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Maximum Norm Estimates in the Finite Element
Method on Plane Polygonal Domains.

Part 2, Refinements
By A. H. Schatz and L. B. Wahlbin*

Abstract.   The finite element method is considered when applied to a model

Dirichlet problem on a plane polygonal domain.   Local error estimates are given

for the case when the finite element partitions are refined in a systematic fashion

near corners.

0.  Introduction.  We assume that the reader is familiar with Part 1, [2], of this
paper; some notation is briefly recollected in Section 1. General references to the lit-
erature were given in the Bibliography of Part 1.  Of these references, the following
are particularly relevant to our present situation:   Babuska [1], Babuska and Aziz [2],
Babuska and Rheinboldt [4], Babuska and Rosenzweig [5], Eisenstat and Schultz
[11], Thatcher [36].

Let Í2 be a bounded simply connected plane polygonal domain with interior an-
gles 0 < a. < • • • < aM < 2rr, and consider the Dirichlet problem

(O!) -Au=f   in Í2,

u = 0    on 9Í2,

where /is a given, sufficiently smooth, function.
To solve this problem numerically, let SH = Sh(Çl), 0 < h < 1, be a one param-° i i

eter family of finite element spaces, all subspaces of 77 (£2) n W„(£l).  Define the ap-
proximate solution uh £ Sh by the relation

(0.2) A(uh,x) = (fX)    for all x SS",

where A(v, w) = /n Vu • Vw dx and (v, w) = f^-w dx.
We now describe briefly a representative result from Part 1 concerning the local

rate of convergence for the finite element solution. Let r > 2 denote the optimal or-
der of the parameter h to which the spaces Sh can approximate smooth functions in
L   norms.  Furthermore, let ÍL, / = 1.M, he the intersection of Í2 with a disc
of radius 7?. centered at the /th vertex and such that Í2y- contains no other vertex, and
set i_0 = -7\(Ut^iH).  Also, put ßj = ../a,-.

In Part 1 we showed that with e > 0 arbitrarily small (see Part 1, Theorem 4.1
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466 A. H. SCHATZ AND L. B. WAHLBIN

for the precise hypotheses),

^-uhh00(ilj)<Ceh ' .      j=l,...,M,

and
II»-»   II < C hmin(r,2ßM^-e

If the mesh is globally quasi-uniform, these results are essentially sharp.
It is the purpose of the present part of the paper to consider meshes that are re-

fined in a systematic fashion near the corners, and improve upon results of Part 1,
such as the above, in this case.

We shall present the main result of this paper by means of an example problem,
thus fixing our thoughts.

We consider a family of partitions Uh, h —► 0, of fi into elements, and a family
of spaces Sh of, say, continuous piecewise polynomials on such partitions.  Assume,
for the purposes of this introduction, that for the spaces employed an interpolant x
can be chosen such that on each element r,

(0.3) ||» - xllLoo(T) < d(diam rfM^^y

Assume, also, that away from the comers, on fi0, the diameter of some element in Ylh
is comparable to h.

For simplicity, let us fix our attention on a neighborhood fiM of the vertex of
maximal angle.  We wish to describe how to perform a partition of the fi-'s so as to
ensure that

(°-4> »"-"r.ii¿oo(nM)<cy.'-e.

In general, it will be required that the diameters of the elements in Wh near the cor-
ners be less than h; we shall then call our meshes refined. We shall demand that the
refined partitions Uh have, asymptotically, no more than Ch~2 elements, i.e., apart
from the constant C, the same number as for an unrefined quasi-uniform mesh.

We emphasize that it is only for the purposes of this Introduction that we focus
attention on obtaining optimal order estimates in a neighborhood of the vertex vM of
maximal angle.  More general situations are treated in the paper.

We first consider the question of how to refine the mesh close to the vertex vM,
and we shall seek our guidelines from the approximation estimate (0.3).   Let

(0-5)   %f,* = {x£Sl:2-kRM<\x-uM\<2-k+1RM},      k=l,...,kM,

where kM is to be chosen, and set

(0.6) fiM>/ = {x G fi: \x - vM\ <2~kMRM}.

Recall (Part 1, Section 1) that \Dau(x)\ < C|jc - uM|^M"|a|_e, and thus the
fiM k are regions where the bound for derivatives of u is roughly constant.  Employ-
ing an interpolant x lead- to, by (0.3),

\\u-X\\L„<siMtk)<ChM:k(2-kfM-r-e,
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MAXIMUM NORM ESTIMATES ON PLANE POLYGONAL DOMAINS 467

where hMk denotes a local meshsize on fiM k.  Desiring the right side to be Chr~e,
we see that if ßM > r, we may take hM k — h (i.e., no refinement is necessary); where-
as if ßM < r, we should have

(0.7) hM,*<K2-kf~ßM,r).

An alternate way of expressing this is to say that on fiM k, if the element r is a
distance d away from the corner, then

(0-7)' diam r<hd1-ßM'r.

To choose kM, note that taking x = 0 (an asymptotically optimal choice), we
have

u < C2~kM^M~e^
"L-<-nM,i)

Hence, taking

(0.8) hM,i<h"lßM    and    2 "** ~/t""*

seems reasonable.  Then the innermost patch SlMj contains a few elements of size
comparable to the whole patch.

A simple calculation shows that the number of elements in a refined mesh Uh as
in (0.7), (0.8) can be taken to be asymptotically comparable to Ch"2.

Our main result is that using essentially a refinement as above around the Mth
vertex we have

(0.9) \\u-uh\\La¡(aM)<Ch^{hr +|||M-ii/l|ILp>n}

for any positive integer p.  Thus, apart from the rightmost term in (0.9), the finite ele-
ment solution mimics the pure approximation properties of Ylh and Sh.

Actually, we shall need a slightly stronger refinement than the one described in
(0.7), (0.8) in order to prove (0.9), viz., hMk < h(2~k)(1~ßMlr+S) for some positive
S. This is due to technicalities in our proof. We refer the reader to Theorem 2.1 for
the exact hypotheses.

The second term on the right of (0.9) needs to be estimated.  It contains the so-
called "pollution effects" from other corners, and if no refinements were done at the
remaining comers, the best we could say is that with p large,

lll«-",IH-P,n<C/lmin(2(-1)-2^-)-£.

For completeness, we shall show in Section 4 (and Appendix 1) that if certain mild
refinements are performed at the remaining vertices, the term can be bounded by
Chr~e, and we thus obtain our desired estimate (0.4).  Let us briefly describe the re-
finements necessary to alleviate the pollution effect.

If 0- > r/2, no refinement is necessary at that vertex.
If ßj < r/2, introduce the domains fi/>k, / = 1, . . . , M - 1, k = k0 j, . . . , k¡,

and fi;- j as in (0.5), (0.6) but with / replacing M. Choose k0j such that
(0.10) 2-fc°-/' =■ h(r'2~1 )l(r~ '"^
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468 A. H. SCHATZ AND L. B. WAHLBIN

and let the local meshsize hj k on fi. k satisfy

(0-11) hhk < ri*<r-t)p+t*-Wr'»\     k = k0J,..., kj.

Also, kj should be such that

(0.12) hu<hrl2ßi   and    2~*. - h"2ßi.

This means that (if r > 2) the refinement process can be taken to start fairly close to
the corner according to (0.10), and is less stringent than at the Mih vertex (even if 0.

= fttf)-
The conditions (0.10)—(0.12) can also be motivated from simple approximation

considerations, see Section 4.
Let us remark that if an hr~e rate of convergence is desired only on the interior

domain fi0, then the weaker kind of refinement described in (0.10)—(0.12) suffices at
each comer.

To elucidate the above, let us give three examples.
Example 0.1.  A procedure for placing the nodes in the radial direction near vM.

Consider the problem of how to place N + 1 nodes over [0, 1]   so as to obtain
an efficient approximation of the function xß (0 = ßM) with piecewise polynomials of
degree r - 1.  This problem was solved by Rice [1], who explicitly prescribed the loca-
tion of the nodes so as to obtain a good approximation, asymptotically as TV —► °°.
Essentially, the TV + 1 nodes x¡, i = 0, . . . , TV, were taken as x¡ = (ilN)rlß.

In the two dimensional situation, one can, e.g., construct a triangular mesh near
vM in the following fashion, Figure 1.  Draw TV + 1 radial lines (including the bound-
aries) from vM; along each of these mark down the TV + 1 points x¡. Then connect the
rth points on the successive radial lines, thus obtaining a cobweb-like set of quadrilat-
erals.  Now triangulate those by drawing one diagonal in each.  The family of triangu-
lations obtained in this simple way will, as TV—► °°, satisfy a maximum angle condi-
tion, but not a minimum angle one.  In order to satisfy the latter, a more complicated
construction would be necessary.

Figure 1
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MAXIMUM NORM ESTIMATES ON PLANE POLYGONAL DOMAINS 469

Let us check that the ensuing mesh satisfies (0.7)' and (0.8).  Here, h — xN -
xN_x - (riß) ■ (l/N).  Clearly,

hMJ <Cfflx(i„|)- c(^) m < Chr'ß

so that (0.8) holds.
For an element r a distance d — xi away, we have for the meshsize hT,

hT < Cmaxh.,+ 1 -x¡, -j^L)a' C(*.+ i -xt)

<Chdl^lr,

since the quantity in square brackets is bounded independently of i.  Thus, (0.7)' is
satisfied.

Example 0.2.  Piecewise quadratic elements on a triangular partition, r = 3.

Figure 2

Here ax = a2 = rr/4, a3 = • ■ • = a6 = .r/2, a7 = a8 = 77r/4. We seek a sequence of
meshes with local meshsize h in the interior such that 0(h ) convergence will occur at
fg. We find that no refinement is necessary at the vertices u. • ■ • v6.  At v7, a mild
refinement according to (0.10)—(0.12) is required, and in Figure 2 we have displayed
2~fco,7 = h1120, i.e. the distance where the refinement starts, and h7 ¡ = h21l&, the
smallest meshsize employed right at the vertex u7.   Finally, at i>8 we refine according
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470 A. H. SCHATZ AND L. B. WAHLBIN

to (0.7) and (0.8) starting a unit distance away from the corner; again we have dis-
played in the figure the innermost meshsize, ft21'4.

Example 0.3.  Piecewise bilinear functions on a rectangular partition, r = 2.

-h3v,

v,

Figure 3

Here a. = • • • = as = 7r/2, a6 = 3rr/2. To obtain h ~e convergence at v6, no refinement
is necessary at the other comers, whereas at v6 one needs to refine so that the inner-
most meshsize is ~ h3.

Note that if the mesh is built up in a tensor-product fashion as indicated in Fig-
ure 3, then it will not be locally quasi-uniform.  In fact, the "thinnest" elements are
found away from the comers.  Our theory still applies in this situation.

Incidentally, in this example the convergence rate will be /z2_e on the whole of
fi, without any refinements at the vertices t>. • • • vs.

Remark. If the meshsize is roughly halved on each adjoining fiM k, i.e., hM k
— hl~k, then the corresponding refinement satisfies (0.7). However, in this case the
number of elements will be asymptotically comparable to C7._2log l//z.

To attain an hr rate of convergence one may sometimes be led to rather small
meshsizes at the vertices; cf. Example 0.2.  In Section 3 we shall give a corresponding
analysis when an asymptotic convergence rate of hs, s < r, is desired.  As in (0.10)
above, we find that the refinement may then be started closer to the comer than the
unit distance demanded when optimal convergence is sought.  In this case of subop-
timal refinements we shall also consider briefly (in two examples, Section 5) the de-
termination of the rate of convergence as a function of the distance to the vertex, and
the calculation of stress intensity factors.  Similar investigations are given in Part 1,
Section 6, where the results are sharp for meshes where all the elements are roughly
of size h.
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MAXIMUM NORM ESTIMATES ON PLANE POLYGONAL DOMAINS 471

In this Introduction we have considered refinements based on approximation in
the maximum norm.  One can also base the refinement procedure on approximation
properties in other norms; our analysis still applies to give maximum norm estimates.
As an example, if one uses the energy norm and aims for optimal hr~l convergence in
that norm, one obtains a refinement which is suboptimal in our sense, with s = r - 1.

Finally, let us emphasize that the local estimate (0.9) applies to other problems
than the Dirichlet problem discussed here.  For example, outside of fiM the boundary
does not have to be polygonal, nor do the boundary conditions have to be of Dirichlet
type.  The second term on the right has to be estimated in each case.

Outline of the Paper.   In Section 1 we recall some notation.  The main result of
the paper is stated in Section 2 (its proof is given in Section 6).  There we describe the
refinements necessary to obtain (0.9), i.e., optimal order 0(hr) convergence at a cor-
ner, not counting pollution.  In Section 3 the same question is considered when sub-
optimal 0(hs) order, s < r, convergence is desired—again not heeding pollution.  The
pollution effect is dealt with in Section 4.  Section 5 contains examples of suboptimal
refinements at one comer where an overall refinement is made to give optimal converg-
ence in the interior.  The question of the dependence of the rate of convergence at a
point on its distance to the vertex is investigated.

1.  Notation.  We first recall relevant terminology from Part 1, and then intro-
duce some new notation.

For Dx CD CÜ, define
dist^T),, D) = inf dist(x, bD\(W n 3fi)),

*" xGbDx\(dDxndn)

and let D. •$ D mean that Dx Ç D with dist^(7),, D) > 0.
For D C fi we set

and
Hp(D) = {v G 77"(D): v = 0 on 373 n 3fi}

HP(D) ={.£ HP(D): v = 0 in a neighborhood of 3D\(97) n 3fi)}.

The spaces C°°(7J), C°°(D) and Sh(D) are defined in a similar fashion.
For p < 0, set

"'D~    7      IMLP,D'
í6C"(D)

»p,D = SUP ("»?)
•».,       <„      ML.,,//

V>G C    (D)n C    (D)

where || • ||_p D is the norm in H~P(D). Note that C°°(fi)= C°°(fi).
We set ßj = Tr/ctj, j - 1, . . . , M.
Let

(1.1) nf= {xeñ: \x-Vj\<Rj},     j=\,...,M,
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472 A. H. SCHATZ AND L. B. WAHLBIN

for some 7?- such that fiy contains no other vertex than v¡.  Also, for some 7?. < /?.-,

(1 -2) fiy = {x G fi: \x - Vj | < Rj}.

Relative to fi-, we introduce the following domains, some of which were already
described in the Introduction.

(1.3) fi/>fc = {je G fi: 2~k Rj < |x - Vj |< 2~k+1 Rf},

(1.4) fijfc ={fii+, U ••• U fifc_.} n fi,,      / = 0,1,2,....

Given an integer /c • we define relative to that integer (but suppress that dependence in
the notation)

(1 -5) n,|7 = {x G fi: |x - vM\ < 2"*//.,},

(1.6)       Çï'jj = {fi/7 U fife_. U • • • U fifc   ,} n fi,,      / = 0, 1, 2, . . .  .

Lastly, as in Part 1, we make the convention that e is an arbitrarily small posi-
tive number, not necessarily the same at each occurrence.  Constants C, which are also
subject to change without notice, may depend on e.

2.  Optimal Order Refinements Near a Corner.   In this section we fix our atten-
tion in a neighborhood of a certain vertex u, of interior angle a,.  Set 0, = 7r/a,, and
let fiy f fi, be defined as in (1.1), (1.2).

Loosely speaking, the aim of this section is the following:   Assume that locally
the class of spaces SH employed is capable of order hXoc approximation in the maxi-
mum norm for smooth functions, where hXoc is a "local" meshsize, cf. (0.3).  We want
to describe a class of refinements on fi- that leads to an error estimate of the form

(2.1) \\u-Uhh<x,(ñj)<C£h-e{hr+\\\u-uh\\\_Pin}.

Note that if 0- > r, this estimate follows from the results of Part 1 using only
an "unrefined" mesh.

The assumptions needed to obtain (2.1) will now be described, in a slightly long-
winded fashion.  We shall refer to the whole of them as AA.2Xr).

AA.2j(r).  Let there be given numbers r, ßj and y with r > 2 integer, xh < 0;-, y
> 1.  Our assumptions are divided into two parts, (i) and (ii) below.

(i)  The spaces Sh(£lj) satisfy the assumptions A.l—A.4 of Part 1.
Remarks.   Recall that A.l went as follows:
There exist constants k0 and C, such that the following holds.  Let £>. <$ D

with dist^fT?!, D) > k0h.  Then for each v G Wrx(D) and vanishing on 3D n 3fi,
there exists a x G Sh(D) such that

\\"-Xh„<Dx)+h\\v-X\\wl(D.<Cxhr\v\wr

The assumptions A.2-A.4 shall never be used explicitly in this paper, and hence

■9 $
Furthermore, if i; G Hl(Dx), then x G Sh(D)
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MAXIMUM NORM ESTIMATES ON PLANE POLYGONAL DOMAINS 473

we do not recall them.  They are needed so that we can quote results from Part 1.
These assumptions were, respectively, concerned with "superapproximation", weak in-
verse estimates, and the behavior of the finite element spaces under homotheties.

In the case of 0, <cwe make additional hypotheses that reflect the fact that the
mesh is then refined near v..

(ii)  If lh < 0, < r, let Pj he a number with

(2.2) 1 - 0,/r < pj < 1

such that (in addition to (i)) the following holds, cf. (1.4), (1.6) for notation.  Let

(2.3) kj r-Plx      1

On each fiifc, k = 1, . . . , Jty, S/I(fi,1fc) satisfies the assumptions A.2-A.4 of Part 1
with h replaced by a local meshsize A, k,

(2.4) K*<hjik<m?*»f.

On fi'    Sh(Q.Jk) satisfies A.2-A.4 of Part 1 with h replaced by A, ¡,

(2.5) A> < hj, < hrlßi.

We also need an approximation assumption corresponding to A.l, with respect
to local meshsizes.  There exist constants kQ, C. such that for each function v G
lf^(fi,) vanishing on 3fi, there exists x in Sh(£lj) such that for Dx -ty D •$ fi,1 k (or
fi,?,) with disty(Dx, D) > k0hjk (or /c0A,(/),

W » - xIIt^.) + hj,k\W - X\\wl(Di) < Cxhlk\v\wL{D)

(or hjj replacing hjk).  If furthermore v G Hl(Dx), then x G Sh(D).
This ends the description of AA.2;(r).
In particular, the assumptions in (ii) make it possible to quote local results on

fi, k from Part 1 with A, k replacing A.
Loosely speaking, the last part of (ii) says that A.l holds on each fi, fc (fi, ¡)

with h replaced by a local meshsize satisfying (2.4) (or (2.5)).  This approximation as-
sumption implies other results on approximation with respect to other norms, and for
nonsmooth functions.  These results will be listed at the appropriate place in our de-
velopment, when needed, and brief indications of their proofs given.  Generally the
proofs, or very similar ones, were given in Part 1.

We note that in the assumptions, ju, is assumed to be strictly greater than 1 -
0,/r; this is due to technicalities in our proof.  Thus, e.g., our Example 0.1 has to be
changed slightly so that x¡ = (ilN)l~ßlr+&, some S > 0, in order to fit that part of
our hypotheses.  If a family of meshes satisfies AA.2,(r) with some /j, > 1 - 0,/r, then
it does so for any ju, with 1 - 0,/r < /u, < /_,.  Loosely speaking, the larger the /i, that
the mesh allows, the more "over-refined" it is.

The innermost domain fi, ¡ may be thought of as the part where a meshsize hr'ßi
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prevails.   Note that fi, y depends on /i,; this will be convenient in the proofs.   For /i
close to 1 - 0,/r, the innermost part may contain only a few elements, whereas for ju,
= 1 it contains on the order of CA-2 elements.

Our hypotheses are satisfied for example by:
(1) continuous piecewise polynomials of degree r - 1 on suitably refined trian-

gulations that satisfy a minimum angle condition;
(2) piecewise linear functions (r = 2) on suitably refined triangulations that sat-

isfy a maximum angle condition;
(3) piecewise bilinear functions on a suitable tensor product mesh (r = 2); this

will, in general, contain "thin" rectangles, cf. Example 0.3.
For verification of all other hypotheses, given that (2.4), (2.5) hold, in the cases

listed above, we refer to Part 1.
We can now state our main result.
Theorem 2.1. Let j be fixed and assume that the family of spaces Sh(£lj), 0 <

A < 1, satisfies AA.2,(r).  Let e > 0 and an integer p > 0 be given.
Assume that

(2.7) A(u-uh,x) = 0   forallxCS"^,).

There exists a constant C such that for A sufficiently small,

(2-8) ll"-«*llLoo(5/) <Ch~£{hr + \\\u-uh\\LPtSïj}.

The proof of Theorem 2.1 will be given in Section 6.

3.   Suboptimal Order Refinements Near a Corner.   In this section we shall con-
sider the following question:   Starting with an unrefined mesh of size A and capable
of hr approximation for smooth functions, and given a number s, 0 < s < r, how
should one refine near the /th corner to obtain the estimate

(3-D ll»-"hllLoo(ñ,)<CA-e{Aí + |||«-«JILp>í2.}?
We note that (3.1) would follow from Theorem 2.1 if AA.2(r) holds with A re-

placed by hstr. However, now we have assumed that a unit distance away, the mesh-
size is to be of order A, which is obviously less than A*'*". We shall show in this situa-
tion that we need only start to refine the mesh closer than a unit distance away from
the corner. Exactly how this is done can be motivated from approximation theory,
just as AA.2,(r) was motivated in the introduction. We leave this motivation to the
reader and proceed to list our formal assumptions.

AA.3,(r, s).   Let there be given numbers r, 0,, y and s with r > 2 an integer, Vi
<ßj,y>l,0<s<r.

(i)  The spaces 5h(fi,) satisfy A.1-A.4 of Part 1.
(ii) If Vi < 0, < s, let Pj be a number with 1 - 0,/r < p- < 1 such that (in addi-

tion to (i)) the following holds.   Set
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MAXIMUM NORM ESTIMATES ON PLANE POLYGONAL DOMAINS 475

The rest of the assumption now reads like AA.2(r), with the following change in the
local meshsizes:

AT<A/fc<A,      k=\,...,k0J-\,

A*<A/>it</.*/'2-*'1>,      k = k0J,...,kj,

h'*<hfiI<h"ß/.
The observation that AA.2(r) is satisfied with A replaced by /f^r leads immedi-

ately to the following corollary to Theorem 2.1.
Corollary 3.1. Let j be fixed and assume that with 0 < s < r, the family of

spaces Sh(£lj), 0 < A < 1, satisfies AA.3,(r, s).  Let e > 0 and an integer p > 0 be
given, and let (2.7) hold.   There exists a constant C such that

(3.1) Wu-unh^ñ,) <Ch~eihS + HI"""»"!-,.«,}-

4.   Error Estimates Near a Corner, and Global Estimates.   Fix a vertex i>, and a
number s, 0 < s < r.   Assume that

(4.1) II« - "hh^ñj) < Ch~e{hs + lib--«-„III_,,„},

cf. Corollary 3.1.  We now ask whether we can achieve

(4.2) II"" "Allein,) <Cft

For this, the second term on the right of (4.1) needs to be estimated—this term con-
tains the pollution effects from other corners.

Let us choose p = r - 2 and ask for an estimate

(4-3) \\\u-uh\\\2_rn<Chs-e.

We shall describe the kind of refinements necessary at the corners in order to achieve
(4.3).   Roughly speaking, we shall refine at the other corners so that globally

II" _ "ftlli n ^ Chsl2~*, and (4.3) then follows by a standard duality argument. Again
the description of the meshes will be motivated by somewhat imprecise approximation
considerations.  The full proof will be given in Appendix 1.

We have

^u~uh\h-r,n=       SUP ("-"*.*)•
yec°°(i.)

Wr-2,il=l

For each fixed g, let i> be the solution of the following Dirichlet problem :

(4.4) -Av=g   infi,

v = 0    on dfi.

Then for any x G Sh(£l),

\(u-un,g)\= \A(u-uh,v)\= \A(u-uh,v-x)\ <IN---Äl!,,olto-Xlli,n-

Note that ||u - i»ft||, n < C||i» - i//||, n for any \p G Sh(SÏ).
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The refinements we seek achieve

(4-5) inf      ll»-xll1>n<^*/2"eIWU2n
x€áf*(íl)

and by the above, (4.3) would follow.   Instead of showing (4.5), let us motivate how
an estimate of the form

(4.6) ||u - xl|.,n < C(vyis'2~e,   v solution of (4.4),

may be achieved.  The full details for (4.5) will be given in Appendix 1.
We have

M
lt»"Xy1,n<llw-xll,,0o + Ë ""-xlli.fi,.

On fi0, the function v is smooth, and we may assume that without any refinement,

Hu-Xlli,fi0<CA'-1.

Consider next a fixed fi-.  Then, cf. (1.1), (1.3) and (1.5) for notation,

ki

\\V-X\\1,ai<^-X\\i,si.+ Z   Il»-Xlli,fi.k-

On the innermost domain fi.-/, a meshlength h-j prevails, and we have, using proper-
ties of L», cf. Part 1, (1.10)—(1.11),

(4-7) ll»-XH,,n//<CftJr-
On the fi, k with meshsize A, k, using again (1.10), (1.11) of Part 1,

(4.8) H» - a*!,«, k < Cftj^wi _,    <Ch];k\2-kfrr+l-e.
I.K r-i¡f,k

To make the right-hand sides of (4.7), (4.8) less than h"/2~e, one needs

(4-9) h)wI<h«ißi,

(4.10) A,fc <Aî/2('-1)(2-fc)(1^/(r-,)).

The process of refinement to achieve (4.6) can be described as follows.   If 0, > s/2,
no refinement is necessary.

If 0, < s/2, start refining on fifcf) . when the right-hand side of (4.10) is less
than A (so that (4.10) is not satisfied by the unrefined mesh), and continue gradually
until a mesh of size hsl2ßi, cf. (4.9), is reached; use that meshsize on the innermost
patch fi, j.

To be more precise let us demand:
AA.4(r, s).   Let there be given numbers r, y and s with r > 2 an integer, y > 1,

0 < s < r.
(i) Sh(SÏ) satisfies A.1-A.4 of Part 1.
(ii),   If 0, < s/2, let Pj be a number with 1 - 0,/(r - 1) < ¡ü, < 1 such that the
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following holds.   Set

V/-[('-2Fi))^ï}

The rest of the assumption now reads like AA.2/r), with the following change in the
local meshsizes:

tít<hUk<h,      k=l,...,k0j-l,

at < A,,fc < A^e-^-y/,     k = k0J, ..., kj,

h«<hfrt<h"2ßi.

Remark 4.1.   It is easily established that if AA.3,(r, s) holds (for some pj), then
the part (ii), of AA.4(r, s) is also satisfied (with suitable u,).

We shall prove the following in Appendix 1.
Theorem 4.1. Let 0 < s < r, and assume that the family of spaces Sh(£l), 0 <

A < 1, satisfies AA.4(r, s).  Let e > 0 be given.   There exists a constant C such that
ifu and uh G Sn(Q) satisfy (0.1) and (0.2), then

'""-"A-r.fi <Chs~e.

Combining Corollary 3.1 and Theorem 4.1, we have:
Corollary 4.1. Let j be fixed and assume that with 0 < s < r, the family of

spaces Sh(£l), 0 < A < 1, satisfies AA.3,(r, s) around the vertex u, and the global con-
dition AA.4(r, s).  Let e > 0 be given.   There exists a constant C such that for A suf-
ficiently small,

ll"-"JI^(fi,)<CA^.
Finally, we have the following global result, cf. Remark 4.1.
Corollary 4.2. Let 0 < s < r, and assume that the family Sh(tl), 0 < A < 1,

satisfies AA.3,(r, s) for each j = 1, . . . , M, and furthermore satisfies A.1-A.4 of
Part 1.  Let e > 0 be given.   There exists a constant C such that for A sufficiently
small,

H"-"/1llL00(fi)<CAi-e.

In particular, the above corollaries hold for s = r; in this case the condition
AA.3,(r, r) is the same as AA.2,(r).

5.  More on Suboptimal Refinements.   Let ßM < 1, r > s, and consider the sit-
uation when AA.3M(r, s) and AA.4(r, r) hold; i.e., the mesh is globally defined so
that the error is hr in the interior of fi, and A* close to vM.  One may then surmise
that the rate of convergence at a point near vM depends in some fashion on its dis-
tance to vM.  We shall show such is the case in two examples, and also consider brief-
ly the question of calculation of stress intensity factors; cf. Part 1, Section 6.  The
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techniques used in these two examples can be applied to analyze many other situations.
It may be laborious, though, to obtain sharp estimates in a particular case.

We start with an example which is easy to analyze with our present tools.
Example 5.1.  r = 4, s = 3, ßM = 2/3.   Let us plot how the local meshlength

A,oc near vM depends on the distance d from vM (for simplicity in plotting we demand
sharpness in the right-hand sides in AA.3M(4.3) and AA.4(4.4) with "lowest" p, p).

'loe

(4.3);Aloc=Aloc=A3/V/6

A9'2 A3 ,.3/7 ,,3/10      ,

Figure 4

We see here that the refinement according to AA.3M(4,3) suffices to satisfy the rele-
vant part of AA.4(4,4) at vM.

We shall first show that in this example, with d¡ = 2~~l,

d,<h3l10,Ch*
(5.1) ll"-"/1ll7-00(fiM>/)<

CA4-V0/3,      h3ll0<d,<RM.

For d < A3'10, the refinement is done as to insure an A3 estimate.   For d >
A3'10, we apply Theorem 3.2 of Part 1 which gives on fiM ., where d¡ > A3/10 and
A, = A

II" - "hh„(nMJ)

<Ch-e{h\\u~x\\wlini   , + IIk-xII cir3in».-"hiii ,_, }

for any x G Sh(Q,).  The condition AA.4(4,4) was done so that (Theorem 4.1)

III».-«,|||        ,    <||».-^IL2in<CA4-£;~2'nM,l

and hence, we obtain using approximation and the behavior of u,

ii" - "-.iiL„(fiM)/) < cxh^dV3-" + a4-v;-3).

The first term here, coming from approximation theory, dominates and so (5.1) ob-
tains.

In particular, it follows from (5.1), cf. Part 1, Section 5, that for A sufficiently
small the maximal error occurs for d < A3'10.
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Consider now the calculation of the "stress intensity factor" kM, cf. Part 1, Sec-
tion 6.   Let (using polar coordinates)

"/,(<*. 0O)
M4 A) = —-•

d2l3sm(ßMe0)

Then, from Part 1, Section 6, and the above

f\(u-uh)(d, 60)\
\*M - kM(d, h)\ < C   -^—- + ¿2/3

\ d2'3

n3-ed-2/3-e + rf2/3>        ¿ < ¿3/10^

/i4-e^-4-e+ii2/3j fc3/10<d<o    _
M-

It is easily seen that the best that can be gotten from this is the estimate

l¡W-M*9/4.*>l<<*3/2~*-

Example 5.2.  r=2, s=l,0Af<l.   Again we plot the local meshlength near
vM as a function of the distance (taking equality and lowest p, p in AA.3 and AA.4).

A 4

for AA.3M(2, 1); Aloc = aV'^2

for .4-4.4(2, 2)(..)M; Aloc =Ac/1-^

i

Figure 5

In contrast to Example 5.1, here it is the refinement demanded by AA.4(2, 2) that
dominates around vM.  We shall show that

Chl-e

W        \\u-uH\\LmiSlMi}

dx<h !/%

<
Ch2^djßM"£,      hßM<dx<RM.

For d < hllßM the refinements coincide; and thus, we cannot expect better than

ll"-",llLoo(fiMj/)<«1"e.
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For d > hllßM, we again apply Theorem 3.2 of Part 1 to obtain

IN--»AllLoo(njli/)

< ok- {*». - x\\wl(nki) + ii" - m^^ + V ii" - «»i,^},

for any x G Sh(£ï).  The two first terms on the right are easily bounded by

hf-ejlJM-2-e <n2-ed-ßM~^

Using Theorem 4.1, a trivial bound for the last term on the right is dl~lh2~e.  How-
ever, employing a slightly more involved argument (involving ideas from Lemma 5.1 of
Part 1, and to be given in Appendix 2), we have

(5.3) Vii"-"»iUi   <ch2-%ßv-
°'nM,l

Thus, (5.2) obtains.
From (5.2) we can expect that the maximum error occurs for d < h}lßM.  For

the stress intensity factor we obtain

C(hl~ed~ßM +<fM), d<hllßM,
\kM - kM(d, h)\ <

Oh2~ed'2ßM~£ + dßM),      h110™ < d < RM.

The best that can be said is now that

\kM-kM(h2l3ßM,h)\<Ch2l3-e.

In the two examples above, either AA.3M(r, s) or AA.4(r, r) (ii)M took prece-
dence in the refinement near vM.  It may of course happen that they intermix; thus,
e.g. for r = 3, s = 2, ßM = 2/3 we have the following picture:

Moc

A4
for .4.4.4(3, 3)(.0

Aloc = A3/V'3

M>

[-- S^^ for AA3M(3,2);hXoc = h2'3 d1!9

A3 A9/4 A3/4 A3'7 A3'8       1

Figure 6

We leave the analysis of this case as an exercise for the reader.
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6.   Proof of Theorem 2.1.   For simplicity we assume in what follows that 7?, = 1,
Rj = 1 /8.  We shall first localize the problem by way of an auxiliary mixed problem,
cf. Part 1, (7.3). Let Dx = {jc G fi: \x - i>,| < 1/4} and D2 = {xG fi: |jc - u,| <
1/2} so that fi, ^ Dx ■% D2 <$ fi,.   Let co G C°°(fi,) be such that co s 1 on Dx,
supp co C D2.  Put u = com, and let uh G Sh(Slj) satisfy

(6.1) A(u - un, x) = 0    for all x G S*(fi,).

The function uh can be thought of as the approximate solution of an auxiliary mixed
problem with right-hand side -Au.

We have the following:
Lemma 6.1. Assume AA.l/r).  Given e > 0 ¿Aere exists a constant C such that

(6.2) \\u-uh\\L„(Di)<Ch'-*.

Before proving Lemma 6.1 let us show how Theorem 2.1 follows from it.  We
have

í-v/ /***>

(6.3)   ||u - "„IIt.^«,) = H" - Ml «(fly) < H« - uhh^af) + II"* - "* h „(«,)•
1

By (2.7) and (6.1), A(uh - un, x) = 0 for x G Sh(Dx) so that from Theorem 3.1 of
Part 1 we may infer that

H"* -"ftlli^íñ,) < CA"£|||.7ft -uh\\\_PiD
(6.4)

<CA-e{||u-i7A||Loo(Di) + |||u-».h||LP;Di}.

From (6.3), (6.4) and (6.2) we obtain the desired estimate (2.8).
For brevity we shall henceforth in this section write 0 = 0,, and fifc = fi, k.  We

shall also denote

(6.5) dk = 2'k,   dj = 2~k/,   d(x) = \x-Vj\.

In the proof of Lemma 6.1 we shall need a few approximation results, all conse-
quences of the assumption AA.2.  We list them here in one place; cf. Section 1 for
notation.

(i)  If % < 0 < 1, then there exists x G 5,,(fi,) such that

(6-6) ii»7-xii      . +ii«-xiiinl<a.?-e.

(ii)  If 1 < 0 < r, then there exists x G Sft(fi,) such that

(6-7) ®-A^ + h^-^uob<0fe-
(iii)   For 1 < k < kj, there exists x £ Sh (fi,) such that

(6-8)        "" - xlL(.,'fc)+ **"* - xll^(ai)< Chkdk~r~e-

Here / = 0, 1,2 and the constants C are independent of A and, in the case of
(6.8), also of k.
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The proofs of the above results can be accomplished as in Part 1, Lemma 4.1
(for (6.6), (6.7)) and Lemma 2.1 (for (6.8)).

We shall also need the following general approximation results:
(iv)  If Vi < 0 < 1, there exists a constant C such that for any v G H1 (fi.) n

7/1 +"_e(fi,) there exists x G 5"(fi,) satisfying

(6-9) llu-Xll.^CA^IMI.^^.

(v)  There exists a constant C such that for any v G //'(fi.) n 772(fi,), there ex-
ists x G 5''I(fi,) satisfying

(6.10) llw-Xlli,n/<<^/Mla>ni>

(6.11) \\v-X\\unk<Chk\\v\\2nX.

We point out that due to the norm on the right of (6.9) extending over all of Dx, the
estimate (6.9) is not very sharp.  However, it is possible to give a simple proof, follow-
ing the proof of Lemma 2.2 in Part 1.  In various concrete examples, the result can
be sharpened.  The proof of (6.10) and (6.11) can be accomplished as in Part 1, Lem-
ma 2.1.

After these preliminaries, let us start the proof of Lemma 6.1.  Let 7 = u - uh
and E = E(x) = (d(x) + <7/)_1ê'.  We shall first show that given e > 0 there exists a
constant C such that

(6.12) II^IIl.íd,) < Ch~e^r + ll£||o,fi,)-

We have

(6-13) &hm<D0 = max(j|e||Loo{n/)) ¿ntt      H'H¿„<nfc))

Consider first llalli,„(«/)• When Vi <0 < 1 we can apply Theorem 3.1 of Part 1; it
is straightforward to verify that since p > 1 - 0/r, dist»(fi/, fi)) < h\~6 for some 5
> 0 so that the theorem applies.   For arbitrary e > 0 and for any x G Sh we obtain

l3TU.(o7) < ch7€ {»" - x\\Lm(a}) + djHu - x\\on}

+ ll«-xll1)ni+^1lkllonl}

«*riG-*Lm¿}} + h» -x"..«! +d7H7\\0ta)};

and using (6.6) and (2.5), we clearly have

(6.14) &hmiat) < ài^QT + l^lo.np.     % < 0 < l.

In the case of 1 < 0 < r, we apply Theorem 3.2 of Part 1 and arrive at

ll'll/...«-,) < «^M* - x\\wl(a}) + ||« - xfl       ,, + dTH7ioQ)};
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or, by use of (6.7) and combining the result with (6.14),

(6.15) lle||Loo(iî/)<CA-e{A'' + ||7?||0iiî.},      %<ß<r.

Next consider the error on the domains fifc, k = 3, . . . , /.,.   Using again Theo-
rem 3.2 of Part 1,

«^.(nfc) < Ch*€ {h^ - *hl(nk) + "I" - A^k)+ ^1||7W"

Inserting (6.8) and using that A7 < hk < hdk,

(6.16) ||e||Loo(i2fc) < CKpWrtiT" + Wlo,nP < G*"eiÄ' + ll^lo,fi,>-

From (6.13), (6.15) and (6.16) we obtain the desired estimate (6.12).
The proof of Lemma 5.1 is now completed by using the following result in

(6.12).
Lemma 6.2. Given e > 0, there exists a constant C such that for A sufficiently

small,
(6.17) ll/?ll0,fi, = W(x) + dj)-17\\0taf < ÖT€.

In the proof of this lemma we shall need some error estimates for e in 7/1 and
L2 in the presence of the current refinement.  We have

(6.18) \\e\\0,nj + h\\7\\Xta.<Chr-e.

The proof of this fact uses much the same techniques as those employed in Appendix
1 and will therefore be left to the reader.   The estimate in 771 is immediate.   To per-
form a duality argument, note that the solution of the mixed problem in Part 1, (7.3)
with right-hand side in L2 belongs to H2~e locally at the comers where the boundary
conditions change, cf. [17] and [29] of Part 1.

We now start the proof of Lemma 6.2.   First note that fi, = Dx U fi}, so that

(6.19) IW«o.o/<IWI0tnj+ll0Tlo^1-

Clearly, using (6.18),

(6.20) ^,ni<a7K,ct\<0tr"-
In order to estimate IITjIIo.d. we shall employ a "duality argument".  We have

\\E\\0D   =      sup        ((d(x)+diy17,g).
(6-21) ' *=<£(/».)

l-lo.Df1
Let now v solve the following mixed boundary value problem:

C-Av = (d(x)+dI)-lg   infi,,

(6.22) \
' J      v = 0    on 3fi, n 3fi,

/    |^=0    on 3fi,\(3fi, n 3fi).
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We shall require some a priori estimates for this problem.
Lemma 6.3. Let v be the solution of (6.22) wAere g G Cq(Dx), Dx <jl fi, with

\\g\\0 = 1.  Then,

\i+ß-e,Dx<Cdyß,      Vt<ß<\,

' IMI2>Di <tV_e,     (->!,

(6.24) M2Mk<Cdk    je'      k = 3,...,kj,

(6.25) M2-e,a[<Cdï'-

The proof of this lemma will be postponed until the end of this section.
Returning now to the proof of Lemma 6.2, we have for any x e Sh($l¡)>

((d(x) + dj)-l7, g) = A(7, v) = A(7,v- x)

< \\e\\uttl\\v - xll1)i2/ + Ç   ll^lli,fifcH" - Xlli.fi,

+ llelli,fi}"i'-*lli,fir

We shall estimate the terms on the right separately.
Applying Lemma 7.2 of Part 1 to the domains Sl¡ and fi), we have for any 17

G Sh

ÍSíi*t<cifí-*lja¡ +djHu-n\\oa} +d7>\\7\\oax}

^    Uli" - *wlia¡} + II« - r,||^(n>) + ||fi||0in.    for 1 < 0,

/ II" - r?||      . + \\7 - rill     (aX+\\E\\on. for%</3<l.
I. 1,"/ ¿.„(»j) J

Recalling (6.6) and (6.7),

Utf-1-' + llillo.n,.      1 < 0.
(6.27) lle||1>n/<cj

[hßre + \\E\\0,ar ^<0<1.

We shall next estimate llalli,nfc. k = 3, . . . ,k¡.  Again using Lemma 7.2 of
Part 1, and (6.8) (noting that l|w||.ni < Cdk\\w\\wl{nk$.

(6.28) ll^ll.o   < dh^-'d^1-6 + \W0,a}.
K J
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To bound He'll. ni we use (6.18),

(6.29) \\7\\uaX<Chrur-l-e

We shall next attack the terms involving v - x on the right of (6.26).   Using
(6.9) or (6.10), and (6.23),

[Chjd}-e,        1<0,
(6.30)1     } llu-xll1>n/<j

lchß-ed]-ß,      1/.<0<1.
Using (6.11) and (6.24),

(6.31) Uv-X\\l,nk<Chkdk1-'.k

Finally, utilizing Lemma 2.2 of Part 1, and (6.25),

1_ell„ll <r /"»,--

1

Insert the results (6.27)-(6.32) into (6.26).  We obtain

(6.32) ||u - xllj n , < Ch^WvW^ n2 < Ch'-'hp

| (dihtl~e + \\E\\0,a )hidjl-e    for 0 > 1
((d(x) + d!)-l7, g) <d

*(*?"e + ILß1lo,n>f~V for0<l

ki

+ c Z (h^-'df^ + m0,av,^dr
fc=3

+ Chr-l-ehl~ehJ€.

Thus,

<hß
((d(x) + d¡)-x7, g) < chß-edje + chf

e^

4
ki

+ cdj< Z hrk£dVe + aT'hj'
fc=3

hIdJl-e,ß>\\ kj
+ Cll/?ll0,fi.x| { \ + d7£ Z M*1

\( hßiedjß, 0 < 1 ) fc=3

Recall now from AA.2/r) that

hy<hj<hrlß,   h'r<hk<h-dk!

with ju = 1 - 0/r + 8, for some S > 0.   Also, d¡ > hr/ß~6', with 5' > 0.   Hence, from
the above
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h]'-\   0>1 *y
((d(x) + d¡Tl7, g) < Chr~e   + C\\E\\0 n I j       , \ + dje   Z   Mk

A,Af-e,0<P

/76_£.    ß>l/
CV^+C||£||on.   {       , \+dsrh6ß'r

-f-e,0<l)

The positive number e can be made arbitrarily small, whereas 8, 8' > 0 are fixed.
Thus, by fixing e small, hence fixing the constants C = Ce, and then taking A suffi-
ciently small, we arrive at

((d(X) + dj)-l7, g) < chr'e + aii/iiio,«,.

Now from (6.19), (6.20) and (6.21),

\W\0tSl/ < Chr~e + K\m\o,nr

which proves Lemma 6.2.
It remains to prove Lemma 6.3.
Proof of Lemma 6.3.  To show (6.23), let co G C°°(fi.) be such that co = 1 on

Dx, co vanishes outside D2.   By use of the estimates of Part 1, Section 1, we find that

IMIl+i.-e,D.  < H««!!. +i.--,fi,    <C||A(C0ü)||ß_1_e/2;n.

<C{||coAu||ß_1_e/2iD2 + 117-0 • Vü||ß_._e/2;£)2

(6.33)
+ l|l>Aco||0_i-e/2,D2}

<C{||Au||(5_1_e/2>D2+|Ml1;D2}

<c\\(d(x) + dIy1g\\ß_x_e/2J}i.

Now,

((d(x) + d,rig, m
(6.34)    \\(d(x)+dI)  H-i-e/2,7), = S"P —77^-•

1        ^Hl-ß^l2(Dx)        IWI1H. + -72.D,

Using Schwarz' inequahty,

((d(X) + dj)-ig, i>) < \\(d(x) + djrßg\\0tDi\\(d(x) + d¡f-lm0j>l

<CdI-ß\\(d(x) + dI)ß~1n0,Dx-

By Holder's inequahty, and Sobolev's inequality (cf. Part 1, (1.6)), with q =
(8 + 0e)/(8 - 40 + 0e), q = 2/0 + e/4,
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\\(d(x) + -./-'VIIcd. < H(rf(*) + *rf~lhilu>tJli1>hq*Dl)

From this and (6.33), (6.34) we obtain (6.23).
To show (6.24), we have, cf. Part 1, Lemmas 8.2 and 8.3,

|M|2,fi¿<cí|in,fi?+^1||y||i,fi|>-

As in the proof of Lemma 8.3, Part 1, we see that

(6.35) \\v\\Xtil.<Cdye,

and thus,

Hull      . < C{\\(d(x) + djy'gU     2 + dkldj£},
2,fi¿ °'"fc

which proves (6.24).
The inequahty (6.25) follows from the fact that the problem (6.22) has local

772-e regularity at the right angled corners where the boundary conditions change.
By the support properties of g, v is harmonic on fi} and one obtains

IWI2-e,fil<C|Nll,^-

An application of (6.35) now verifies (6.25).
This proves Lemma 6.3.
The proof of Theorem 2.1 is now complete.

Appendix 1.   Proof of Theorem 4.1.   As set forth in Section 4, it suffices to
prove that in the presence of condition AA.4(r, s), we have for any g G If~2(ÇL)

(A-u) inf      llu - xll, fi < CA*/2-%||r_2)ii,
x&s (fi)

where

(A. 1.2) -Ai> = ginfi,    v = 0 on 3fi.

It is a consequence of our assumptions that there exists a x G Sh(fi) such that

(A.1.3) H, - x\\uSl¡J < CASn(^r"1)"e||u||min(1+ß. r)_,0/,

(A. 1.4) ll»-xlli,n0<^1H.,o'0.

(A.1.5) H"" Xllj.fi, k<Chrk1\\v\\r^.k

for / = 1, . . . , M, k = 1, . . . , kj (A, k = A in case k < k0 ,).  Here fi0 -$ fi¿ ^ n-
For the above, cf. (6.9)-(6.11).

We shall use the following local a priori estimates for the problem (A. 1.2).
Lemma A.1.1.

(A. 1.6) IMIminO+fy/O-e.n, < Cl^lr-2,fi-
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(A.1.7) V.fiii    <Cd -r+ l + min(ß;r-l)-e -k\r'-1^IL?llr_2,n,      (dk = 2-K)

Before proving this lemma, let us show how (A. 1.1) follows from it.  We have
M

(A.1.8) ll»-Xll1>n<i;   Ilw-Xlli.n. + Ilu-Xllin  .
7= i ' '   °

Consider a fixed /, 1 < / < M.   The other corners, and the interior domain fi0 are
treated similarly.

We write
ki

Il»-Xlli,n,<ll''-Xll,.n./+  Z   Hw-Xllin.t,
1 '•'     k=i '  ¡<k

and using (A. 1.3) and (A. 1.5), and then Lemma A. 1.1,

,min(/3,,r-l)-e.
ki

(A.1.9)
I"-xiir.fi,<ca;™/" '->nmin(    .; + z */7*HfiJ

' i l        k=\ •    i,k

<c
ki

,min(^-,r-l)-e ---,       r_.    -r+1 + m in (/?•,.•-l)-e
hI ' +   _L     hj,kdk '

fc=l
ll-.llr-2.il-

Consider now the quantity in square brackets.   If 0, > s/2, then the local meshsizes
are all comparable to A; and since r — 1 > s/2 and d¡ > A, we obtain

ll"-Xll1,n,<C[Amin(V-1)-

(A1-l°) + A'-1max(cir+1+min(,3/'''-1)-e, O.lliTlU.n

<Chsl2-*\\g\\r_2M,      ßj>s/2.

In the case that 0, < s/2, we use the conditions on ft, k set forth in AA.4(r, s);
and since jti, > 1 - 0,/(r - 1), d¡ > h¡ > A7, we obtain for e small

ll»-xll,>n,

<c,
/I

k=\

hs(ßj-e)/2ßj +   J,    hs(r-X)l2(r-X)dUj(r-l)-r+l+ßj-e Mr-r-2,fi

(A.1.11)
< Chs'2~e

/
1 +   Z   d

k=l
ll^ll^-2,n

< CAs/2"e[l + dTe]\\g\\r_2<sl < Chsl2-e\\g\\r_2<n,      0, < §.

Combining (A.1.10) and (A.1.11) for all /, and with the easy estimate for ||u - xlli,n0
we have verified (A. 1.1).

It remains to show Lemma A. 1.1.
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Proof of Lemma A. 1.1.  The estimate (A. 1.6) follows from (1.7) of Part 1 by a
simple localization argument.

For (A. 1.7), let us give the details in the case of 0, < 1.  Let co., co2, co3 G
C°°(fi;2fc) and such that co. + co2 + co3 = 1 on fiîfc, llcoz||-y^ < Cdk', i = 0, 1, 2,...,
and their supports are as indicated in the following figure:

supp co2

,supp CO.

Then,

supp co3

Figure 7

**rai<£  IMUi ■
Consider e.g. co.u.  By considering a suitably localized halfplane problem, we have

Hco.ull     .    < C||A(co.u)||r_2;ii
r'    i,k

with C independent of k.   Now,

\\A(coxv)\\r_2^<C{\\g\\r2 n2 +dkl\\v\\r_i n2 +^2IMIr_2>n2>-
*      K »v "

For a term like -/¿"'llull^. n2 the same procedure yields

and eventually, we obtain with fi, fc •$ fi¿k, diam fi,'fc < Cdk,

M'-ah*<cLÇo dk~mmr-2-m-n'i,k+dr+INi1>n.>fc +^rNi0,fi;..

Let us next consider, e.g., the term ||u||. ifl-.   .  By Holder's inequality,

and choosing (in the case 0, < 1), p < 1/(1 - 0,) but close; and hence p =* 1/0,, we
have by Sobolev's inequahty (Part 1, (1.6)) and (A. 1.6)

Mi*;,» <Cdinmi+ßre/2tilf <Cdßr*m        q.
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By much the same procedure,

Mo,n'j:k<Cdl+ßr*Mßrl_e^
and

\\g\\r-2-m,n) k<Cdk~eMr-2.a-

Thus, since 0- - 1 < r - 2,

H.fií     <Cd7+l+í¡reM\r-2,Sl>        ß,<L
l,k

The case of 0, > 1 is handled similarly.
This proves Lemma A. 1.1 and completes the proof of Theorem 4.1.

Appendix 2.   Proof of (5.3) in Example 5.2.  We have

(" - uh, g)
\\u-uh\\      .     =       sup -.

°'nM,l       ^,-,„1     ,     \\g\\ ,^GC0(fiM/)     """o.fij^,

Fixing g, let v be the solution of

-Av = g   in fi (g extended by zero),

v = 0        on 3fi.

For any x G SH(£l) we have

K«-«*,*)!= [Â(u -uh, v-x)\  < II" ""„Hi,fillf-Xlli.fi.

By (A.1.1) we have in this case (AA.4 (2,2) holds),

H"-"„lli n <C     inf      llu-^ll. n < CA
4/es (fi)

l-e

Thus, in order to show (5.1), it remains to prove that with suitable x e Sh(£l),

(A.2.2)   Hl) _ Xnin < Chi-'dlrfx-'Mo.n,     g e CJifi^,), dMJ > hl'ßM,
where v and # are connected by (A.2.1).

The proof will more or less consist of repeating arguments from Appendix 1,
however, in a more careful way at certain crucial steps and also using the fact that g
has small support.   For the approximation theory needed, see (A. 1.3)—(A. 1.5).

Write

M-i /                           ki \
ll«-Xlli,n<Z      ll»-Xlli,n     +  Z Hy-Xlli,fi.j

(A.2.3)                       '='   \                 '       fc=1 AV

kM

+ ^-*h,aMiI+ Z   to~Xh,tlMk    +Il"-Xlli,fi0-
K— 1

Consider first the terms ||u - xlli.n, r j = i, ■ ■ ■ , M - I.  We have (assuming
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ßj < O.
(A.2.4) Hu - xlli,n.7 < C/#riMli+0,-e,fi,-

Since v is harmonic on fi,, we infer by a localization argument, (cf. Part 1, (1.7)),

(A-2-5) Mi+ßre,af < CMliSÎ < cyipM_,_e,n-

Now use the fact that (see the last part of the proof of Lemma 5.1 in Part 1),

(A-2-6) l^i-e.fi < Q-iw^lWo^.      *E Côi^M.l)-
Thus, using AA.4(2.2) (ii),,

\\v-ia\i,aiI<c(hllßrfr^ßM-'MihSi
(A.2.7)

< a1-'d1ít¡ir'm9,a,    /-1, ...,*-1.
The same estimate is easily derived also for 0, > 1, replacing the right-hand side

of (A.2.4) by C7i||u|l2,n- ̂ d continuing as above.
Next, consider ||u - xlli.fi,-1, j = 1, ■ ■ ■ , M - 1.  Now,

II"-Xlli.fi,.. <CA/.fc||u|| .
),K 2 •"/,/.

We use the fact that since i> is harmonic,

(A.2.8) Hull <a//7¿+/,r«||ü|| ,     0,<1.
■i'li7,fe /    '   /

This follows, e.g., by first using Lemma 8.3 of Part 1, obtaining

^2,Hk<^Muay
and then the fact that

NI.^^C^rNli.^.fi,'
which is proved by applying the same techniques as in Lemma 5.1 of Part 1.

Thus, combining the above with (A.2.5) and (A.2.6), and using AA.4(2,2),

II" - Xllio.. < Chu krf/7¿+flre-4:?""eIWIo,n
(A.2.9) '•

<Chl-edM~ßM~£\\g\\0trl,      07 <1.
Again, the same estimate can be deduced also for 0, > 1.

The estimates (A.2.7) and (A.2.9) can also be deduced, by the same procedure,
on the domains fiM>/ and fiM>k, k = 1, . . . , I - 2,1 + 2, . . . , kM, since v is har-
monic on fi^fc.  To estimate, e.g., \\v - xWi,siMt¡ itself> we nave

II» " xlli.fi      <CA^,|N ;
M,l 2-"m,/

and we then use the fact (corresponding to (A.2.8), cf. also the proof of Lemma A. 1.1,
and (1.7) of Part 1, and (A.2.6))

ol      <C(\\g\\0,a+dMfßM   e|Mll+^-e,fi)   <C-.M>ll0,fi.
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Thus, by AA.4(2,2) (ü)M, which is the dominant refinement around vM, cf. Figure 5,

^-x\\l,nMT<ChMjdMlj\\g\\0tiï
(A.2.10)

^Ch^d^f^M^n,     7 = 1-1,1,1 + 1.
One deduces also, easily, that

(A.2.11) iiu-xn,,no <^1-e47fAi"£i^iio,fi-
Inserting (A.2.7) (which held also for / = M), (A.2.9) (vahd also for / = M, k = 1,
...,/- 2, / + 2, ... , kM) and (A.2.10), (A.2.11) into (A.2.3), we obtain the de-
sired estimate (A.2.2).

This completes the proof of (5.3).
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