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MAXIMUM OF PARTIAL SUMS

AND AN INVARIANCE PRINCIPLE

FOR A CLASS OF WEAK DEPENDENT RANDOM VARIABLES

MAGDA PELIGRAD

(Communicated by Stanley Sawyer)

Abstract. The aim of this paper is to investigate the properties of the max-
imum of partial sums for a class of weakly dependent random variables which
includes the instantaneous filters of a Gaussian sequence having a positive con-
tinuous spectral density. The results are used to obtain an invariance principle
and the convergence of the moments in the central limit theorem.

1. Introduction

Let A,B be two σ-algebras. Define the strong mixing coefficient by

α(A,B) = sup
A∈A,B∈B

|P (AB) − P (A)P (B)|

and the maximal coefficient of correlation

ρ(A,B) = sup
f∈L2(A),g∈L2(B)

| corr(f, g)|.

Obviously α(A,B) ≤ ρ(A,B). Let {Xn}n∈Z be a sequence of random variables and
for T ⊂ Z denote FT = σ(Xi, i ∈ T ). For two sets T ⊂ Z and S ⊂ Z let

α(T, S) = α(FT ,FS),

ρ(T, S) = ρ(FT ,FS).

Definition 1.1. We call the strictly stationary sequence {Xn}n∈Z strongly mixing
if αn → 0 as n→∞, where αn is defined by

αn = α({. . . ,−2,−1, 0}, {n, n+ 1, . . . }).
We say that the sequence is ρ-mixing if ρn → 0 as n→∞, where

ρn = ρ({· · · ,−2,−1, 0}, {n, n+ 1, . . . }).
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1182 MAGDA PELIGRAD

It should be noted that the functional CLT for stationary centered strongly mix-
ing sequences requires a combination of a polynomial mixing rate and the existence
of moments strictly higher than two, while for the ρ-mixing sequences having only
second moments a logarithmic mixing rate should be imposed. (See Peligrad [12] for
a survey.) For a sequence of random variables {Xn}n∈Zd , not necessarily stationary,
we define

α∗n = supα(S, T )

and

ρ∗n = sup ρ(S, T ),

where the suprema are taken over all pairs of nonempty disjoint subsets S, T of
Zd, d ≥ 1, such that dist(S, T ) ≥ n. According to Bradley [3], for every n ≥ 1,
α∗n ≤ ρ∗n ≤ 2πα∗n. Therefore α∗n → 0 and ρ∗n → 0 are equivalent. Let us note that
by Rosenblatt ([15], p. 73, Theorem 7) or Bradley ([2], Theorem 1) a Gaussian
sequence having a continous positive spectral density satisfies the condition ρ∗n → 0.
Therefore, instantaneous functions {f(Xn)}n∈Z of such a sequence provides a class
of examples for ρ∗-mixing sequences. Other examples are discussed in Bradley [4].
Bryc and Smolensky [6] pointed out that ρ∗n → 0 follows from a hypercontractivity
condition:

(H) There exist q(k) →∞ (as k →∞) such that if S, T ⊂ N satisfy dist(S, T ) ≥
k, then the norm of conditional expectation E{·|FS} as a linear operator from
L2(FT ) to Lq(k)(FS) is 1.

Bradley [2] proved that the condition ρ∗n → 0 gives enough information to assure
the CLT for stationary random fields without assuming mixing rates or moments
higher than 2. Miller [10] proved a CLT for block sums from sequences of strictly
stationary random fields satisfying a Lindeberg condition and uniformly satisfying
limn→∞ ρ∗n = 0. Bryc and Smolenski [6] found bounds for the moments of partial
sums for a sequence of random variables satisfying

lim
n→∞ ρ∗n < 1.(1.1)

It should be said that, according to the proof of Theorem 2 in Bradley [2] and
Remark 3 in Bryc and Smolenski [6], if {Xn}n∈Z is a strictly stationary Gaussian
sequence which has a bounded positive spectral density f(t), i.e. 0 < m < f(t) < M
for every t, then the sequence defined by

Zi = f(Xi, Xi+1, . . . , Xi+u)

for some u ≥ 1 (where f : Ru → R is a measurable function) has the property that

lim
n→∞ ρ∗n ≤ 1− m

M
. For u = 0 the sequence Yi = f(Xi) is such that ρ∗1 < 1.

In the nonstationary context Peligrad [14] studied the importance of condition
(1.1) in the CLT for strongly mixing sequences of random variables. In this paper
we shall investigate the maximum of partial sums for a sequence satisfying (1.1).
We shall first prove some properties of uniform integrability for the maximum of
partial sums which will allow us to obtain invariance principles for random elements
associated to sums of strongly mixing sequences of random variables. What is
notable is that only the second moment is assumed and no mixing rates are imposed.
In the following text we shall denote by [x] the integer part of x; =⇒ denotes weak
convergence. The symbol � is the Vinogradov symbol, and ‖ · ‖p denotes the norm
in Lp.
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2. Results

Denote Sn =
∑n

i=1 Xi and σ2
n = varSn. For 0 ≤ t ≤ 1 let Wn(t) =

S[nt]

σn
, and

denote by W (t) the standard Brownian motion on [0, 1]. We shall establish

Theorem 2.1. Suppose {Xn}n∈Z is a strictly stationary strongly mixing sequence
of random variables which is centered and has finite second moments. Assume

lim
n→∞σ2

n = ∞ and lim
n→∞ ρ∗n < 1.(2.1)

Then

0 < lim inf
n

σ2
n/n ≤ lim sup

n
σ2
n/n <∞(2.2)

and

Wn(t) =⇒W (t) in the space D[0, 1] endowed with the Skorohod topology.

(2.3)

In addition, for every p ≤ 2

E

[
max1≤i≤n |Si|

σn

]p
→ E sup

t
|W (t)|p as n→∞.(2.4)

Remark 2.1. Bradley [2] proved that the condition

| corr(SQ, SQ∗)| ≤ r < 1,(2.5)

for every Q ⊂ {1, 2, . . . , n}, Q∗ = {1, 2, . . . , n} −Q and every n, implies

1− r

1 + r

n∑
i=1

EX2
i ≤ σ2

n ≤
1 + r

1− r

n∑
i=1

EX2
i for every n ≥ 1.

As a consequence condition (2.5) implies σ2
n →∞.

Because ρ∗n → 0 as n → ∞ implies αn → 0 as n → ∞, we can formulate
a functional form of a CLT contained in Theorem 4 of Bradley [2]. The next
corollary follows directly from Theorem 2.1 and the comment following Theorem 4
in Bradley [2].

Corollary 2.1. Assume {Xn}n∈Z is a strictly stationary sequence of centered ran-
dom variables having second order moments such that ρ∗n → 0 as n→∞. Assume
either σ2

n → ∞ or (2.5) holds. Then the conclusions (2.3) and (2.4) of Theorem

2.1 hold. In addition, limn→∞
σ2
n

n = σ2 > 0.

As an intermediate step in proving these results we also prove the following
proposition which has significance in itself.

Proposition 2.1. Assume {Xn}n∈Z is a strictly stationary sequence of random
variables such that limn→∞ ρ∗n < 1, EX1 = 0, EX2

1 <∞. Then

the family

{
max1≤i≤n S2

i

n

}
n≥1

is uniformly integrable.(2.6)
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3. Proofs

The first proposition relates higher moments of the maximum of partial sums to
its first moment.

Proposition 3.1. Assume {Xn}n∈Z is a sequence of centered random variables,
and E|Xk|q < ∞ for some q ≥ 1 and every k ∈ Z. Assume ρ∗1 < 1. Then we can
find a constant K1 = K1(q) such that for every n ≥ 1∥∥∥∥ max

1≤i≤n
|Si|
∥∥∥∥
q

≤
∥∥∥∥ max

1≤i≤n
|Si|
∥∥∥∥

1

+K1

∥∥∥∥∥∥∥
 n∑
j=1

X2
j

1/2
∥∥∥∥∥∥∥
q

.(3.1)

Moreover, when 2 ≤ q ≤ 4, then for K2 = K2(q) and for every n ≥ 1 we have

E max
1≤i≤n

|Si|q ≤ K2

(E max
1≤i≤n

|Si|
)q

+

 n∑
j=1

EX2
j

q/2

+
n∑
j=1

E|Xj |q
 .

(3.2)

Proof. Let Q ⊂ {1, 2, . . . , n} and Q∗ = {1, 2, . . . , n} − Q. Denote SQ,i =

i∑
j=1
j∈Q

Xj,

MQ,n = max1≤i≤n |SQ,i| and Mn = max1≤i≤n |Si|. Because Sn = SQ,n + SQ∗,n we
have

2MQ,n − max
1≤i≤n

|SQ,i − SQ∗,i| ≤Mn.

By adding to this relation the similar one with Q replaced by Q∗ we get

MQ,n +MQ∗,n ≤Mn + max
1≤i≤n

|SQ,i − SQ∗,i|.(3.3)

We also have

‖Mn‖q ≤ ‖MQ,n‖q + ‖MQ∗,n‖q.(3.4)

By a well known consequence of the Hahn-Banach theorem applied to each term of
the right hand side of (3.4) separately we get

‖MQ,n‖q + ‖MQ∗,n‖q = EYMQ,n + EY ∗MQ∗,n,

where Y (respectively Y ∗) is FQ-measurable (respectively FQ∗ -measurable) and
E|Y ∗|p = E|Y |p = 1, where 1/p+ 1/q = 1. As a consequence, by (3.4) we get

‖Mn‖q ≤ E(Y − EY )MQ,n + E(Y ∗ − EY ∗)MQ∗,n(3.5)

+ EY EMQ,n + EY ∗EMQ∗,n.

Now we apply Lemma 1 of Bryc and Smolenski [6] to the σ-fields FQ and FQ∗ and
to the random variables Y − EY and −Y ∗ + EY ∗. Because ρ∗1 < 1, according to
that lemma we can construct a random variable Z such that

E(Z|FQ) = Y − EY, E(Z|F∗Q) = −Y ∗ + EY ∗(3.6)

and, for a certain constant Cp,

‖Z‖p ≤ Cp(‖Y − EY ‖p + ‖Y ∗ − EY ∗‖p) ≤ 4Cp.(3.7)
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By substituting (3.6), and (3.3) in (3.5) we get

‖Mn‖q ≤ EZ(MQ,n −MQ∗,n) + EMn + E max
1≤i≤n

|SQ,i − SQ∗,i|.

Hence by the Cauchy-Schwarz inequality and (3.7) we have

‖Mn‖q ≤ ‖Mn‖1 + (4Cp + 1)‖ max
1≤i≤n

|SQ,i − SQ∗,i|‖q.

We can rewrite this inequality as

(‖Mn‖q − ‖Mn‖1)q ≤ (4Cp + 1)qE max
1≤i≤n

|SQ,i − SQ∗,i|q.

We sum this inequality over all the subsets Q ⊂ {1, 2, . . . , n} and get for Kp =
4Cp + 1

(‖Mn‖q − ‖Mn‖1)q ≤ Kq
p

1

2n

∑
Q

E max
1≤i≤n

|SQ,i − SQ∗,i|q(3.8)

Now let {εn} be a Rademacher sequence independent of {Xn}, i.e., {εn} are i.i.d.
with P (ε1 = ±1) = 1/2.

We can easily see that the inequality (3.8) can be rewritten as

(‖Mn‖q − ‖Mn‖1)q ≤ Kq
pE max

1≤i≤n

∣∣∣∣∣∣
i∑

j=1

εj ·Xj

∣∣∣∣∣∣
q

.

By conditioning on {Xn} and then integrating in Levy’s inequality for the maximum
of a symmetric sequence we get

(‖Mn‖q − ‖Mn‖1)q ≤ 2Kq
pE

∣∣∣∣∣∣
n∑
j=1

εj ·Xj

∣∣∣∣∣∣
q

,

and by Khintchine’s inequality we get (3.1).
The relation (3.2) is obtained from (3.1), and its proof can be completed by the

same kind of arguments used by Bryc and Smolenski in the proof of their Lemma
3.

Proposition 3.2. Assume {Xn}n∈Z is a sequence of centered random variables
such that ρ∗1 < 1 and

lim
n→∞

∑n
i=1EX

2
i I(|Xi| > σn)

σ2
n

= 0.(3.9)

Then the family {
max1≤i≤n S2

i

Emax1≤i≤n S2
i

}
n≥1

is uniformly integrable.

Proof. We shall truncate the variables at the level σn. Define

X ′
n = XnI(|Xn| ≤ σn)− EXnI(|Xn| ≤ σn)

and

X ′′
n = XnI(|Xn| > σn)− EXnI(|Xn| > σn).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1186 MAGDA PELIGRAD

Denote M ′
n = max1≤i≤n |S′i| and M ′′

n = max1≤i≤n |S′′i |. By Proposition 3.1 and
relation (3.1) we find a constant K such that for every n ≥ 1

‖M ′′
n‖2 ≤ ‖M ′′

n‖1 +K

(
n∑
i=1

E(X ′′
i )2

)1/2

.(3.10)

Because

E|M ′′
n | ≤

n∑
i=1

E|X ′′
i | ≤

2

σn

n∑
i=1

EX2
i I(|Xi| > σn)

and
n∑
i=1

E(X ′′
i )2 ≤ 2

n∑
i=1

EX2
i I(|Xi| > σn),

it follows from (3.9) and (3.10) that

lim
n→∞

‖M ′′
n‖2
σn

= 0

and therefore

lim
n→∞

E(M ′′
n )2

EM2
n

= 0.(3.11)

Because |M ′
n −Mn| ≤M ′′

n , (3.11) gives

lim
n→∞

E(M ′
n −Mn)2

EM2
n

= 0,(3.12)

whence

lim
n→∞

E(M ′
n)2

EM2
n

= 1.(3.13)

Next we apply the relation (3.2) of Proposition 3.1 with q = 4 to the sequence
{M ′

n}, and we obtain

E(M ′
n)4 � ‖M ′

n‖22 +

 n∑
j=1

E(X ′
j)

2

2

+

n∑
j=1

E(X ′
j)

4.

By (3.13), the definition of X ′
j and Remark 2.1 it follows that

E(M ′
n)4 � (EM2

n)2 + σ4
n � (EM2

n)2.(3.14)

Because

EM2
nI
(
Mn > λ

√
EM2

n

)
EM2

n

≤ 4
E(M ′′

n )2

EM2
n

+ 4
E(M ′

n)
2

EM2
n

I

(
M ′

n >
λ

2

√
EM2

n/2

)
≤ 4

E(M ′′
n )2

EM2
n

+
16

λ2

E(M ′
n)4

(EM2
n)2

the result follows by (3.11) and (3.14) on letting first n and then λ go to infinity.
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Remark 3.1. Proposition 3.2 can be formulated for triangular arrays of random
variables. However, we are going to apply it for strictly stationary sequences. In
this case we shall be able to find the estimate (3.15) from the following proposition.

Proposition 3.3. Assume {Xn}n∈Z is a strictly stationary sequence of random
variables which is centered, has finite second moments and limn→∞ ρ∗n < 1. Then
there is a constant K such that

E max
1≤i≤n

S2
i ≤ Kn for every n ≥ 1.(3.15)

Proof. The proof of this proposition is indirect and requires three steps.
I. Let us note first that without restricting the generality we can assume ρ∗1 < 1.

To see this let p be a natural number such that ρ∗p < 1, and notice that for each of
the sequences {Xjp+u}j≥0, 1 ≤ u ≤ p, the first ρ∗-mixing coefficient is inferior to
ρ∗p and therefore is strictly less than 1. In addition,

max
1≤i≤n

|Si| ≤
p∑

u=1

max
1≤i≤[np ]

∣∣∣∣∣∣
i∑

j=0

Xjp+u

∣∣∣∣∣∣+ p max
1≤i≤n

|Xi|.

By stationarity it is enough to establish Propositions 3.3 and 2.1 for ρ∗1 < 1.
II. We now define a sequence of numbers

an =
√

max
1≤k≤n

EM2
k/k

Notice that {an} is increasing. Define the random element

Vn(t) =
S[nt]√
nan

, 0 ≤ t ≤ 1.

Now we establish that Vn(t) is tight in D[0, 1].
By Theorems 15.5, 8.3, and the proof of Theorem 8.4 in Billingsley [1] and

by stationarity we have only to prove that for each positives ε and η there exist
δ, 0 < δ < 1, and an integer n0 such that

1

δ
P (max

i≤nδ
|Si| > ε

√
nan) ≤ η for all n ≥ n0.

By Chebyshev’s inequality and since {an} is increasing, we have

1

δ
P

(
max
i≤nδ

|Si| > ε
√
nan

)
≤ 1

δ

EM2
[nδ]

na2
n

I(M[nδ] > ε
√
nan)

(3.16)

≤
EM2

[nδ]

[nδ]a2
[nδ]

I

(
M[nδ]√
[nδ]a[nδ]

>
ε√
δ

)
.

Because EM2
n ≤ na2

n, it follows by Proposition 3.2 that
{
M2
n

na2
n

}
is a uniformly

integrable family, and therefore, by (3.16),

lim
δ→0

sup
n

1

δ
P (max

i≤nδ
|Si| > ε

√
nan) = 0,

which completes the proof of tightness.
III. In this step we prove that there is a constant K such that (3.15) holds, i.e.

E max
1≤i≤n

S2
i ≤ Kn for every n ≥ 1.
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Let us assume for a contradiction that (3.15) does not hold, i.e. there is a subse-

quence {nk}k≥1 such that limk→∞
EM2

nk

nk
= ∞. This implies that max1≤i≤nk

EM2
i

i

→∞ as k →∞. Let mk, 1 ≤ mk ≤ nk, be such that

EM2
mk

mk
= max

1≤i≤nk
EM2

i

i
= max

1≤i≤mk

EM2
i

i
,

and observe that {mk} constructed this way has the property that
EM2

mk

mk
→∞ as

k → 0, and in addition a2
mk

= max1≤i≤mk

EM2
i

i =
EM2

mk

mk
. The sequence of random

elements Vmk
(t) =

S[mkt]√
EM2

mk

is therefore a subsequence of Vn(t) =
S[nt]√
nan

. By step

II of this proof, {Vmk
(t)}k is tight in D[0, 1]. Moreover, because mk

EM2
mk

→ 0 as

k → ∞, by Remark 2.1 it follows that for every 0 ≤ t ≤ 1 we have
ES2

[mkt]

EM2
mk

→ 0

as k → ∞. This implies that the finite dimensional distributions of Vmk
(t) are

convergent to those of 0 regarded as a continuous function. By Theorem 15.1 in

Billingsley [1] it follows that Vmk
(t)

D
=⇒ 0 as k → ∞ in D[0, 1], and also that

sup0≤t≤1 |Vmk
(t)| D

=⇒ 0 as k →∞; as a consequence

Mmk√
EM2

mk

D
=⇒ 0 as k →∞.(3.17)

Because the family

{
M2
mk

EM2
mk

}
is uniformly integrable, from the relation (3.17) and

Theorem 5.4 in Billingsley [1] we deduce that

1 =
EM2

mk

EM2
mk

→ 0 as k →∞.

But this is obviously absurd. Therefore lim supm
EM2

m

m cannot be ∞, and the claim
of this step follows.

Proof of Proposition 2.1. According to the step 1 in the proof of Proposition 3.3
we can assume without losing the generality that ρ∗1 < 1. The uniform integrability
in (2.6) follows as a combination of Propositions 3.2 and 3.3.

Proof of Theorem 2.1. From the proof of Theorem 3 of Bradley [2] with λ = 0 one
can easily deduce that condition (2.1) implies the left hand side of (2.2). The right
hand side is an easy consequence of Remark 2.1. By Theorem 1.4 in Peligrad [12] we
know that a strongly mixing strictly stationary sequence of random variables, which
is centered, has second moments and σn → ∞, satisfies the invariance principle if

and only if
{
S2
n

σ2
n

}
is uniformly integrable and for each positive ε there is λ > 1 such

that P (max1≤i≤n |Si| > λσn) < ε/λ2. We remark that it is enough to prove that
the family {

max1≤i≤n S2
i

σ2
n

}
is an uniformly integrable family. This fact is a consequence of Proposition 2.1 and
relation (2.2). The invariance principle is proved. The convergence of moments in
(2.1) results from the above considerations and Theorem 5.4 in Billingsley [1].
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