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Abstract

A compact finite difference (CFD) scheme is presented for the nonlinear Schrödinger

equation involving a quintic term. The two discrete conservative laws are obtained.

The unconditional stability and convergence in maximum norm with order O(τ 2 + h
4)

are proved by using the energy method. A numerical experiment is presented to

support our theoretical results.
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1 Introduction

The Schrödinger (NLS) equation is one of the most important equations of mathematical

physics with applications in many fields [1–4] such as plasma physics, nonlinear optics,

waterwaves, and bimolecular dynamics. There aremany studies onnumerical approaches,

including finite difference [5–11], finite element [12–14], and polynomial approximation

methods [15, 16], of the initial or initial-boundary value problems of the Schrödinger

equations. We consider the initial-boundary value problem for the NLS equation involv-

ing a quintic term:

i
∂u

∂t
+

∂
2u

∂x2
–

(

|u|2 + |u|4
)

u = f (x, t)u (xl < x < xr , 0 < t ≤ T), (1.1)

u(x, 0) = u0(x) (xl < x < xr), (1.2)

u(xl, t) = u(xr , t) = 0 (0 < t ≤ T), (1.3)

where u(x, t) is a complex function, f (x, t) is a real function, u0(x) is a prescribed smooth

function, and i2 = –1.

Computing the inner product of equation (1.1) with u and ∂u
∂t

and then taking the imagi-

nary part and the real part, respectively, the two conservative laws are obtained as follows:

Q(t) = ‖u‖2L2 =Q(0), (1.4)
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E(t) =

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

L2

+

∫ xr

xl

(

1

2
|u|4 +

1

2
|u|6

)

dx = E(0) –

∫ t

0

∫ xr

xl

f (x, t)
∂

∂t
|u|2 dxdt, (1.5)

where ‖ · ‖L2 is the L2 norm.

Zhang et al. found that the nonconservative schemes may easily show nonlinear blow-

upwhen studying forNLS equation, so they presented a conservative difference scheme in

[11]. Moreover, extensive mathematical and numerical studies have been carried out for

the NLS equations in the literature [17–28]. Zhang presented a difference scheme for the

NLS equation involving a quintic term [27], and it was proved with orderO(τ 2+h2). Then,

in [28]Wang proposed a new difference scheme for NLS equation involving a quintic term

and showed that convergence rates of the present scheme were of order O(τ 2 + h4). Wang

presented a compact finite difference scheme for theNLS equation in [22], which provided

a new thinking on the theoretical proving of a compact difference scheme. There are lots

of literature works concerning the Schrödinger equations using different treatments, but,

to the best of our knowledge, there are few results of unconditional maximum norm con-

vergence of compact difference scheme for NLS equations involving a quintic term. Thus,

the purpose of this paper is to prove maximum norm error estimates of a fourth-order

compact difference scheme for the NLS equation involving a quintic term.

The remainder of this paper is organized as follows. A fourth-order compact difference

scheme is proposed in Sect. 2. The discrete conservation laws of the difference scheme are

discussed in Sect. 3. In Sect. 4, the convergence and stability for the compact difference

scheme are proved. In the last section, numerical results will be discussed.

2 Some notations and compact finite difference scheme

For simplicity of exposition, some notations are firstly introduced. Thus, the following

notations for difference operators are used:

δtu
n
j =

unj – un–1j

τ
, δxu

n
j =

unj+1 – unj

h
, δx̄u

n
j =

unj – unj–1

h
, u

n+ 1
2

j =
un+1j + unj

2
,

δ
2
xu

n
j = δxδx̄u

n
j =

unj–1 – 2unj + unj+1

h2
, Ahu

n
j = unj +

h2

12
δ
2
xu

n
j =

1

12

(

unj–1 + 10unj + unj+1
)

,

where h =
xr–xl
J

and τ = T
N
are step sizes of space and time, respectively, and J , N are two

positive integers.

For any uuu,vvv ∈ Vh = {vvv|vvv = (v0, v1, . . . , vJ ), v0 = vJ = 0}, the inner product is defined as

(uuu,vvv) = h

J–1
∑

j=1

ujv̄j.

The discrete norms of u are defined as

‖uuu‖pp = h

J–1
∑

j=1

|uj|
p, ‖δxuuu‖2 = h

J–1
∑

j=0

|δxuj|
2, ‖uuu‖∞ = max

1≤j≤J–1
|uj|.

For simplicity, we define {Un
j } as the exact solution and {unj } as the numerical one. Let

C denote a positive constant independent of discretization parameters, but it may have
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different values at different occurrences. For the exact solution of the initial-boundary

value problem (1.1)–(1.3), we assume that

max
{
∥

∥Un
∥

∥,
∥

∥δxU
n
∥

∥,
∥

∥Un
∥

∥

∞

}

≤ C. (2.1)

Now, we present the following compact finite difference scheme for problem (1.1)–(1.3):

iAhδtu
n
j +

1

2
δ
2
x

(

un+1j + unj
)

–
1

4
Ah

[(
∣

∣un+1j

∣

∣

2
+

∣

∣unj
∣

∣

2)(
un+1j + unj

)]

–
1

6
Ah

[(
∣

∣un+1j

∣

∣

4
+

∣

∣un+1j

∣

∣

2∣
∣unj

∣

∣

2
+

∣

∣unj
∣

∣

4)(
un+1j + unj

)]

= Ah

[

f n+
1
2
un+1j + unj

2

]

(j = 1, 2, . . . , J – 1,n = 1, 2, . . . ,N – 1), (2.2)

un0 = unJ = 0 (n = 1, 2, . . . ,N), (2.3)

u0J = u0(xj) (j = 1, 2, . . . , J). (2.4)

Let

uuun =
(

un0 ,u
n
1 , . . . ,u

n
J–1

)T
,

∣

∣uuun+1
∣

∣

2
+

∣

∣uuun
∣

∣

2
= diagdiagdiag

(
∣

∣un+10

∣

∣

2
+

∣

∣un0
∣

∣

2
, . . . ,

∣

∣un+1J–1

∣

∣

2
+

∣

∣unJ–1
∣

∣

2)
.

(2.2) can be rewritten as

iMMMδtuuu
n +

1

2
δ
2
x

(

uuun+1 +uuun
)

–
1

4
MMM

(
∣

∣uuun+1
∣

∣

2
+

∣

∣uuun
∣

∣

2)(
uuun+1 +uuun

)

–
1

6
MMM

(
∣

∣uuun+1
∣

∣

4
+

∣

∣uuun
∣

∣

2∣
∣uuun+1

∣

∣

2
+

∣

∣uuun
∣

∣

4)(
uuun+1 +uuun

)

=MMMf n+
1
2
uuun+1 +uuun

2
,

n = 1, 2, . . . ,N – 1,

where the matrixM is defined by

MMM =
1

12

⎛

⎜

⎜

⎜

⎜

⎝

10 1 0 · · · 0

1 10 1 · · · 0

. . .
. . .

. . .

0 · · · 0 1 10

⎞

⎟

⎟

⎟

⎟

⎠

(J–1)×(J–1)

.

MMM is a tridiagonal symmetric matrix, and there is a symmetric positive definite matrixHHH

such thatHHH =MMM–1. Thus, the compact finite difference scheme (2.2)–(2.4) can be rewritten

as the following matrix equation:

iδtuuu
n +

1

2
HHHδ

2
x

(

uuun+1 +uuun
)

–
1

4

(
∣

∣uuun+1
∣

∣

2
+

∣

∣uuun
∣

∣

2)(
uuun+1 +uuun

)

–
1

6

(
∣

∣uuun+1
∣

∣

4
+

∣

∣uuun+1
∣

∣

2∣
∣uuun

∣

∣

2
+

∣

∣uuun
∣

∣

4)(
uuun+1 +uuun

)

= fff n+
1
2
uuun+1 +uuun

2

(n = 1, 2, . . . ,N – 1), (2.5)
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un0 = unJ = 0 (n = 1, 2, . . . ,N), (2.6)

u0J = u0(xj) (j = 0, 1, 2, . . . , J). (2.7)

3 Some useful lemmas and discrete conservation laws

Lemma 3.1 ([29]) For any two mesh functions uuu,vvv ∈ Vh, there is

h

J–1
∑

j=1

(

δ
2
xuj

)

v̄j = –h

J–1
∑

j=1

(δxuj)(δxv̄j).

Lemma 3.2 ([22]) For any real symmetric positive definite matrices HHH , we have

Re
(

HHHδ
2
x

(

uuun+1 +uuun
)

,uuun+1 –uuun
)

= –
(
∥

∥RRRδxuuu
n+1

∥

∥

2
–

∥

∥RRRδxuuu
n
∥

∥

2)
,

where RRR is obtained by the Cholesky decomposition for HHH , denoted as RRR = chol(HHH).

Theorem 3.1 The difference scheme (2.2)–(2.4) is conservative in the sense

Qn =
∥

∥uuun
∥

∥ =Qn–1 = · · · =Q0, (3.1)

En =
∥

∥RRRδxuuu
n
∥

∥

2
+
1

2

∥

∥uuun
∥

∥

4

4
+
1

3

∥

∥uuun
∥

∥

6

6
+ h

J–1
∑

j=1

f
n– 1

2
j

∣

∣unj
∣

∣

2

= En–1 + h

J–1
∑

j=1

(

f
n– 1

2
j – f

n– 3
2

j

)
∣

∣unj
∣

∣

2

= E0 +

n
∑

l=1

J–1
∑

j=1

(

f
l– 1

2
j – f

l– 3
2

j

)
∣

∣unj
∣

∣

2
h, (3.2)

for n = 1, 2, . . . ,N , where Qn is discrete mass, En is discrete energy.

Proof Computing the inner product of (2.2) with uuun+1 +uuun and then taking the imaginary

part, we obtain

I1 + I2 – I3 – I4 = I5,

where

I1 = Im
(

iδtuuu
n,uuun+1 +uuun

)

= Re
(

δtuuu
n,uuun+1 +uuun

)

=
1

τ

(
∥

∥uuun+1
∥

∥

2
–

∥

∥uuun
∥

∥

2)
,

I2 =
1

2
Im

(

HHHδ
2
x

(

uuun+1 +uuun
)

,uuun+1 +uuun
)

= –2 Im
(

RRRδxuuu
n+ 1

2 ,RRRδxuuu
n+ 1

2
)

= 0,

I3 =
1

4
Im

((
∣

∣uuun+1
∣

∣

2
+

∣

∣uuun
∣

∣

2)(
uuun+1 +uuun

)

,uuun+1 +uuun
)

= 0,

I4 =
1

6
Im

((
∣

∣uuun+1
∣

∣

4
+

∣

∣uuun+1
∣

∣

2∣
∣uuun

∣

∣

2
+

∣

∣uuun
∣

∣

4)(
uuun+1 +uuun

)

,uuun+1 +uuun
)

= 0,

I5 =
1

2
Im

(

fff n+
1
2
(

uuun+1 +uuun
)

,uuun+1 +uuun
)

= 0.
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We can obtain

∥

∥uuun+1
∥

∥

2
–

∥

∥uuun
∥

∥

2
= 0.

Then we have

Qn =
∥

∥uuun
∥

∥ =Qn–1 = · · · =Q0.

Computing the inner product of (2.2) with uuun+1 –uuun, and then taking the real part, we get

I6 + I7 – I8 – I9 = I10,

where

I6 = Re τ
(

iδtuuu
n, δtuuu

n
)

= 0,

I7 =
1

2
Re

(

HHHδ
2
x

(

uuun+1 +uuun
)

,uuun+1 –uuun
)

= –
1

2

(
∥

∥RRRδxuuu
n+1

∥

∥

2
–

∥

∥RRRδxuuu
n
∥

∥

2)
,

I8 =
1

4
Re

((
∣

∣uuun+1
∣

∣

2
+

∣

∣uuun
∣

∣

2)(
uuun+1 +uuun

)

,uuun+1 –uuun
)

=
1

4

(
∥

∥uuun+1
∥

∥

4

4
–

∥

∥uuun
∥

∥

4

4

)

,

I9 =
1

6
Re

((
∣

∣uuun+1
∣

∣

4
+

∣

∣uuun+1
∣

∣

2∣
∣uuun

∣

∣

2
+

∣

∣uuun
∣

∣

4)(
uuun+1 +uuun

)

,uuun+1 –uuun
)

=
1

6

(
∥

∥uuun+1
∥

∥

6

6
–

∥

∥uuun
∥

∥

6

6

)

,

I10 =
1

2
Re

(

fff n+
1
2
(

uuun+1 +uuun
)

,uuun+1 –uuun
)

=
h

2

J–1
∑

j=1

f n+
1
2
(∣

∣un+1j

∣

∣

2
–

∣

∣unj
∣

∣

2)
.

Let

En =
∥

∥RRRδxuuu
n
∥

∥

2
+
1

2

∥

∥uuun
∥

∥

4

4
+
1

3

∥

∥uuun
∥

∥

6

6
+ h

J–1
∑

j=1

f
n– 1

2
j

∣

∣unj
∣

∣

2
.

We can obtain

En = En–1 + h

J–1
∑

j=1

(

f
n– 1

2
j – f

n– 3
2

j

)
∣

∣unj
∣

∣

2
.

Summing up for n, we have

En = E0 +

n
∑

l=1

J–1
∑

j=1

(

f
l– 1

2
j – f

l– 3
2

j

)
∣

∣unj
∣

∣

2
h.

�

4 Numerical analysis

To obtain the error estimate in the maximum norm, we need the following lemmas.

Lemma 4.1 (Discrete Sobolev’s inequality [30]) Suppose that uj is mesh functions. Given

ε ≥ 0, there exists a constant C dependent on ε such that

‖u‖∞ ≤ ε‖δxu‖ +C‖u‖.
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Lemma 4.2 (Gronwall’s inequality [30]) Suppose that the nonnegative mesh function

{un|n = 0, 1, 2, . . . ,N ,Nτ = T} satisfies the inequality

un ≤ A + τ

n
∑

l=1

Bku
k ,

whereAandBk (k = 1, 2, . . . ,N ,Nτ = T ) satisfying the inequality are nonnegative constants.

Then, for any 0≤ n≤ N , there is

∥

∥un
∥

∥

∞
≤ Ae2τ

∑N
k=1 Bk ,

where τ is sufficiently small such that τ (maxk=1,2,...,NBk) ≤
1
2
.

Lemma 4.3 ([22]) For any real symmetric positive definite matricesHHH , there exist two pos-

itive numbers C∗ and C∗ such that

C∗

∥

∥uuun
∥

∥

2
≤

(

HHHuuun,uuun
)

≤ C∗
∥

∥uuun
∥

∥

2
.

Theorem 4.1 Suppose that |f (x, t)| ≤ M1, |ft(x, t)| ≤ M2, u0 ∈ H1
0 , then, for any n (0 ≤

nτ ≤ T ), the following estimates hold:

∥

∥uuun
∥

∥ ≤ C,
∥

∥uuun
∥

∥

∞
≤ C.

Proof From (3.1), we have

∥

∥uuun
∥

∥ ≤ C. (4.1)

From (3.2), we obtain

∥

∥RRRδxuuu
n
∥

∥

2
+
1

2

∥

∥uuun
∥

∥

4

4
+
1

3

∥

∥uuun
∥

∥

6

6
+ h

J–1
∑

j=1

f
n– 1

2
j

∣

∣unj
∣

∣

2
= E0 +

n
∑

l=1

J–1
∑

j=1

(

f
l– 1

2
j – f

l– 3
2

j

)
∣

∣unj
∣

∣

2
h,

thus, we have

∥

∥RRRδxuuu
n
∥

∥

2
≤ E0 +

n
∑

l=1

J–1
∑

j=1

(

f
l– 1

2
j – f

l– 3
2

j

)
∣

∣unj
∣

∣

2
h – h

J–1
∑

j=1

f
n– 1

2
j

∣

∣unj
∣

∣

2
.

On the one hand, from (4.1), we have

∥

∥RRRδxuuu
n
∥

∥

2
≤ E0 +

n
∑

l=1

J–1
∑

j=1

(

f
l– 1

2
j – f

l– 3
2

j

)
∣

∣unj
∣

∣

2
h – h

J–1
∑

j=1

f
n– 1

2
j

∣

∣unj
∣

∣

2

≤
∣

∣E0
∣

∣ +M1h

J–1
∑

j=1

∣

∣unj
∣

∣

2
+ h

n
∑

l=1

J–1
∑

j=1

∣

∣

∣

∣

(

∂f

∂t

)

(j,l+θ )

∣

∣

∣

∣

·
∣

∣ulj
∣

∣

2

≤ C.
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On the other hand, from Lemma 4.3, we have

∥

∥RRRδxuuu
n
∥

∥

2
=

(

HHHδxuuu
n, δxuuu

n
)

≥ C∗

∥

∥δxuuu
n
∥

∥

2
.

Then we see that

∥

∥δxuuu
n
∥

∥ ≤ C. (4.2)

From (4.1)–(4.2) and Lemma 4.1, we obtain

∥

∥uuun
∥

∥

∞
≤ C. (4.3)

�

Suppose that the truncation error

rrrn =
(

rn0 , r
n
1 , . . . , r

n
J–1

)T
∈ Vh,

then we have

rrrn = iδtUUU
n +

1

2
HHHδ

2
x

(

UUUn+1 +UUUn
)

–
1

4

(
∣

∣UUUn+1
∣

∣

2
+

∣

∣UUUn
∣

∣

2)(
UUUn+1 +UUUn

)

–
1

6

(
∣

∣UUUn+1
∣

∣

4
+

∣

∣UUUn
∣

∣

2∣
∣UUUn+1

∣

∣

2
+

∣

∣UUUn
∣

∣

4)(
UUUn+1 +UUUn

)

– fff n+
1
2
UUUn+1 +UUUn

2
. (4.4)

According to Taylor’s expansion, the following can be easily obtained.

Lemma 4.4 Suppose that u0(x) ∈H1
0 , u(x, t) ∈ C6,3, then we have

∣

∣rnj
∣

∣ ≤O
(

h4 + τ
2
)

, (4.5)

∣

∣δtr
n
j

∣

∣ ≤ O
(

h4 + τ
2
)

. (4.6)

Lemma 4.5 [[22]] For u = {u0,u1, . . . ,un,un+1} and g = {g0, g1, . . . , gn–1, gn}, we have

∣

∣

∣

∣

∣

2τ

n
∑

l=0

glδtu
l

∣

∣

∣

∣

∣

≤
∣

∣u0
∣

∣

2
+ τ

n
∑

l=1

∣

∣ul
∣

∣

2
+

∣

∣un+1
∣

∣

2
+

∣

∣g0
∣

∣

2
+ τ

n–1
∑

l=0

∣

∣δtg
l
∣

∣

2
+

∣

∣gn
∣

∣

2
. (4.7)

Theorem 4.2 Suppose that the conditions of Theorem 4.1 and Lemma 4.4 are satisfied,

then the numerical solution of scheme (2.2)–(2.4) converges to the solution of problem (1.1)–

(1.3) with order O(h4 + τ
2) in the discrete ‖ · ‖∞ norm.

Proof Let

eeen =UUUn –uuun.

Subtracting (2.5) from (4.4), we obtain

rrrn = iδteee
n +

1

2
HHHδ

2
x

(

eeen+1 + eeen
)

–
1

4
FFFn –

1

6
GGGn – fff n+

1
2
eeen+1 + eeen

2
, (4.8)
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where

FFFn =
(
∣

∣UUUn+1
∣

∣

2
+

∣

∣UUUn
∣

∣

2)(
UUUn+1 +UUUn

)

–
(
∣

∣uuun+1
∣

∣

2
+

∣

∣uuun
∣

∣

2)(
uuun+1 +uuun

)

,

GGGn =
(
∣

∣UUUn+1
∣

∣

4
+

∣

∣UUUn+1
∣

∣

2∣
∣UUUn

∣

∣

2
+

∣

∣UUUn
∣

∣

4)(
UUUn+1 +UUUn

)

–
(
∣

∣uuun+1
∣

∣

4
+

∣

∣uuun+1
∣

∣

2∣
∣uuun

∣

∣

2
+

∣

∣uuun
∣

∣

4)(
uuun+1 +uuun

)

,

FFFn =
(
∣

∣UUUn+1
∣

∣

2
+

∣

∣UUUn
∣

∣

2)(
UUUn+1 +UUUn

)

–
(
∣

∣uuun+1
∣

∣

2
+

∣

∣uuun
∣

∣

2)(
uuun+1 +uuun

)

=
[(

∣

∣UUUn+1
∣

∣

2
+

∣

∣UUUn
∣

∣

2)
–

(
∣

∣uuun+1
∣

∣

2
+

∣

∣uuun
∣

∣

2)](
UUUn+1 +UUUn

)

+
(
∣

∣uuun+1
∣

∣

2
+

∣

∣uuun
∣

∣

2)(
eeen+1 + eeen

)

=
[(

UUUn+1ēeen+1 + eeen+1ŪUU
n+1)

+
(

UUUnēeen + eeenŪUU
n)](

UUUn+1 +UUUn
)

+
(
∣

∣uuun+1
∣

∣

2

+
∣

∣uuun
∣

∣

2)(
eeen+1 + eeen

)

.

(4.9)

Noting that Fn
0 = Fn

J = 0, from (2.1), (4.9), and Theorem 4.1, we have

∥

∥FFFn
∥

∥

2
≤ C

(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2)
. (4.10)

Similarly, we obtain

∥

∥δxFFF
n
∥

∥

2
≤ C

(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2
+

∥

∥δxeee
n
∥

∥

2
+

∥

∥δxeee
n+1

∥

∥

2)
, (4.11)

GGGn =
(
∣

∣UUUn+1
∣

∣

4
+

∣

∣UUUn+1
∣

∣

2∣
∣UUUn

∣

∣

2
+

∣

∣UUUn
∣

∣

4)(
UUUn+1 +UUUn

)

–
(
∣

∣uuun+1
∣

∣

4
+

∣

∣uuun+1
∣

∣

2∣
∣uuun

∣

∣

2
+

∣

∣uuun
∣

∣

4)(
uuun+1 +uuun

)

=
[(

∣

∣UUUn+1
∣

∣

4
+

∣

∣UUUn+1
∣

∣

2∣
∣UUUn

∣

∣

2
+

∣

∣UUUn
∣

∣

4)
–

(
∣

∣uuun+1
∣

∣

4
+

∣

∣uuun+1
∣

∣

2∣
∣uuun

∣

∣

2
+

∣

∣uuun
∣

∣

4)]

×
(

UUUn+1 +UUUn
)

+
(
∣

∣uuun+1
∣

∣

4
+

∣

∣uuun+1
∣

∣

2∣
∣uuun

∣

∣

2
+

∣

∣uuun
∣

∣

4)(
eeen+1 + eeen

)

=
[(

∣

∣UUUn+1
∣

∣

2
+

∣

∣UUUn+1
∣

∣

2)(
UUUn+1ēeen+1 + eeen+1ŪUU

n+1)
+

(
∣

∣UUUn
∣

∣

2
+

∣

∣UUUn
∣

∣

2)(
UUUnēeen + eeenŪUU

n)

+
∣

∣uuun
∣

∣

2(
UUUn+1ēeen+1 + eeen+1ūuun+1

)

+
∣

∣uuun+1
∣

∣

2(
UUUnēeen + eeenūuun

)](

UUUn+1 +UUUn
)

+
(
∣

∣uuun+1
∣

∣

4
+

∣

∣uuun+1
∣

∣

2∣
∣uuun

∣

∣

2
+

∣

∣uuun
∣

∣

4)(
eeen+1 + eeen

)

. (4.12)

Similarly, we obtain

∥

∥GGGn
∥

∥

2
≤ C

(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2)
, (4.13)

∥

∥δxGGG
n
∥

∥

2
≤ C

(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2
+

∥

∥δxeee
n
∥

∥

2
+

∥

∥δxeee
n+1

∥

∥

2)
. (4.14)

Computing the inner product of (4.9) with en+1+en and taking the imaginary part, we have

Im
(

rrrn,eeen + eeen+1
)

= Im
(

iδteee
n,eeen + eeen+1

)

+ Im
(

HHHδ
2
x

(

eeen + eeen+1
)

,eeen + eeen+1
)

–
1

2
Im

(

FFFn,eeen + eeen+1
)

–
1

3
Im

(

GGGn,eeen + eeen+1
)

–
1

2
Im

(

fff n+
1
2
(

eeen + eeen+1
)

,eeen + eeen+1
)

. (4.15)
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For each term on the right-hand side of (4.15), we bound them as follows:

Im
(

iδteee
n,eeen + eeen+1

)

=
1

τ

(
∥

∥eeen+1
∥

∥

2
–

∥

∥eeen
∥

∥

2)
. (4.16)

As to the second term

Im
(

HHHδ
2
x

(

eeen + eeen+1
)

,eeen + eeen+1
)

= 4 Im
(

RRRδxeee
n+ 1

2 ,RRRδxeee
n+ 1

2
)

= 0. (4.17)

For the last three terms on the right-hand side of (4.15), by using the Cauchy–Schwarz

inequality, we obtain

∣

∣

∣

∣

1

2
Im

(

FFFn,eeen + eeen+1
)

∣

∣

∣

∣

≤
1

4

(

∥

∥FFFn
∥

∥

2
+
1

2

(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2)
)

≤ C
(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2)
, (4.18)

∣

∣

∣

∣

1

3
Im

(

GGGn,eeen + eeen+1
)

∣

∣

∣

∣

≤
1

6

(

∥

∥GGGn
∥

∥

2
+
1

2

(∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2)
)

≤ C
(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2)
, (4.19)

1

2
Im

(

fff n+
1
2
(

eeen + eeen+1
)

,eeen + eeen+1
)

≤ C
(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2)
. (4.20)

For the term on the left-hand side of (4.15), we have

Im
(

rrrn,eeen + eeen+1
)

≤
1

2

(

∥

∥rrrn
∥

∥

2
+
1

2

(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2)
)

. (4.21)

From (4.15)–(4.21), we can obtain

∥

∥eeen+1
∥

∥

2
–

∥

∥eeen
∥

∥

2
≤ τ

(
∥

∥rrrn
∥

∥

2
+Cτ

(
∥

∥eeen
∥

∥

2
+

∥

∥eeen+1
∥

∥

2))
. (4.22)

Summing (4.22) up for n, we have

∥

∥eeen
∥

∥

2
≤

[

O
(

h4 + τ
2
)]2

+Cτ

n
∑

l=1

(
∥

∥eeel
∥

∥

2
+

∥

∥eeel+1
∥

∥

2)
. (4.23)

When τ is small enough, it follows from Lemma 4.2 that

∥

∥eeen
∥

∥ ≤ O
(

h4 + τ
2
)

. (4.24)

Computing the inner product of (4.8) with δteee
n and taking the real part, we have

Re
(

rrrn, δteee
n
)

= Re
(

iδteee
n, δteee

n
)

+
1

2
Re

(

HHHδ
2
x

(

eeen + eeen+1
)

, δteee
n
)

–
1

4
Re

(

FFFn, δteee
n
)

–
1

6
Re

(

GGGn, δteee
n
)

–
1

2
Re

(

fff n+
1
2
(

eeen + eeen+1
)

, δteee
n
)

. (4.25)

For each term on the right-hand side of (4.25), we bound them as follows:

Re
(

iδteee
n, δteee

n
)

= 0. (4.26)
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For the second term, it follows from Lemma 3.1 that

1

2
Re

(

HHHδ
2
x

(

eeen + eeen+1
)

, δteee
n
)

=
–1

2τ

(
∥

∥RRRδxeee
n+1

∥

∥

2
–

∥

∥RRRδxeee
n
∥

∥

2)
. (4.27)

As to the third term, it follows from (4.8) that

δteee
n = i

1

2
HHHδ

2
x

(

eeen+1 + eeen
)

–
i

4
FFFn –

i

6
GGGn – ifff n+

1
2
eeen+1 + eeen

2
– irrrn. (4.28)

By using the Cauchy–Schwarz inequality, we obtain

Re
(

FFFn, δteee
n
)

=
1

2
Re

(

FFFn, iHHHδ
2
x

(

eeen+1 + eeen
)

–
i

4
FFFn –

i

6
GGGn – ifff n+

1
2
eeen+1 + eeen

2
– irrrn

)

=
–1

2
Im

(

FFFn,HHHδ
2
x

(

eeen+1 + eeen
))

+
1

6
Im

(

FFFn,GGGn
)

+ Im

(

FFFn, fff n+
1
2
eeen+1 + eeen

2

)

+ Im
(

FFFn,rrrn
)

=
1

2
Im

(

RRRδxFFF
n,RRRδx

(

eeen+1 + eeen
))

+
1

6
Im

(

FFFn,GGGn
)

+ Im

(

FFFn, fff n+
1
2
eeen+1 + eeen

2

)

+ Im
(

FFFn,rrrn
)

, (4.29)

where

Im
(

RRRδxFFF
n,RRRδx

(

eeen+1 + eeen
))

≤
1

2

(

∥

∥RRRδxFFF
n
∥

∥

2
+
1

2

(
∥

∥RRRδxeee
n+1

∥

∥

2
+

∥

∥RRRδxeee
n
∥

∥

2)
)

≤ C1

(
∥

∥δxFFF
n
∥

∥

2
+

∥

∥δxeee
n+1

∥

∥

2
+

∥

∥δxeee
n
∥

∥

2)

≤ C
(
∥

∥eeen+1
∥

∥

2
+

∥

∥eeen
∥

∥

2
+

∥

∥RRRδxeee
n+1

∥

∥

2
+

∥

∥RRRδxeee
n
∥

∥

2)
,

Im

(

FFFn, fff n+
1
2
eeen+1 + eeen

2

)

≤
1

2

(

∥

∥FFFn
∥

∥

2
+
M1

2

(
∥

∥eeen+1
∥

∥

2
+

∥

∥eeen
∥

∥

2)
)

≤ C
(
∥

∥eeen+1
∥

∥

2
+

∥

∥eeen
∥

∥

2)
,

Im
(

FFFn,rrrn
)

≤
1

2

(
∥

∥FFFn
∥

∥

2
+

∥

∥rrrn
∥

∥

2)
≤ C

(
∥

∥eeen+1
∥

∥

2
+

∥

∥eeen
∥

∥

2
+

∥

∥rrrn
∥

∥

2)
,

Im
(

FFFn,GGGn
)

≤
1

2

(
∥

∥FFFn
∥

∥

2
+

∥

∥GGGn
∥

∥

2)
≤ C

(
∥

∥eeen+1
∥

∥

2
+

∥

∥eeen
∥

∥

2)
.

Then we have

Re
(

FFFn, δteee
n
)

≤ C
(
∥

∥eeen+1
∥

∥

2
+

∥

∥eeen
∥

∥

2
+

∥

∥rrrn
∥

∥

2
+

∥

∥RRRδxeee
n+1

∥

∥

2
+

∥

∥RRRδxeee
n
∥

∥

2)
. (4.30)

Similarly, we obtain

Re
(

GGGn, δteee
n
)

≤ C
(
∥

∥eeen+1
∥

∥

2
+

∥

∥eeen
∥

∥

2
+

∥

∥rrrn
∥

∥

2
+

∥

∥RRRδxeee
n+1

∥

∥

2
+

∥

∥RRRδxeee
n
∥

∥

2)
, (4.31)
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Re

(

fff n+
1
2
eeen+1 + eeen

2
, δteee

n

)

≤ C
(
∥

∥eeen+1
∥

∥

2
+

∥

∥eeen
∥

∥

2
+

∥

∥rrrn
∥

∥

2
+

∥

∥RRRδxeee
n+1

∥

∥

2
+

∥

∥RRRδxeee
n
∥

∥

2)
. (4.32)

From (4.25)–(4.32), we can obtain

∥

∥RRRδxeee
n+1

∥

∥

2
–

∥

∥RRRδxeee
n
∥

∥

2

≤ τCτ
(
∥

∥RRRδxeee
n
∥

∥

2
+

∥

∥RRRδxeee
n+1

∥

∥

2)
) + Re

(

rrrn, δteee
n
)

+ τ
[

O
(

h4 + τ
2
)]2

. (4.33)

Summing (4.33) up for n, we obtain

∥

∥eeen
∥

∥

2
≤ Cτ

[

O
(

h4 + τ
2
)]2

+Cτ

n
∑

l=1

(
∥

∥RRRδxeee
l
∥

∥

2
+

∥

∥RRRδxeee
l+1

∥

∥

2)
)

+Cτ

n
∑

l=1

Re
(

rrrl, δteee
l
)

. (4.34)

From Lemma 4.4 and Lemma 4.5, we have

∣

∣

∣

∣

∣

τ Re

n
∑

l=1

Re
(

rrrl, δteee
l
)

∣

∣

∣

∣

∣

≤
[

O
(

h4 + τ
2
)]2

. (4.35)

Substituting (4.35) into (4.34) and applying the discrete Gronwall inequality when taking

τ sufficiently small, we have

∥

∥RRRδxeee
n
∥

∥ ≤
[

O
(

h4 + τ
2
)]

. (4.36)

Then, from Lemma 4.3, we have

∥

∥δxeee
n
∥

∥ ≤
[

O
(

h4 + τ
2
)]

. (4.37)

From (4.2) and (4.34), and using Lemma 4.1, we have

∥

∥eeen
∥

∥

∞
≤

[

O
(

h4 + τ
2
)]

. (4.38)

�

Similarly, we can prove the stability of the difference solution.

Theorem 4.3 Under the conditions of Theorem 4.2, the solution of the difference scheme

(2.2)–(2.4) is unconditionally stable for initial data in the ‖ · ‖∞ norm.

5 Numerical experiment

In this section, we consider the following problem:

i
∂u

∂t
+

∂
2u

∂x2
–

(

|u|2 + |u|4
)

u

=
[

4(x – 2t)2 – e–2(x–2t)
2
– e–4(x–2t)

2]

u (–15 < x < 15, 0 < t ≤ 1), (5.1)



Hu and Hu Journal of Inequalities and Applications  ( 2018)  2018:180 Page 12 of 15

u(x, 0) = e–x
2+ix (–15 < x < 15), (5.2)

u(–15, t) = u(15, t) = 0 (0 < t ≤ 1). (5.3)

An exact solution is given by

u(x, t) = e–(x–2t)
2+i(x–3t). (5.4)

For problems (5.1)–(5.3), we have the following CFD scheme:

i

τ
Ah

(

un+1j – unj
)

+
1

2
δ
2
x

(

un+1j + unj
)

–
1

4
Ah

[(
∣

∣un+1j

∣

∣

2
+

∣

∣unj
∣

∣

2)(
un+1j + unj

)]

–
1

6
Ah

[(
∣

∣un+1j

∣

∣

4
+

∣

∣un+1j

∣

∣

2∣
∣unj

∣

∣

2
+

∣

∣unj
∣

∣

4)(
un+1j + unj

)]

= Ah

[

f n+
1
2
un+1j + unj

2

]

(j = 1, 2, . . . , J – 1,n = 1, 2, . . . ,N – 1), (5.5)

un0 = unJ = 0 (n = 1, 2, . . . ,N), (5.6)

u0J = u0(xj) (j = 1, 2, . . . , J). (5.7)

In order to obtain the numerical solution un+1j , an iterative algorithm can be used. We

define the following iterative algorithm:

A
n+1(s)
j–1 u

n+1(s+1)
j–1 + B

n+1(s)
j u

n+1(s+1)
j +C

n+1(s)
j+1 u

n+1(s+1)
j+1 =D

n+1(s)
j , (5.8)

where s denotes the number of iteration, and

A
n+1(s)
j–1 =

i

12
+
r

2
–

τ

48
E
n+1(s)
j–1 –

τ

72
F
n+1(s)
j–1 –

τ

24
f
n+ 1

2
j–1 ,

C
n+1(s)
j+1 =

i

12
+
r

2
–

τ

48
E
n+1(s)
j+1 –

τ

72
F
n+1(s)
j+1 –

τ

24
f
n+ 1

2
j+1 ,

B
n+1(s)
j =

5i

6
– r –

5τ

24
E
n+1(s)
j –

5τ

36
F
n+1(s)
j –

5τ

12
f
n+ 1

2
j ,

D
n+1(s)
j =

(

i

12
–
r

2
+

τ

48
E
n+1(s)
j–1 +

τ

72
F
n+1(s)
j–1 +

τ

24
f
n+ 1

2
j–1

)

unj–1

+

(

5i

6
+ r +

5τ

24
E
n+1(s)
j +

5τ

36
F
n+1(s)
j +

5τ

12
f
n+ 1

2
j

)

unj

+

(

i

12
–
r

2
+

τ

48
E
n+1(s)
j+1 +

τ

72
F
n+1(s)
j+1 +

τ

24
f
n+ 1

2
j+1

)

unj+1.

The initial value of iteration u
n+1(0)
j = unj , when ‖un+1(s+1) – un+1(s)‖∞ ≤ ε, it is the end of

iteration (this paper has ε = 10–6).

In order to compare the efficiency of CFD scheme with reference to the scheme in [27,

28], we give their schemes

iδt̂u
n
j +

1

2
δ
2
x

(

un+1j + un–1j

)

–
1

2

∣

∣unj
∣

∣

2(
un+1j + un–1j

)

–
1

6

[(
∣

∣un+1j

∣

∣

4
+

∣

∣un+1j

∣

∣

2∣
∣un–1j

∣

∣

2
+

∣

∣un–1j

∣

∣

4)(
un+1j + un–1j

)]
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=

[

f n
un+1j + un–1j

2

]

(j = 1, 2, . . . , J – 1,n = 1, 2, . . . ,N – 1),

iδtu
n
j +

1

24

[(

–δ
2
xu

n+1
j–1 + 14δ2xu

n+1
j – δ

2
xu

n+1
j+1

)

+
(

–δ
2
xu

n
j–1 + 14δ2xu

n
j – δ

2
xu

n
j+1

)]

–
1

4

(
∣

∣un+1j

∣

∣

2
+

∣

∣unj
∣

∣

2)(
un+1j + unj

)

–
1

6

[(
∣

∣un+1j

∣

∣

4
+

∣

∣un+1j

∣

∣

2∣
∣unj

∣

∣

2
+

∣

∣unj
∣

∣

4)(
un+1j + unj

)]

=

[

f n+
1
2
un+1j + unj

2

]

,

(j = 1, 2, . . . , J – 1,n = 1, 2, . . . ,N – 1).

For convenience, we denote the one in [27] as Scheme 2, and the one in [28] as Scheme 3,

respectively.

From Fig. 1 and Fig. 2, we can see that the numerical solution of the compact scheme

and the exact solution are in good agreement. As shown in Table 1, the accuracy of CFD

Scheme is higher than that of the other schemes. As indicated in Table 2, the CPU time of

CFD Scheme has the same CPU time cost as that of Scheme 2 and Scheme 3 in computa-

Figure 1 The numerical solution with h = 0.05,

τ = 0.0025

Figure 2 The exact solution with h = 0.05,

τ = 0.0025

Table 1 Comparison of the accuracy for the numerical solutions

t CFD Scheme Scheme 2 Scheme 3

0.2 3.1712e-4 4.8000e-3 3.5170e-4

0.4 6.0713e-4 8.2000e-3 6.5370e-4

0.6 7.9096e-4 1.1300e-2 8.5260e-4

0.8 8.4966e-4 1.2700e-2 9.1910e-4

1.0 7.7363e-4 1.1400e-2 8.2220e-4



Hu and Hu Journal of Inequalities and Applications  ( 2018)  2018:180 Page 14 of 15

Table 2 CPU time of the three schemes

h t CFD Scheme Scheme 2 Scheme 3

0.2 0.04 0.80 s 0.81 s 0.58 s

0.1 0.01 5.83 s 6.49 s 6.23 s

0.05 0.0025 62.21 s 64.05 s 40.79 s

Table 3 Errors and convergence order at difference steps

h τ E∞(h,τ ) E∞(2h, 4τ )/E∞(h,τ )

0.2 0.04 1.3693e-2

0.1 0.01 8.4966e-4 16.12

0.05 0.0025 5.3247e-5 15.89

Figure 3 Discrete mass Q and energy E with

h = 0.1, τ = 0.01

tion. From Table 3, it is obvious that CFD Scheme is convergent in maximum norm, and

the convergence order is O(h4 + τ
2). Figure 3 indicates that the two conservations of CFD

Scheme are very good.

6 Conclusion

In this paper, a compact finite difference scheme is constructed for the nonlinear

Schrödinger equation involving a quintic term. The discrete maximum norm error es-

timates show that the proposed schemes are in second and fourth order accurate in time

and space, respectively. In numerical experiment, numerical results are carried out to

confirm the theoretical analysis.
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