, because exp(−‖�� − ��‖2/�) tends towards 0
with an increase of the Euclidean distance.

	e above good properties make a good supervised con-
struction of the a�nity graph, and they are well maintained
in the process of MNMDP subspace learning. 	ey can
overcome the issue that the interclass neighbors might have
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Figure 10: 	e average recognition rates of MNMDP versus�� on Musk.

the same representation as the intraclass neighbors in the
reduced subspace for the given point in LPP [52]. Based
on them, MNMDP achieves a good projection that carries
not only local geometric structures but also discriminant
information. 	us, the properties of the a�nity weight make
the MNMDP robust and e
ective for the classi�cation tasks.

In regard to classi�cation, the MNMDP can be viewed
as one method of distance metric learning [50, 51]. Once the
transformationmatrixΦ is obtained byMNMDP, the squared
distance between �� and �� in the embedded subspace can be
formulated as follows:


 (��, ��) = �����Φ��� − Φ��������2
= (�� − ��)�ΦΦ� (�� − ��)
= (�� − ��)�E(�� − ��)
= ������� − �������2�,

(26)

where E = ΦΦ�. 	us, �nding a liner transformation Φ
in MNMDP is equivalent to learning the distance metric E
implicitly. 	is is very important in pattern classi�cation.

Moreover, making the projection orthogonal (i.e., Φ�Φ =") will tend to preserve distances between any points ��
and �� in the projected subspace [53]. Due to linearity, the
overall geometry of the data will also tend to be preserved. It
should be noted that there are many distance metric learning
methods that can be used for dimensionality reduction, such
as neighborhood components analysis (NCA) [54] and large
margin nearest neighbor classi�cation (LMNNC) [55]. Since
NCA and LMNNC closely connect to the �-NN classi�er
and their objective functions and optimization solutions are
very di
erent from MNMDP, more comparative discussions
between them are beyond the scope of this paper here.

Given that data points are projected along an eigenvector�� corresponding to eigenvalue %�, it follows from (24) with

the orthogonal constraint ��� �� = 1 that
* (��) = *− (��) − *+ (��)

= ��� (6− − 6+) ��
= ��� %���
= %�.

(27)

It is clear that *(��) characterizes the margin between inter-
class and intraclass neighborhoods for all the points along
the projection �� in terms of %�, and the margin here can
be regarded as a measure for the misclassi�cation degree. If%� > 0, then *−(��) > *+(��), and samples may tend to be
correctly classi�ed. 	e larger the value of %� (s.t. %� > 0) is,
the easier the classi�cation is. In practice, we can only select
 leading eigenvectors to form the transformation matrixΦ corresponding to 
 dominant positive eigenvalues and
omit all the eigenvectors with relatively small eigenvalues. In
this way, a low-dimensional subspace can be obtained. As
reported above in our experiments, MNMDP really achieves
the best classi�cation with low dimensionality. If %� ≤ 0,
then *−(��) < *+(��), and samples may be put into wrong
classes. As a consequence, we discard those eigenvectors in
respect to nonpositive eigenvalues. It should be noted that
the classi�cation performance is seriously degraded when all
eigenvalues are nonpositive. In this case, it is di�cult to dis-
tinguish interclass and intraclass points along the projections.
To solve the problem, we can map data points into Hilbert
space with some kernel tricks. However, this is out of the
scope of this paper and will be discussed in the future work.

Based on the discussions aforementioned, the proposed
MNMDP has more discrimination for classi�cation. From
the perspective of the classi�cation, the key point is to
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Figure 11: 	e average recognition rates versus dimension on Musk.

enhance the pattern discrimination between samples from
di
erent classes of data. For the high-dimensional data, the
good way is to �nd a projection that makes the samples
from the same class compact and ones from di
erent classes
separable in the low-dimensional space. To visually verify
the superiority of MNMDP for classi�cation, we project the
sample images in HRF database (described in Section 4.1)
onto a two-dimensional subspace with the competing meth-
ods, and the samples from the �rst three subjects of HRF
in the projected space with each method are illustrated in
Figure 12. Note that, since the samples of each subject are col-
lected in two separated sessionswith di
erent variations, each
subject is clustered into two subclasses with eachmethod.We
can obviously observe that the separability of class clusters
of MNMDP is much better than that of PCA, LDA, LPP,
and UDP and the subclasses in MNMDP become more

compact. Moreover, there is no overlap between three classes
in MNMDP, compared to the other methods. Figure 12
intuitively validates the good discriminating capability of
MNMDP for classi�cation. 	e results are consistent with
the observation from the experiments in Section 4 and the
analysis in this section.

6. Conclusions

In this paper, the MNMDP introduced is a liner supervised
dimensionality reduction technique, which can well preserve
the local geometric structures of data and fully use class
information for classi�cation. In the proposed MNMDP,
we employ distinct a�nity weight for both intraclass and
interclass neighbors of all points and then keep the margin
between intraclass and interclass neighborhoods maximum
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Figure 12: Data distribution of each method in two-dimensional projection space, where the three classes are denoted by “+”, “l”, and “◻”,
respectively.
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through a liner mapping. In order to well investigate the clas-
si�cation performance of the MNMDP, our experiments are
conducted on four high-dimensional databases, in compari-
son with the competing methods: LPP, UDP, PCA, and LDA.
	rough the comprehensive experiments, it demonstrates
the e
ectiveness and robustness of the proposed MNMDP
with satisfactory performance in pattern classi�cation. In the
futurework, we plan to extend theMNMDPwith some kernel
tricks.
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