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Abstract

We study the problem of maximizing the overlap of two convex polytopes under trans-
lation in R

d for some constant d ≥ 3. Let n be the number of bounding hyperplanes of the
polytopes. We present an algorithm that, for any ε > 0, finds an overlap at least the opti-
mum minus ε and reports the translation realizing it. The running time is O(n�d/2�+1 logd n)
with probability at least 1 − n−O(1), which can be improved to O(n log3.5 n) in R

3. The
time complexity analysis depends on a bounded incidence condition that we enforce with
probability one by randomly perturbing the input polytopes. The perturbation causes an
additive error ε, which can be made arbitrarily small by decreasing the perturbation mag-
nitude. Our algorithm in fact computes the maximum overlap of the perturbed polytopes.
The running time bounds, the probability bound, and the big-O constants in these bounds
are independent of ε.

1 Introduction

Many applications perform geometric shape matching to find a transformation of one shape
in order to maximize some similarity measure with another shape. The problem of matching
convex shapes has been used in tracking regions in an image sequence [15] and measuring
symmetry of a convex body [12]. One robust similarity measure for two shapes is their overlap—
the volume of their intersection [18]. In this paper, we consider maximizing the overlap of two
convex polytopes under translation in R

d for d ≥ 3. The dimension d is treated as a constant
and so is any value depending on d alone.

In the plane, the maximum overlap problem has been studied for convex and simple poly-
gons. Let n be the number of input polygon edges. De Berg et al. [3] can maximize the overlap
of two convex polygons under translation in O(n log n) time. Mount et al. [16] can do the
same for two simple polygons in O(n4) time. When both rotation and translation are allowed,
Ahn et al. [2] can align two convex polygons with an overlap at least 1− ε times the optimum
for any ε ∈ (0, 1). The running time of their algorithm is O((1/ε) log n + (1/ε2) log(1/ε)),
assuming that there are two input arrays, each storing the polygon vertices in order around
the boundary. If only translation is allowed, Ahn et al. can improve the running time to
O((1/ε) log n+ (1/ε) log(1/ε)).

The maximum overlap problem for convex polytopes under translation in R
d for d ≥ 3 has

been studied by Ahn et al. [1] and Fukuda and Uno [10]. Let n be the number of hyperplanes
defining the convex polytopes. Ahn et al.’s algorithm finds the maximum overlap of two convex
polytopes under translation in O(n(d

2+d−3)/2 logd+1 n) expected time. Given k convex polytopes
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for some constant k ≥ 2, Fukuda and Uno can translate them to give an overlap at least opt−ε
for any ε > 0, where opt denotes the maximum overlap. They require O(log(opt/ε)) calls to a
subroutine that returns the value and the gradient of the overlap function for given translations
of the polytopes. Some critical details of this subroutine are missing though. In any case,
the running time does not depend on the combinatorial input size n alone. Fukuda and Uno
also gave an algorithm to find the maximum overlap of k possibly non-convex polytopes under
translation in O(nkd

2+d) time.
Vigneron [19] studied the optimization of algebraic functions and one of the applications

is the alignment of two possibly non-convex polytopes under rigid motion. For any ε ∈ (0, 1)
and for any two convex polytopes with n defining hyperplanes, Vigneron’s method can return
in O

(
ε−Θ(d2)nΘ(d3)(log n

ε )
Θ(d2)

)
time an overlap under rigid motion that is at least 1− ε times

the optimum.
We give a new algorithm for the maximum overlap problem for two convex polytopes under

translation in R
d for d ≥ 3. Our model of computation is the real-RAM model in which

the operations (+,−,×, /) can be performed in constant time. We also make the standard
assumption that it takes O(1) time to solve a system of O(1) polynomials of fixed degree in
O(1) variables. For any ε > 0, we can find an overlap at least the optimum minus ε and report
the translation realizing it. Our algorithm runs in O(n�d/2�+1 logd n) time with probability
1−n−O(1), which can be improved to O(n log3.5 n) in R

3. The time complexity analysis depends
on a bounded incidence condition, which may fail in degenerate situations. We enforce it with
probability one by randomly perturbing the input polytopes. This causes an additive error ε,
which can be made arbitrarily small by decreasing the perturbation magnitude. Our algorithm
in fact computes the maximum overlap of the perturbed polytopes. The running time bounds,
the probability bound, and the big-O constants in these bounds are independent of ε.

2 Preliminaries

Let X be a subset of a topological space. We use bd(X) to denote the boundary of X. Notice
that bd(X) is empty if X is a point or an open set. The interior of X, denoted by int(X), is
equal to X\bd(X). The closure of X, denoted by cl(X), is the smallest closed set containing X.
TheMinkowski sum of two subsets X and Y of Rd is defined as X⊕Y = {x+y : x ∈ X, y ∈ Y }.
So dim(X ⊕ Y ) ≤ dim(X) + dim(Y ). For any α ∈ R

d, we have X ⊕ {α} = X + α.
An i-flat is L+ v for some i-dimensional linear subspace L and for some point v ∈ R

d, i.e.,
a copy of L translated by the vector v. A hyperplane in R

d is a (d − 1)-flat. Given a subset
X ⊂ R

d, its affine hull aff(X) is the flat of the lowest dimension containing X. For example,
if X is a line segment, then aff(X) is its supporting line; if X is a polygon, then aff(X) is its
supporting plane.

A convex polytope P in R
d is the common intersection of (closed) halfspaces. These are the

bounding halfspaces and their boundaries are the bounding hyperplanes of P . Assume that P
has dimension d. For k ∈ [0, d], a k-face of P is the k-dimensional common intersection of P
and some bounding hyperplane(s). Taking no bounding hyperplane in the intersection gives the
d-face, which is P itself. We follow the convention to call the 0-faces vertices, the 1-faces edges,
and the (d − 1)-faces facets. We use faces(P ) to denote the set of k-faces of P for k ∈ [0, d].
The faces with dimensions less than d are called proper faces and they are subsets of bd(P ). In
non-degenerate situations, a k-face lies in exactly d − k bounding hyperplanes. In degenerate
situations, a k-face may lie in more than d− k bounding hyperplanes. Each proper face of P is
a convex polytope of dimension less than d.

An i-simplex is an i-dimensional convex polytope with exactly i+ 1 vertices.
Let F be a finite family of convex subsets of R

d, each of dimension d − 1 or less. The
arrangement Arr(F) of F is a partition of Rd into disjoint cells. A cell is either a connected
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component in R
d \ (⋃S∈F S), or a maximal collection of points in

⋃
S∈F S that belong to the

same elements of F . The dimensions of the cells can range from 0 to d.
Lemmas 1 and 2 below state the results on the ε-net theory [11, 13] and cuttings [6] that we

use heavily. Let H be a set of hyperplanes. For any r ∈ (0, |H|), a simplicial complex in R
d is

called a (1/r)-cutting of H if at most |H|/r hyperplanes in H intersect int(τ) for any d-simplex
τ in the simplicial complex.

Lemma 1 Let H be a multiset of hyperplanes in R
d. Let r ∈ (0, |H|) and δ ∈ (0, 1) be two

parameters. There is a number jd,r,δ = Θ(dr log(dr/δ)) such that, if we draw jd,r,δ hyperplanes
from H uniformly at random and form an arrangement A of the hyperplanes drawn (after
removing duplicates), then it holds with probability at least 1− δ that at most |H|/r hyperplanes
in H intersect int(τ) for any d-simplex τ whose interior lies in a cell of A.

Remark. In the lemma above, if we want a probability bound of 1−|H|−O(1), we need to draw
O(r log |H|) hyperplanes to guarantee that at most |H|/r hyperplanes intersect int(τ).

Lemma 2 Let H be a set of hyperplanes in R
d. For any r ∈ (0, |H|), a (1/r)-cutting of H of

size O(rd) can be constructed in O(|H|rd−1) time. Within the same time bound, one can store
at each d-simplex in the (1/r)-cutting the hyperplanes in H that intersect its interior.

3 Overview

Let P1 and P2 denote the two input convex polytopes. They are specified by n distinct bounding
hyperplanes. The complexity of Pj, j ∈ {1, 2}, is the number of its faces, which is O(n�d/2�) [9].
We always translate P1 and keep P2 stationary. We need the following definitions.

• For any vector α ∈ R
d, Qα denotes the common intersection (P1 + α) ∩ P2.

• For any f ∈ faces(P1) and g ∈ faces(P2), γf,g denotes the set {α ∈ R
d : (int(f) + α) ∩

int(g) 	= ∅}, which is a single point or an open convex set.

• Γ denotes the set { γf,g : dim(γf,g) < d }.
Observe that α ∈ γf,g if and only if there exists x ∈ int(f) such that x + α ∈ int(g), which
is equivalent to α = (−x) + y for some y ∈ int(g). In other words, γf,g = (−int(f)) ⊕ int(g).
Figure 1 gives some illustrations of γf,g.

The dimension of γf,g is less than d if for any α ∈ R
d such that (int(f)+α)∩ int(g) 	= ∅, we

can perturb α slightly to α′ such that (int(f) + α′) ∩ int(g) = ∅. Thus, if we move a point α in
R
d, there is a combinatorial change in Qα whenever the point α crosses an element of Γ. There

is no combinatorial change in Qα if the point α varies within a cell in Arr(Γ). Let vol(Qα)
denote the volume of Qα. The function vol(Qα)

1/d is concave over {α ∈ R
d : Qα 	= ∅ } [17].

We follow the high level approach in the algorithm of de Berg et al. for convex polygons [3].
We refer to their algorithm as Polygon. One can extend Polygon directly to higher dimen-
sions, but this gives an Ω(n2�d/2�) running time in the worst case as we explain below. For
d = 2, Γ consists of open line segments (translations that place a vertex of P1 in the interior of
an edge of P2 and vice versa) and the endpoints of the closure of these line segments (transla-
tions that align vertices of P1 and P2). Let L be the set of horizontal lines through the segment
endpoints in Γ. Each line in L is the set of translations that place a vertex of P1 at the same
height of some vertex of P2. The arrangement of Γ is divided into strips by the lines in L.
Polygon locates the strip containing the solution by probing L in a binary search manner. In
each probe, Polygon solves the maximum overlap problem for P1 and P2 with translations
restricted to a line � ∈ L, and decide whether the solution for the original 2D problem lies above
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g1

g2

g3

f

Figure 1: Illustrations of γf,g and Γ in R
3. Left: f is a facet of P1 and g1 is an edge of P2 with

endpoints g2 and g3. Middle: The interior of the prism is γf,g1 . The interior of the left and
right vertical facets of the prism are γf,g2 and γf,g3 , respectively. Right: Γ contains γf,g2 and
γf,g3 but not γf,g1 because dim(γf,g1) = 3.

P2

P1

Figure 2: Left: P1 and P2. Right: The translations in the slab S place P1 between the horizontal
planes through the top facet and bottom vertex of P2.

or below �. Let S be the strip obtained by the binary search. De Berg et al. showed that S
is stabbed by O(n) open line segments in Γ. Polygon scans the vertices and edges of P1 and
P2 in order from top to bottom to find the O(n) pairs of vertices and edges that induce the
open line segments in Γ stabbing S. Then, exploiting the concavity of vol(Qα)

1/2, Polygon
constructs a sequence of cuttings (see our Lemma 2) to prune the search space to the cell in
Arr(Γ) ∩ S that contains the solution for the 2D maximum overlap problem.

For d ≥ 3, the lines in L become parallel hyperplanes and each hyperplane is the set of
translations that place a vertex of P1 at the same height as some vertex of P2. The hyperplanes
in L cut Arr(Γ) into d-dimensional slabs. One can still locate the slab S containing the solution
for the maximum overlap problem by a binary search. However, for a vertex v of P1, the
translated slab v+ S can cross Θ(n�d/2�) faces of P2, so v induces Θ(n�d/2�) elements of Γ that
stab S. Summing over all faces of P1, there can be Θ

(
n2�d/2�

)
elements of Γ that stab S. Hence,

it would take Ω
(
n2�d/2�

)
time to construct a cutting on the elements of Γ stabbing S. Figure 2

shows such a bad case in R
3. In the figure, the top and bottom facets of P1 and the top facet of

P2 are the same convex polygon. The maximum overlap is obtained by aligning the top facets
of P1 and P2. The slab S consists of translations that place P1 between the horizontal planes
through the top facet and the bottom vertex of P2. Thus, for any vertex of P1 and any edge or
facet of P2, some translation in S bring them into intersection, implying that Θ(n2) elements
of Γ stab the slab S. To generalize the example to R

d, one can replace the top facet of P2 and
the top and bottom facets of P1 by the same simple convex polytope in R

d−1. Then, the same
reasoning shows that Θ(n2�d/2�) elements of Γ stab S.

4



Instead of parallel slabs, we propose to prune Arr(Γ) using the ε-net theory (Lemma 1).
First, we define a set Γ̂ of hyperplanes, each containing one element of Γ. We generate a random
subset Ê0 ⊂ Γ̂ of size O(n�d/2� log n). The ε-net theory ensures that O(n�d/2�) hyperplanes in
Γ̂ stab any d-simplex in a cell of Arr(Ê0) with high probability, in particular, the cell C that
contains the solution of the maximum overlap problem. How do we locate C? As binary search
no longer works, we instead construct a sequence of cuttings on Ê0 to prune the search space
to C, or more precisely a d-simplex ρ0 ⊆ C containing the solution. During this pruning, we
recursively solve instances of the maximum overlap problem for P1 and P2 with translations
restricted to a hyperplane in Ê0 in order to tell which side of this hyperplane we should step
into.

The challenge is to find the elements of Γ that stab ρ0 so that we can search in ρ0 via
cuttings. For the direct extension of Polygon to high dimensions, we would scan the faces
of P1 and P2 in a direction orthogonal to the slabs to find the face pairs that induce the
elements of Γ stabbing a particular slab. However, in our case scanning no longer works. We
prove a characterization of the elements of Γ that stab ρ0, which allows us to find them using
linear programming on P1 and P2. This is the key idea to defy the O(n2�d/2�) bound. The
speedup in R

3 is obtained by replacing the linear programming with suitable queries using the
Dobkin-Kirkpatrick structure [8].

Degeneracy in P1, P2 and Arr(Γ̂) has a great impact on the running time. For efficiency,
the linear programming step requires each face of P1 and P2 to be incident to O(1) other faces.
When pruning the search space using a cutting, we need to decide which side of a hyperplane
� ∈ Ê0 to step into, after obtaining the translation α ∈ � that maximizes Qα over �. If α lies in
a cell of Arr(Γ̂) that is incident to many other cells, it may take a long time to decide which
side of � we should step into. This explains the need for the bounded incidence condition. (A
precise definition is given in the next section.) We prove that the bounded incidence condition
holds with probability one by perturbing P1 and P2 and using randomization to generate the
hyperplanes in Γ̂. We can control the perturbation of P1 and P2 so that the maximum overlap
decreases negligibly.

4 Algorithm

We first give some definitions and then elaborate on the algorithm outlined in the previous
section. For each element γf,g ∈ Γ, define a hyperplane γ̂f,g containing γf,g as follows.

• Suppose that dim(f)+dim(g) < d. If dim(γf,g) = d− 1, then γ̂f,g = aff(γf,g). Otherwise,
we pick a unit vector v orthogonal to aff(γf,g) uniformly at random and define γ̂f,g to be
the (d − 1)-flat through γf,g orthogonal to v. That is, v is a random point on the unit
sphere in the linear subspace of dimension d− dim(γf,g) orthogonal to aff(γf,g). Figure 3
shows some examples.

• Suppose that dim(f) + dim(g) ≥ d. Since dim(γf,g) < d by the definition of Γ, there is
a face h of f such that dim(h) + dim(g) < d and aff(γh,g) = aff(γf,g). (Pick any if there
are more than one such h’s.) The hyperplane γ̂h,g is already defined in the previous case.
We set γ̂f,g = γ̂h,g. Figure 4 shows an example.

We define Γ̂ to be the multiset { γ̂f,g : γf,g ∈ Γ }. Duplicates exist in Γ̂ if two distinct face

pairs induce the same hyperplane. Both Γ̂ and Γ have O
(
n2�d/2�

)
elements, so we cannot afford

to generate either of them completely.
Consider two quantities. The first one is the maximum number of faces in P1 or P2 that have

a non-empty common intersection. The second one is the maximum number of hyperplanes in Γ̂
that have a non-empty common intersection. If these quantities have a constant upper bound,
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γ̂f,g

γf,g

v

v′

γf,g

Figure 3: Illustrations of γ̂f,g in R
3 when dim(f)+dim(g) < 3. Left: For a facet f and a vertex

g, we have γ̂f,g = aff(γf,g). Right: When f is an edge and g is a vertex, γf,g is an open line
segment and the plane γ̂f,g depends on the choice of the normal vector orthogonal to γf,g. Two
possible vectors v and v′ are shown with the corresponding planes containing γf,g.

h
f g γf,g γh,g

Figure 4: Illustration of γ̂f,g in R
3 when dim(f) + dim(g) ≥ 3. Left: The faces f of P1 (a

triangle) and g of P2 (an edge) are parallel. So dim(γf,g) = 2 and dim(f)+dim(g) = 3. Middle:
The shaded polygon denotes γf,g, so γ̂f,g is the supporting plane of the polygon. Right: The
shaded parallelogram is γh,g which is coplanar with γf,g as h is an edge of f . So dim(γh,g) = 2
and dim(h) + dim(g) < 3. We can set γ̂f,g to be γ̂h,g.
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Locate(Π) /* return the optimal translation in Π */

1. If dim(Π) = 0, return Π; otherwise, construct a d-simplex τ0 that contains the optimal
translation in Π.

2. Sample a subset Ê0 ⊂ Γ̂ of Θ(n�d/2� log n) hyperplanes.

3. ρ0 := Prune(Π, τ0, Ê0).
4. Compute a subset Ê1 ⊂ Γ̂ that has O(n�d/2�) hyperplanes and contains { γ̂f,g ∈ Γ̂ :
γf,g ∩ int(ρ0) 	= ∅ }.

5. ρ1 := Prune(Π, ρ0, Ê1).
6. Return the translation α ∈ ρ1 ∩Π that maximizes vol(Qα)

1/d.

Prune(Π, τ, Ê) /* return a d-simplex τ ′ ⊆ τ such that τ ′ contains the optimal translation in Π
and int(τ ′) lies in a cell of Arr(Ê). */

1. Set τ ′ = τ . Let α denote the translation in Π that maximizes vol(Qα) over Π.

2. Compute a 1
2 -cutting of Ê . Find the d-simplex τ ′′ in the cutting that contains α.

3. Triangulate τ ′ ∩ τ ′′. Update τ ′ to be the d-simplex in this triangulation that contains α.
Remove from Ê the hyperplanes that avoid int(τ ′).

4. Return τ ′ if Ê becomes empty. Otherwise, go to step 2.

Figure 5: Pseudocodes of Locate and Prune.

the bounded incidence condition is satisfied. We assume this condition in the rest of the paper.
The time complexity analysis of our algorithm depends on it although the correctness of our
algorithm does not. We can show that the bounded incidence condition holds with probability
one by perturbing P1 and P2 and using the randomization in the definitions of the hyperplanes
in Γ̂. For any ε > 0, we can control the perturbation so that vol(Qαε) is at most ε less than
the optimum, where αε is the translation that realizes the maximum overlap for the perturbed
input. We give the proofs for this in the appendix in order to focus on the main algorithm.

We call our algorithm Locate. Given an m-flat Π, Locate(Π) returns the translation
α ∈ Π that maximizes vol(Qα) over Π. The original maximum overlap problem is solved by
setting m = d. Locate calls a subroutine Prune that takes three parameters, an m-flat Π,
a d-simplex τ containing the optimal translation in Π, and a subset Ê ⊆ Γ̂. Prune(Π, τ, Ê)
outputs a d-simplex τ ′ ⊆ τ such that τ ′ contains the optimal translation in Π and int(τ ′) lies in
a cell of Arr(Ê). Figure 5 shows the pseudocodes of Locate and Prune. Although the solution
lies in the m-flat Π, we search the arrangement Arr(Γ̂) in R

d for notational convenience.

4.1 How Locate works

Refer to the pseudocode of Locate in Figure 5. In step 1, τ0 is constructed as follows. For
j ∈ {1, 2}, we compute Pj and its axes-parallel bounding box Bj in O(n�d/2�+n log n) time [5].
The translations that bring B1 and B2 into intersection form a box B which can be computed
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in O(1) time. We can take τ0 to be any d-simplex containing B. By steps 2 and 3, we call
Prune(Π, τ0, Ê0) with a random subset Ê0 ⊂ Γ̂. We want the d-simplex ρ0 returned by Prune
to be stabbed by only few hyperplanes in Γ̂ because we will construct cuttings on them later.
By the ε-net theory, a d-simplex in any cell of Arr(Ê0) is stabbed by (|Γ̂|/|Ê0|) log n hyperplanes
with probability 1 − n−O(1). We have |Γ̂| = O

(
n2�d/2�

)
and we make |Ê0| = O(n�d/2� log n) to

optimize the running time of Locate. The lemma below explains how we pick a subset Ê0 of
hyperplanes from Γ̂.

Lemma 3 We can sample in O(n�d/2� log2 n) time a subset Ê0 ⊂ Γ̂ of size O(n�d/2� log n) such
that, with probability 1 − n−O(1), for any d-simplex ρ whose interior lies in a cell of Arr(Ê0),
only O(n�d/2�) hyperplanes in Γ̂ intersect int(ρ).

Proof. Let F i
j be the number of i-faces of Pj for j ∈ {1, 2} and i ∈ [0, d]. For k ∈ [0, d−1], let Γ̂k

be the multiset { γ̂f,g ∈ Γ̂ : dim(f) + dim(g) = k }. We sample a hyperplane from Γ̂k uniformly

at random as follows. First, pick an integer i ∈ [0, k] with probability F i
1F

k−i
2 /(

∑k
a=0 F

a
1 F

k−a
2 ).

Second, pick an i-face of P1 and a (k − i)-face of P2 with probabilities 1/F i
1 and 1/F k−i

2 ,
respectively. Repeat to pick Θ(n�d/2� log n) face pairs that induce Θ(n�d/2� log n) hyperplanes
in Γ̂k. The set Ê0 contains all hyperplanes sampled over k ∈ [0, d− 1] with duplicates removed
via sorting. The time needed is O(n�d/2� log2 n).

Take any d-simplex ρ whose interior lies in a cell of Arr(Ê0). It follows immediately from
Lemma 1 that, with probability 1 − n−O(1), only O(n�d/2�) hyperplanes in

⋃d−1
k=0 Γ̂k intersects

int(ρ). It is possible for int(ρ) to intersect a hyperplane γ̂f,g in Γ̂ where dim(f) + dim(g) ≥ d

and so γ̂f,g 	∈ ⋃d−1
k=0 Γ̂k. By the definition of Γ̂, we have γ̂f,g = γ̂h,g for some face h of f where

dim(h) + dim(g) < d, which implies that γ̂h,g ∈ ⋃d−1
k=0 Γ̂k. We charge the intersection between

int(ρ) and γ̂f,g to the intersection between int(ρ) and γ̂h,g. By the bounded incidence condition,
the intersection between int(ρ) and γ̂h,g is charged only O(1) times.

We discuss how Prune works in the next section, and we defer to Section 4.3 the discussion
of step 4, the generation of a subset Ê1 ⊂ Γ̂ that contains {γ̂f,g ∈ Γ̂ : γf,g ∩ int(ρ0) 	= ∅}. After
step 5, we have a d-simplex ρ1 such that ρ1 contains the optimal translation in Π and int(ρ1)
lies in a cell of Arr(Ê1). The property of Ê1 implies that int(ρ1) lies in a cell of Arr(Γ). (Some
γ̂f,g in Γ̂ may intersect int(ρ1), but γf,g does not.) We describe below how to find the optimal
translation in step 6.

We first obtain a formula ϕ for vol(Qα) for any α ∈ int(ρ1) by defining a canonical tri-
angulation Tα of Qα as follows. The canonical triangulations of the (d − 1)-faces of Qα are
recursively defined. Then, fix a vertex q of Qα and connect it to every simplex in bd(Qα) not
incident to q to get Tα. If we have the volume formulae for the d-simplices in Tα, their sum
gives the formula for vol(Qα). The signed volume of a d-simplex with vertices v0, v1, . . . , vd is
1
d! det(v1 − v0, v2 − v0, . . . , vd − v0), where each vi is viewed as a column vector. Since there
is no combinatorial change as α varies in int(ρ1), the vertex coordinates of Qα are fixed lin-
ear functions in α and there is no combinatorial change in Tα. So the signed volumes of the
d-simplices in Tα do not change sign. We construct Tα0 for a fixed translation α0 ∈ int(ρ1)
to determine which d-simplices in Tα have negative volumes and multiply their formulae by
−1. Constructing Qα and Tα takes O(n�d/2� + n log n) time and |Tα| = O(n�d/2�). So we can
compute a formula ϕ for vol(Qα) with O(n�d/2�) terms in O(n�d/2� + n log n) time.

Combinatorial changes may happen if we move α from int(ρ1) to bd(ρ1). Nonetheless, these
possible changes are that some d-simplices in Tα may become degenerate and have zero volume.
So the formula ϕ is valid for any α ∈ ρ1.

We convert ϕ to a formula ψ using the barycentric coordinates of α ∈ ρ1 ∩ Π as variables.
The formula ψ has O(n�d/2�) terms and the conversion takes O(n�d/2�) time. We maximize
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Π

τ ′′τ ′′

α∗

τ ′

α∗

τ ′

Figure 6: Illustrations of steps 2 and 3 of Prune in R
2 when Π = R

2. Left: The shaded triangle
is τ ′. The dashed lines form Arr(Ê) and the triangulation denotes a 1

2 -cutting of Ê . We identify
the triangle τ ′′ in the cutting (with bold edges) that contains α∗. Right: We intersect τ ′ with
τ ′′ and triangulate τ ′ ∩ τ ′′. Then, we find the triangle in the triangulation that contains α∗.
This triangle becomes the new τ ′ for the next iteration of steps 2 and 3.

ψ1/d by standard calculus. If ψ1/d attains its maximum in int(ρ1 ∩Π) (i.e., positive barycentric
coordinates), we have the optimal translation. Otherwise, ψ1/d attains its maximum in bd(ρ1∩
Π) and we repeat the conversion of ϕ and the maximization for each face of ρ1 ∩Π.

Lemma 4 Locate(Π) runs in T (n,m) = Tg + Tp + O(n�d/2� log2 n) time, where Tg denotes

the time to generate Ê1 in step 4 and Tp denotes the total running time of Prune in steps 3
and 5.

4.2 How Prune works

Let α∗ denote the translation in an m-flat Π that maximizes the overlap over Π. Prune takes
parameters Π, a d-simplex τ containing α∗, and a set Ê of hyperplanes. Prune returns a d-
simplex τ ′ ⊆ τ such that α∗ ∈ τ ′ and int(τ ′) lies in a cell of Arr(Ê). Assume for now an oracle
that, given any (m− 1)-flat � ⊂ Π, decides which side of � contains α∗.

Refer to the pseudocode of Prune in Figure 5. In step 2, we construct a (1/2)-cutting of
Ê that has O(1) size and can be computed in O(|Ê |) time by Lemma 2. Let H be the set of
supporting hyperplanes of the (d− 1)-simplices in the cutting. Running the oracle on h∩Π for
all h ∈ H tells us which sides of the hyperplanes in H contain α∗. This gives the d-simplex τ ′′

in the cutting that contains α∗. In step 3, we triangulate τ ′∩τ ′′ in O(1) time and use the oracle
as before to find the d-simplex in the triangulation that contains α∗. Figure 6 illustrates steps 2
and 3. By Lemma 2, at least half of the hyperplanes in Ê are removed in step 3. Thus, steps 2–4
iterate O(log |Ê |) times and Prune takes O(To log |Ê |+|Ê |+ 1

2 |Ê |+ 1
4 |Ê |+. . .) = O(To log |Ê |+|Ê |)

time, where To is the time to run the oracle once.
We describe below how the oracle works. Let F be the restriction of vol(Qα)

1/d to Π. For
a cell C of Arr(Γ), let FC denote the restriction of F to cl(C) ∩ Π and let ∇FC denote the
gradient of FC . We run Locate(�) to find the translation α̃ ∈ � that maximizes the overlap
over �. Intuitively, the gradient of F at α̃ points to the side of � containing α∗. However, this
idea fails because F may not be smooth at α̃, leaving the gradient of F undefined at α̃. We
get around this problem as follows. We call a cell C of Arr(Γ) special if cl(C) contains α̃ and
∇FC(α̃) points into C. If there is no special cell, we report that α∗ = α̃. If there is a special
cell C, we report the side of � that ∇FC(α̃) points to. We argue that our strategy is correct as
follows. Take the path of steepest ascent on the graph of F from F (α̃) to F (α∗) and project it to
Π. If the projected path does not leave � at α̃, we have α∗ = α̃, so for any cell C whose closure
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contains α̃, the gradient ∇FC(α̃) cannot point into C, i.e., no special cell. If the projected path
leaves � at α̃, it enters a special cell C and, by the maximality of F (α̃) over �, the projected
path never returns to �. Thus, ∇FC(α̃) points to the side of � containing α∗. There cannot be
two special cells. Otherwise, the steepest ascent at F (α̃) projects to a direction v in Π that
points outside some special cell C. By definition, |∇FC(α̃)| is greater than the magnitude of
the gradient of FC at α̃ in direction v, which by the concavity of the graph of F , is at least
the steepest ascent at F (α̃). But then one can ascend faster on the graph of FC in direction
∇FC(α̃), a contradiction.

The oracle requires the computation of ∇FC(α̃) for each cell C of Arr(Γ). We describe this
computation in the following. Let A ⊂ Γ be the subset of elements whose closure contain α̃.
They are induced by the intersecting face pairs of P1 + α̃ and P2, so we can compute A by
constructing Qα̃ in O(n�d/2� +n log n) time. Let Â = {γ̂f,g : γf,g ∈ A}. We have |Â| = O(1) by

the bounded incidence condition as all hyperplanes in Â go through α̃. The closure of each cell
of Arr(Â) contains α̃. Locally at α̃, Arr(Â) is a refinement of the cells of Arr(Γ) whose closure
contain α̃. So it suffices to compute ∇FC(α̃) for each cell C of Arr(Â), which can be done as
follows. Compute the unit vector v that points into cl(C) ∩ Π in the average direction of the
edges of cl(C) ∩Π. For any faces f of P1 and g of P2 where (f + α̃) ∩ g 	= ∅, we check whether
f + α̃ + rv intersects g, treating r as arbitrarily small. This gives the face lattice of Qα̃+rv.
We want to compute the formula for vol(Qα̃+rv) as in the previous section, but there is one
difference. The face lattice of Qα̃+rv allows us to construct the canonical triangulation Tα̃+rv

of Qα̃+rv. This gives the signed volume formula for each d-simplex in Tα̃+rv. The unknown
r is the only variable in the formula. However, since we do not know an exact value of r, we
cannot evaluate the signed volumes of the d-simplices in Tα̃+rv and flip the signs of the negative
volumes in order to obtain a formula for vol(Qα̃+rv). Instead, we decide whether a d-simplex τ
in Tα̃+rv has negative volume as follows. Let Vτ denote the signed volume formula of τ , which

is a polynomial in r of fixed degree. We compute the ith derivative diVτ

dri
for the smallest i ≥ 0

such that diVτ

dri
|r=0 is non-zero. (The 0th derivative is Vτ itself.) If diVτ

dri
|r=0 is positive, then τ

has positive volume; otherwise, τ has negative volume. This takes O(1) time per d-simplex in
Tα̃+rv. Hence, for each cell C of Arr(Â), we can compute ∇FC(α̃) in O(n�d/2� + n log n) time.

Lemma 5 Prune(Π, τ, Ê) runs in O(T (n,m − 1) log |Ê | + n�d/2� log |Ê | + n log n log |Ê | + |Ê |)
time, where T (n,m− 1) is the time for Locate to run on an (m− 1)-flat.

4.3 The generation of Ê1
The step 4 of Locate generates a subset Ê1 ⊂ Γ̂ that contains the set { γ̂f,g ∈ Γ̂ : γf,g∩int(ρ0) 	=
∅ }. We discuss how to do this in O(n�d/2�+1 log n) time and ensure that |Ê1| = O(n�d/2�). Recall
that the Minkowski sum of two subsets X and Y of Rd is X ⊕ Y = {x+ y : x ∈ X, y ∈ Y }. So
dim(X ⊕ Y ) ≤ dim(X) + dim(Y ).

We first compute a set E1 of face pairs from P1 and P2 as follows, each inducing an element
in Γ. We initialize E1 to be empty. For each face h1 of P1 and for each face σ of ρ0, we compute
the vertices of (h1⊕σ)∩P2. For each vertex computed, if it is equal to (int(h1)⊕σ)∩ int(h2) for
some face h2 of P2, we insert into E1 all face pairs (f, g) where h1 ∈ faces(f) and h2 ∈ faces(g)
such that dim(γf,g) < d. (By storing with f and g the basis vectors of aff(f) and aff(g), we can
check in O(1) time whether dim(f ⊕ g) < d and this suffices as dim(γf,g) = dim(f ⊕ g).) The
vertices of (h1 ⊕ σ) ∩ P2 that are not induced by int(h1) ⊕ σ do not trigger any insertion into
E1. At the end, we set Ê1 = { γ̂f,g : (f, g) ∈ E1 } and remove the duplicates in Ê1 via sorting.

Our analysis in the rest of this section is divided into three parts. First, we show that Ê1
contains the set { γ̂f,g ∈ Γ̂ : γf,g∩int(ρ0) 	= ∅ }. Second, we show that |Ê1| = O(n�d/2�) with prob-
ability 1− n−O(1). Third, we show that, with probability 1− n−O(1), it takes O(n�d/2�+1 log n)
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Figure 7: Illustration of the choice of γh1,h2 and σ in R
3. Left: An edge f of P1 with an endpoint

f1 and an edge g of P2. Right: The set cl(γf,g) is the shaded parallelogram that intersects ρ0.
An edge of cl(γf,g) corresponding to cl(γf1,g) is coplanar with the facet xyz of ρ0 and cl(γf1,g)
crosses xyz completely. We can choose h1 = f1 and h2 = g in this case. We can choose σ to be
the edge xy or xz which intersects γf1,g in a single point.

time to compute the vertices of (h1 ⊕ σ) ∩ P2 over all faces h1 of P1 and all faces σ of ρ0.

4.3.1 The first part

We first prove two geometric properties and then show that Ê1 contains the set { γ̂f,g ∈ Γ̂ :
γf,g ∩ int(ρ0) 	= ∅ }.

Lemma 6 The following properties hold for each element γf,g ∈ Γ.

(i) Suppose that (int(f) ⊕ σ) ∩ int(g) is a single point for some face σ of ρ0. Then, γ̂f,g ∩
int(ρ0) 	= ∅ or γ̂f,g contains a vertex of ρ0.

(ii) Suppose that γf,g intersects ρ0. There exists a face h1 of f , a face h2 of g, and a face σ
of ρ0 such that (int(h1)⊕ σ) ∩ int(h2) is a single point.

Proof. Since (int(f) ⊕ σ) ∩ int(g) 	= ∅, some translation in σ brings int(f) and int(g) into
intersection. Thus, γf,g ∩ σ 	= ∅ and (i) follows as σ is a face of ρ0.

Consider (ii). Recall that γf,g is a point or an open convex set. So cl(γf,g) is a convex
polytope. Among the faces of cl(γf,g) that intersect ρ0, we choose those with the lowest dimen-
sion. Among these faces, we choose a face cl(γh1,h2) such that dim(h1) + dim(h2) is minimum.
Figure 7 gives an illustration. Since ρ0 does not intersect any face of cl(γf,g) with dimension
less than dim(γh1,h2), the boundary of cl(γh1,h2) avoids ρ0, which implies that some face σ of
ρ0 intersects γh1,h2 in a single point. That is, there is a unique translation α = γh1,h2 ∩ σ
such that (int(h1) + α) ∩ int(h2) 	= ∅. We claim that (int(h1) + α) ∩ int(h2) is a single point,
which implies (ii). If (int(h1) + α) ∩ int(h2) is not a single point, its closure has a vertex
(int(h′1) + α) ∩ int(h′2) for some h′1 ∈ faces(h1) and h

′
2 ∈ faces(h2) where h

′
1 is a proper face of

h1 or h′2 is a proper face of h2. Thus, dim(γh′
1,h

′
2
) ≤ dim(γh1,h2) and γh′

1,h
′
2
intersects σ, but

dim(h′1) + dim(h′2) < dim(h1) + dim(h2). This contradicts our choice of γh1,h2 .

Lemma 7 Ê1 contains the set { γ̂f,g ∈ Γ̂ : γf,g ∩ int(ρ0) 	= ∅ }.

Proof. Take an element γf,g of Γ that intersects int(ρ0). By Lemma 6(ii), (int(h1)⊕σ)∩ int(h2)
is a single point for a face h1 of f , a face h2 of g, and a face σ of ρ0. So (int(h1)⊕ σ) ∩ int(h2)
is a vertex of (h1 ⊕ σ) ∩ P2. Our procedure collects this vertex and adds (f, g) to E1.
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4.3.2 The second part

The lemma below gives an O(n�d/2�) bound on the number of vertices computed by our gener-
ation procedure. It follows that |Ê1| = O(n�d/2�).

Lemma 8 With probability 1 − n−O(1), there are O(n�d/2�) vertices in the convex polytopes
(h1 ⊕ σ) ∩ P2 over all faces h1 of P1 and all faces σ of ρ0.

Proof. Each vertex is (int(f)⊕ σ)∩ int(g) for a face f of P1, a face g of P2, and a face σ of ρ0.
If dim(γf,g) < d, we give the vertex a blue color; if dim(γf,g) = d, we give it a red color. It is
possible for a vertex to receive both colors if it is induced by two face pairs (f, g) and (f ′, g′)
such that dim(γf,g) < d and dim(γf ′,g′) = d. We count these two colored instances of the same
vertex separately in our analysis.

Consider the blue vertices. Lemma 6(i) implies that γ̂f,g ∩ int(ρ0) 	= ∅ or γ̂f,g contains a
vertex of ρ0. By Lemma 3, with probability 1 − n−O(1), there are O(n�d/2�) hyperplanes γ̂f,g
in Γ̂ where γ̂f,g ∩ int(ρ0) 	= ∅. By the bounded incidence condition, any vertex of ρ0 lies in

O(1) hyperplanes γ̂f,g in Γ̂. For a face σ of ρ0, the blue vertex (int(f) ⊕ σ) ∩ int(g) may be
constructed more than once if there are other faces f ′ ∈ faces(P1) and g

′ ∈ faces(P2) such that
(int(f ′)⊕σ)∩int(g′) = (int(f)⊕σ)∩int(g). Nevertheless, the pairs (f ′, g′) and (f, g) are already
counted separately in the above as we apply Lemma 6, Lemma 3 and the bounded incidence
condition. Another factor 2d+1 − 1 is needed as we go over all faces σ of ρ0. So we compute
O(n�d/2�) blue vertices, counting multiplicities.

Consider a red vertex (int(f) ⊕ σ) ∩ int(g). For any translation α ∈ σ, we have (int(f) +
α)∩ int(g) ⊆ (int(f)⊕σ)∩ int(g), which is a single point. Therefore, for any translation α ∈ σ,
if (int(f) + α) ∩ int(g) 	= ∅, then

(int(f)⊕ σ) ∩ int(g) = (int(f) + α) ∩ int(g). (1)

Fix σ and a translation α0 in σ. Divide the red vertices (int(f)⊕ σ) ∩ int(g) over all faces
f of P1 and g of P2 into two groups, one satisfying (int(f) + α0) ∩ int(g) 	= ∅ and the other
satisfying (int(f) + α0) ∩ int(g) = ∅. By (1), the number of red vertices in the first group
is no more than the number of vertices of (P1 + α0) ∩ P2, which is O(n�d/2�). For each red
vertex (int(f)⊕ σ) ∩ int(g) in the second group, we charge it to a blue vertex as follows. Since
(int(f)⊕σ)∩ int(g) is a single point, by continuity, (f ⊕σ)∩ g is equal to this single point. We
choose a face h1 of f and a face h2 of g such that (int(h1)⊕σ)∩int(h2) 	= ∅ and dim(h1)+dim(h2)
is minimized. Thus, (int(h1)⊕ σ)∩ int(h2) is the single point (f ⊕ σ)∩ g and the minimization
ensures that dim(h1) + dim(h2) < d. So dim(γh1,h2) ≤ dim(h1) + dim(h2) < d. It follows that
(int(h1) ⊕ σ) ∩ int(h2) is a blue vertex (it is a vertex of (h1 ⊕ σ) ∩ P2). We charge the red
vertex (int(f) ⊕ σ) ∩ int(g) to it. For another red vertex (int(f ′) ⊕ σ) ∩ int(g′) to charge to
(int(h1) ⊕ σ) ∩ int(h2), we must have h1 ∈ faces(f ′) and h2 ∈ faces(g′). So the blue vertex
(int(h1)⊕σ)∩ int(h2) is charged O(1) times by the bounded incidence condition. It follows that
O(n�d/2�) red vertices are induced by each face σ of ρ0. Another factor 2

d+1−1 is needed as we
go over all faces σ of ρ0. Thus, O(n�d/2�) red vertices are computed, counting multiplicities.

4.3.3 The third part

The next result bounds the time to generate Ê1.

Lemma 9 Computing Ê1 takes O(n�d/2�+1 log n) time with probability 1− n−O(1).
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Proof. Let h1 be a face of P1 and let σ be a face of ρ0. The face h1 is the intersection of O(n)
halfspaces and hyperplanes. The Minkowski sum of each such halfspace or hyperplane with σ
has O(1) size and can be computed in O(1) time. So the linear constraints defining h1 ⊕ σ can
be computed in O(n) time.

We run Megiddo’s linear programming algorithm to find a vertex ν of (h1 ⊕σ)∩P2 in O(n)
time [14]. We visit the vertices adjacent to ν in two steps. First, we compute the supporting
lines of edges incident to ν as follows. The point ν is dual to a (d− 1)-flat and each bounding
hyperplane through ν is dual to a point in this (d − 1)-flat. The supporting lines of the edges
incident to ν correspond to the (d − 2)-faces of the convex hull of the dual points. By the
bounded incidence condition and the constant size of σ, there are O(1) such dual points, so
it takes O(1) time to compute their convex hull and hence the supporting lines of the edges
incident to ν. Second, we shoot rays from ν along all these supporting lines and find the first
hyperplane that each ray stops at by checking the linear constraints not containing ν in O(n)
time. These stopping points are the vertices adjacent to ν. Altogether, we can visit the vertices
adjacent to ν in O(n) time. Hence, it takes O(n + kσ,h1n log n) time to visit all vertices of
(h1 ⊕ σ) ∩ P2, where kσ,h1 is the number of such vertices and the O(log n) term comes from
using a dictionary to record the vertices visited.

A vertex of (h1 ⊕ σ) ∩ P2 is equal to (int(h1) ⊕ σ) ∩ int(h2) for some face h2 of P2 if and
only if that vertex lies in the translates of the bounding hyperplanes through h1 but not in the
translate of any other bounding hyperplane of P1. These vertices can be recognized in O(n)
time each.

Hence, it takes O(n�d/2�+1 log n) time to construct Ê1 because P1 has O(n�d/2�) faces and∑
σ,h1

kσ,h1 = O(n�d/2�) with probability 1 − n−O(1) by Lemma 8. (We also need to remove

duplicates in Ê1 in O(n�d/2� log n) time via sorting.)

By the results in Lemmas 4, 5, 8, and 9, we have the recurrence T (n,m) = O(T (n,m −
1) log n + n�d/2�+1 log n) with boundary condition T (n, 0) = O(1). The solution is T (n,m) =
O(mn�d/2�+1 logm n).

Theorem 1 Let P1 and P2 be two convex polytopes in R
d, d ≥ 3, specified by n bounding

hyperplanes. For any ε > 0, we can compute an overlap of P1 and P2 under translation that
is at most ε less than the optimum. The running time is O(n�d/2�+1 logd n) with probability
1− n−O(1).

5 A faster algorithm for three dimensions

To obtain a better running time in R
3, some changes are needed in step 2 of Locate and

Lemmas 3, 4, 5, 8, and 9.
First, we decrease the size of the sample Ê0 from Θ(n log n) to Θ(n

√
log n). So the time

needed to sample Ê0 in Lemma 3 is improved to O(n log1.5 n). The running time of Locate in
Lemma 4 is improved to O(Tg + Tp + n log1.5 n), where Tg is the time to generate Ê1 and Tp is
the time to call Prune in steps 3 and 5.

In the proof of Lemma 5, we show that a halfspace can be eliminated from Π in T (n,m−
1) + O(n log n) time. The O(n log n) term stems from intersecting a translate of P1 with P2

using Chazelle’s convex hull algorithm in R
d for d ≥ 3 [5]. In R

3, Chazelle gave an O(n)-time
algorithm to intersect two convex polyhedra [4]. Thus, the running time of Prune(Π, τ, Ê) in
Lemma 5 can be improved to O(T (n,m− 1) log |Ê |+ n log |Ê |+ |Ê |).

Since we change the size of Ê0 from Θ(n log n) to Θ(n
√
log n), by Lemma 1, the bound in

Lemma 8 on the number of vertices generated changes from O(n) to O(n
√
log n). This also
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implies that |Ê1| = O(n
√
log n). Therefore, the time Tp to call Prune in steps 3 and 5 of

Locate is now O((T (n,m − 1) log n+ n log n).
It remains to show a faster method to generate Ê1. We speed up the generation of the set Ê1

of hyperplanes using the Dobkin-Kirkpatrick structure (DK-structure for short) [8]. Intuitively,
the DK-structure allows us to visit a vertex of (f ⊕σ)∩P2 in O(log n) time for all faces f of P1

and all faces σ of ρ0, so that Ê1 can be generated in O(n log1.5 n) time. (Details will be given
shortly.)

The new recurrence becomes:

T (n,m) = O(T (n,m− 1) log n+ n log1.5 n)

T (n, 0) = O(1).

Hence, T (n,m) = O(mn logm+1/2 n), implying that the maximum overlap of P1 and P2 can be
computed in O(n log3.5 n) time with high probability.

We elaborate on the generation of Ê1. Let f be a face of P1 and let nf denote the complexity
of f . Let σ be a face of ρ0. Since σ has constant size, we can compute the Minkowski sum
f ⊕ σ in O(nf ) time. This is a convex polyhedron with O(nf ) size, possibly degenerated to a
convex polygon, a line segment, or a point. We build the DK-structure for f⊕σ in O(nf log nf )
time and the DK-structure for P2 in O(n log n) time [8]. The structures support the following
operations:

• Given a line �, decide if � intersects P2 and if so, report the faces of P2 that � intersects.
There are at most two intersection points. The query time is O(log n).

• Given a facet β of f ⊕ σ, decide if β intersects P2 and if so, report a point x in β ∩ P2.
The query time is O(log n+ log nf ).

• Given a ray shooting from a point in int(P2), return the face of P2 hit by the ray. The
query time is O(log n). The same can be done for a facet of P2 or f ⊕ σ in O(log n) or
O(log nf ) time, respectively.

We describe how to generate the vertices of (f ⊕ σ) ∩ P2 in O(nf log n + vσ,f log n) time,
where vσ,f stands for the number of such vertices. These vertices fall into four categories and
we discuss how to find them in each case.

Category 1 : The intersections between the edges of f ⊕ σ and the facets of P2. For each
edge e of f ⊕ σ, we take the supporting line � of e and query the DK-structure to find the
intersections between � and the boundary of P2 in O(log n) time. We report those intersections
that lie on e. Therefore, it takes O(nf log n) time to find the intersections between the edges
of f ⊕ σ and the facets of P2.

Category 2 : The intersections between the facets of f ⊕σ and the edges of P2. Take a facet
β of f ⊕σ. We query the DK-structure to find a point x in β ∩P2. If no such point is returned,
β ∩ P2 = ∅; otherwise, we shoot a ray from x in β to hit a facet of P2 in O(log n) time. This
gives us a starting point to trace the boundary of β ∩ P2, which consists of one closed convex
chain or a collection of open convex chain(s). In the latter case, each chain endpoint is a vertex
of Category 1 and they have already been computed. Every chain edge is equal to β ∩ β′ for
some facet β′ of P2. To trace β ∩ β′, we shoot a ray along β ∩ β′; if the ray hits bd(β′) before
bd(β), we find a vertex of β ∩ P2 to be reported; if the ray hits bd(β) before bd(β′), we have
reached an endpoint of a chain. This takes O(log n+ log nf ) = O(log n) time per chain edge.

Category 3 : The vertices of P2 in f ⊕ σ. We find these vertices of P2 by tracing the edges
of P2 clipped inside f ⊕σ. The edges of P2 are clipped exactly at vertices of Category 2, which
have already been computed. So we can trace the edges of P2 clipped inside f ⊕ σ in linear
time. It is possible that P2 lies inside f ⊕ σ in which case there is no vertex of Category 2.
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Then, we take a vertex x of P2 and test in O(nf ) time whether x lies inside f ⊕ σ. If so, all
vertices of P2 lie inside f ⊕ σ; otherwise, no vertex of P2 lies inside f ⊕ σ.

Category 4 : The vertices of f ⊕ σ in P2. These vertices can be determined in almost the
same way as the vertices of Category 3 because the edges of f ⊕ σ are clipped at vertices of
Category 1. The difference lies in testing whether a vertex x of f ⊕ σ lies in P2 when there is
no vertex of Category 1. We take the supporting line � of any edge incident to x and query the
DK-structure to find the intersections between � and bd(P2) in O(log n) time. If x lies between
these intersections, then x lies in P2 and so do other vertices of f ⊕ σ. Otherwise, no vertex of
f ⊕ σ lies in P2.

The construction of the DK-structures takes O(n log n+
∑

σ,f nf log nf ) = O(n log n) time.
The time spent on identifying the vertices of (f ⊕ σ) ∩ P2 over all f ∈ faces(P1) and all
σ ∈ faces(ρ0) is O(

∑
σ,f nf log n +

∑
σ,f vσ,f log n) = O(n log1.5 n) time because the bound on∑

σ,f vσ,f in Lemma 8 has changed in the 3D case from O(n) to O(n
√
log n).

Theorem 2 Let P1 and P2 be two convex polyhedra in R
3 specified by n planes. For any ε > 0,

we can compute an overlap of P1 and P2 under translation that is at most ε less than the
optimum. The running time is O(n log3.5 n) with probability 1− n−O(1).

6 Discussion

The additive error ε is introduced because we perturb the input to improve the time complex-
ities. It would be interesting to study if the perturbation can be removed in order to remove
the additive error. Our running time of O(n�d/2�+1 logd n) is close to the worst-case complexity
Θ(n�d/2�) of a convex polytope. Can this gap be closed? It would also be interesting to find
the maximum overlap or approximate maximum overlap under rigid motion efficiently.
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APPENDIX

A Input perturbation

A.1 The process

We construct the faces of Pj for j ∈ {1, 2} in O(n�d/2� + n log n) time to find the bounding
hyperplanes that bound the (d− 1)-faces in Pj. We use Hj to denote this set of hyperplanes of
Pj . We use nh to denote the unit outward normal of a bounding hyperplane h.

We define two angles θ and ψ to limit the perturbation magnitude as follows. Each boundary
face f of Pj is contained in some bounding hyperplanes h1, . . . hi for some i ≥ 1. We insert
the unit outward normals nh1 , . . . ,nhi

as point sites on the unit (d − 1)-sphere S
d−1. These

point sites lie strictly inside one half of Sd−1. A hyperplane intersecting S
d−1 cuts it into two

subsets, and we call the smaller of the two a cap. We compute the smallest cap that contains
nh1 , . . . ,nhi

. This is a LP-type problem and it can be solved in deterministic linear time using
the algorithm of Chazelle and Matoušek [7]. Let ψf be the angular radius of this smallest cap,
which is less than π/2. Define ψ = max{ψf : f ∈ faces(P1) ∪ faces(P2), dim(f) < d }, which is
less than π/2. Let θ be some angle between 0 and arcsin(12 cosψ). We will discuss the setting
of θ in the proof of Lemma 11.

We perturb each hyperplane h ∈ H1 ∪H2 as follows:

1. Let f be the (d − 1)-face supported by h. Draw a random anchor point ah =
∑k

i=1 λivi
from f , where v1, . . . , vk are the vertices of f , by picking μ1, . . . , μk from the range [0, 1]
independently and uniformly at random and setting λi = μi/(

∑k
j=1 μj).

2. Pick a unit outward normal nh̃ uniformly at random from the set { v ∈ S
d−1 : ∠v,nh ≤ θ }.

3. Let h̃ be the hyperplane through the anchor point ah and orthogonal to nh̃.

Let H̃j denote the set {h̃ : h ∈ Hj}. Each h̃ ∈ H̃j delimits a bounding halfspace that
nh̃ points away from. The common intersection of these bounding halfspaces is the perturbed

polytope P̃j approximating Pj .
The construction of P1 and P2 can be done in O(n�d/2� +n logn) time. Afterwards, it takes

time linear in the complexities of P1 and P2, which is O(n�d/2�), to execute the remaining steps
to define θ and ψ and to perturb the hyperplanes in H1 ∪H2.

A.2 Additive error

Let D be the maximum diameter of the bounding boxes of P1 and P2. We can compute D in
O(n�d/2�) time from the vertices of P1 and P2. (We can also work with the maximum diameter
of P1 and P2 but this is a harder computation.) We first bound the directed Hausdorff distance
from bd(P̃j) to bd(Pj).

Lemma 10 For j ∈ {1, 2}, any point in bd(P̃j) is at distance 2D sin θ/ cosψ or less from
bd(Pj).

Proof. Let x be a point in bd(P̃j). Let h̃ be the bounding hyperplane that contains x.
Suppose that x ∈ Pj . So ‖x − ah‖ ≤ D. Let y be the orthogonal projection of x onto the

hyperplane h. Either y ∈ bd(Pj) or y 	∈ Pj . Since x ∈ Pj , the boundary of Pj must intersect
xy. Thus, the distance between x and bd(Pj) is at most ‖x− y‖ ≤ ‖x− ah‖ · sin θ ≤ D sin θ.

Suppose that x 	∈ Pj . Let z be the closest point in bd(Pj) to x. Take a face f of Pj that
has the lowest dimension among those containing z. So the vector x − z lies in the convex
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cone spanned by the outward normals of the bounding hyperplanes containing f . Among these
bounding hyperplanes, let h1 be the one that minimizes ∠(x−z),nh1 . So∠(x−z),nh1 ≤ ψf ≤ ψ.
Because h1 separates x and Pj but h̃1 does not separate x and P̃j , when we perturb h1 to h̃1,
we sweep over x. Thus, xah1 makes an angle at most θ with h1, so the distance between x and
h1 is at most ‖x− ah1‖ · sin θ ≤ ‖x− z‖ · sin θ+ ‖z− ah1‖ · sin θ ≤ ‖x− z‖ · sin θ+D sin θ. Also,
the distance between x and h1 is at least ‖x − z‖ · cos(∠(x− z),nh1) ≥ ‖x − z‖ · cosψ. Thus,
‖x− z‖ · cosψ ≤ ‖x− z‖ · sin θ+D sin θ, which implies that ‖x− z‖ ≤ D sin θ/(cosψ− sin θ) ≤
2D sin θ/ cosψ because θ ≤ arcsin(12 cosψ) by definition.

Next, we show that the additive error can be made ε or less for any ε > 0 by adjusting θ.

Lemma 11 Let opt be the maximum overlap of P1 and P2. For any ε > 0, we can compute a
threshold θε in O(n�d/2�) time such that, whenever θ ≤ θε, we have vol((P1+αθ)∩P2) ≥ opt−ε
where αθ is the translation that maximizes the overlap of P̃1 and P̃2.

Proof. Define δθ = 2D sin θ/ cosψ. Let α∗ be the translation that maximizes the overlap of P1

and P2. Let αθ be the translation that maximizes the overlap of P̃1 and P̃2.
For j ∈ {1, 2}, let Sj be the subset of Pj obtained by subtracting points at distance less

than δθ from bd(Pj). We have

vol(Sj) ≥ vol(Pj)−
∑

f∈faces(Pj)

Vd−dim(f) · vol(f) · δd−dim(f)
θ ,

where Vd−dim(f) denotes the volume of a unit sphere of dimension d− dim(f). We take V0 = 0

and vol(f) = 1 if f is a vertex. We compute a threshold θε in O(n�d/2�) time such that∑
f∈faces(Pj)

Vd−dim(f) · vol(f) · δd−dim(f)
θ ≤ ε/4 whenever θ ≤ θε. In other words, vol(Sj) ≥

vol(Pj)− ε/4 whenever θ ≤ θε. Therefore,

vol((S1 + α∗) ∩ S2) ≥ vol((P1 + α∗) ∩ P2)− ε/2.

For j ∈ {1, 2}, let Ej denote the region obtained by adding to Pj points at distance δθ or
less from the boundary of Pj . Arguing as in the previous paragraph, we can show that

vol((E1 + αθ) ∩ E2) ≤ vol((P1 + αθ) ∩ P2) + ε/2.

By Lemma 10, bd(P̃j) lies in Ej \Sj . Therefore, vol((P̃1+α
∗)∩ P̃2) ≥ vol((S1+α

∗)∩S2) ≥
vol((P1 +α∗)∩P2)− ε/2. Since αθ is the translation that maximizes the overlap of P̃1 and P̃2,
we obtain

vol((P̃1 + αθ) ∩ P̃2) ≥ vol((P̃1 + α∗) ∩ P̃2)

≥ vol((P1 + α∗) ∩ P2)− ε/2.

On the other hand, vol((P̃1 + αθ) ∩ P̃2) ≤ vol((E1 + αθ) ∩ E2) ≤ vol((P1 + αθ) ∩ P2) + ε/2.
Hence,

vol((P1 + αθ) ∩ P2) ≥ vol((P̃1 + αθ) ∩ P̃2)− ε/2

≥ vol((P1 + α∗) ∩ P2)− ε.
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A.3 Bounded incidence

In this section, we prove that P̃1 and P̃2 satisfy the bounded incidence condition with probability
one. We prove the first part of the bounded incidence condition by showing that P̃j is a simple
polytope, i.e., a k-face is contained in the intersection of exactly d − k bounding hyperplanes.
This implies that no more than 2d faces of P̃j have a non-empty common intersection.

Lemma 12 For j ∈ {1, 2}, P̃j is a simple polytope with probability one.

Proof. Let f be a proper face of P̃j . Suppose that dim(f) > 0. If there are more than d−dim(f)
bounding hyperplanes containing f , the unit outward normals of any d − dim(f) + 1 of them
are not linearly independent. This happens with probability zero because these normals (at
most d of them) are chosen randomly. Suppose that dim(f) = 0, i.e., f is a vertex. There
are d bounding hyperplanes with common intersection f . Consider the possibility that there
is yet another bounding hyperplane h̃ passing through f . Since the anchor point ah is picked
at random, it is distinct from f with probability one. Then, since nh̃ is picked at random, the

probability of f ∈ h̃ is zero.

In the rest of this section, Γ and Γ̂ are defined with respect to the perturbed polytopes P̃1

and P̃2 instead of the original polytopes P1 and P2.
We show in the next result that an element γf,g ∈ Γ is formed generically with probability

one in the sense that dim(γf,g) = dim(f) + dim(g). Recall that γf,g = (−int(f))⊕ int(g).

Lemma 13 It holds with probability one that if dim(γf,g) < d, then dim(γf,g) = dim(f) +
dim(g).

Proof. The lemma is trivial if dim(f) or dim(g) is zero. Assume that both dim(f) and dim(g)
are positive. Since dim(γf,g) < d, both dim(f) and dim(g) are less than d, implying that f
and g are proper faces of P1 and P2, respectively. Let v be any vector parallel to aff(f). Let
L be the (d − 1)-dimensional linear subspace orthogonal to v. The intersection L ∩ S

d−1 is
a unit (d − 2)-sphere. Let h̃ be any bounding hyperplane of g. Since nh̃ is picked at ran-
dom from a (d − 1)-dimensional neighborhood on S

d−1, the probability of nh̃ ∈ L ∩ S
d−1 is

zero. So v is not orthogonal to nh̃, meaning that v is not parallel to aff(g) with probabil-
ity one. Conversely, any vector parallel to aff(g) is not parallel to aff(f) with probability
one. It follows that dim(f ⊕ g) = dim(f) + dim(g). Since γf,g = (−int(f)) ⊕ int(g), we have
dim(γf,g) = dim((−f)⊕ g) = dim(f ⊕ g) = dim(f) + dim(g).

We prove the second part of the bounded incidence condition by showing that no more than
22d

2
hyperplanes in Γ̂ have a non-empty common intersection with probability one.

Lemma 14 It holds with probability one that no more than 22d
2
hyperplanes in Γ̂ have a non-

empty common intersection.

Proof. Let Îk be a subcollection of hyperplanes in Γ̂ that have a k-dimensional common
intersection

⋂ Îk, i.e., a k-flat. We prove below that |Îk| ≥ 22d(d−k) with probability zero.
Then, the lemma follows because 22d(d−k) ≤ 22d

2
.

There must be d − k hyperplanes in Îk whose common intersection is
⋂ Îk. Let (f1, g1),

. . ., (fd−k, gd−k) be the pairs of faces that induce these hyperplanes. By Lemma 13, fi and
gi are proper faces with probability one. Let L̃1 denote the subset of hyperplanes in H̃1 that
contain fi for some i ∈ [1, d − k]. By Lemma 12, it holds with probability one that there are
at most d hyperplanes in H̃1 containing each fi. Thus, |L̃1| ≤ d(d − k). There are fewer than
2d(d−k) combinations of the hyperplanes in L̃1, meaning that the union of the hyperplanes in
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L̃1 contains fewer than 2d(d−k) faces of P̃1. Similarly, let L̃2 denote the subset of hyperplanes in
H̃2 that contain gi for some i ∈ [1, d− k] and the hyperplanes in L̃2 contain fewer than 2d(d−k)

faces of P̃2.
Therefore, in the event that |Îk| ≥ 22d(d−k), some hyperplane in Îk must be induced by

a pair of faces (f, g), where f ∈ faces(P1) and g ∈ faces(P2), such that f does not lie on any
hyperplane in L̃1 and g does not lie on any hyperplane in L̃2. By Lemma 13, f and g are proper
faces with probability one. Let L̃ denote the subset of hyperplanes in H̃1∪ H̃2 that contain f or
g. The important point is that the hyperplanes in L̃ are obtained by perturbations independent
from the perturbations producing the hyperplanes in L̃1 ∪ L̃2.

Without loss of generality, we translate space so that
⋂ Îk contains the origin.

We show in the following that the origin belongs to aff(γf,g) with probability zero. The
origin belongs to aff(γf,g) if and only if aff(f)∩ aff(g) 	= ∅. By Lemma 12, |L̃| = (d−dim(f))+
(d − dim(g)). Since γf,g ∈ Γ, we have dim(γf,g) < d by definition and so dim(f) + dim(g) =
dim(γf,g) < d by Lemma 13. Therefore, |L̃| ≥ d+1. Since the normals and the anchor points of
the hyperplanes in L̃ are picked at random, the intersection

⋂
h̃∈L̃ h̃ is empty with probability

one. Notice that
⋂

h̃∈L̃ h̃ contains aff(f)∩ aff(g). So aff(f)∩ aff(g) is empty, which implies that
the origin does not belong to aff(γf,g).

Recall that either γ̂f,g = aff(γf,g) or γ̂f,g is a hyperplane containing aff(γf,g) picked at

random. In the former case, as the origin belongs to
⋂ Îk but the origin does not belong to

γ̂f,g = aff(γf,g) with probability one, the probability of γ̂f,g ∈ Îk is zero. In the latter case, as
aff(γf,g) avoids the origin and γ̂f,g is picked at random, the probability of γ̂f,g containing the

origin is zero, implying that the probability of γ̂f,g ∈ Îk is zero.
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